高中数学 2.3直线的参数方程 新人教A版选修4-4
- 格式:ppt
- 大小:2.27 MB
- 文档页数:12
曲线的参数方程教学目标:1.通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体会参数的意义。
2.分析圆的几何性质,选择适当的参数写出它的参数方程。
3.会进行参数方程和普通方程的互化。
教学重点:根据问题的条件引进适当的参数,写出参数方程,体会参数的意义。
参数方程和普通方程的互化。
教学难点:根据几何性质选取恰当的参数,建立曲线的参数方程。
参数方程和普通方程的等价互化。
教学过程一.参数方程的概念1.探究:(1)平抛运动: 为参数)t gt y tx (215001002⎪⎩⎪⎨⎧-== 练习:斜抛运动:为参数)t gt t v y t v x (21sin cos 200⎪⎩⎪⎨⎧-⋅=⋅=αα2.参数方程的概念 (见教科书第22页) 说明:(1)一般来说,参数的变化X 围是有限制的。
(2)参数是联系变量x ,y 的桥梁,可以有实际意义,也可无实际意义。
例1.(教科书第22页例1)已知曲线C 的参数方程是⎩⎨⎧+==1232t y tx (t 为参数) (1)判断点M 1(0,1),M 2(5,4)与曲线C 的位置关系; (2)已知点M 3(6,a )在曲线C 上,求a 的值。
)0,1()21,21()21,31()7,2()(2cos sin 2D C B A y x ,、,、,、的坐标是表示的曲线上的一个点为参数、方程θθθ⎩⎨⎧==A 、一个定点B 、一个椭圆C 、一条抛物线D 、一条直线二.圆的参数方程)(sin cos 为参数t t r y t r x ⎩⎨⎧==ωω)(sin cos 为参数θθθ⎩⎨⎧==r y r x说明:(1)随着选取的参数不同,参数方程形式也有不同,但表示的曲线是相同的。
(2)在建立曲线的参数方程时,要注明参数及参数的取值X 围。
例2.(教科书第24页例2)思考:你能回答教科书第25页的思考吗?三.参数方程和普通方程的互化1.阅读教科书第25页,明确参数方程和普通方程的互化的方法。
从一道课本例题来看如何培养学生解析几何的思维品质人教版教材《数学•选修4-4》第二讲中有一道例题:如图2-13,O 是直角坐标原点,A ,B 是抛物线22(0)y px p =>上异于顶点的两动点,且,OA OB OM AB ⊥⊥并与AB 相交于点M ,求点M 析几何的一个很好的素材,这节课可充分探究式教学,为解决高考中有关解析几何压轴大题奠定很好的基础。
探究:Ⅰ 一题多解,思维发散,培养思维的敏捷性与灵活性师:我们已经学习了抛物线的参数方程,如何用参数方程来求动点M 的轨迹呢?生1:可根据条件,设点M ,A ,B 的坐标分别为,2211221212(,),(2,2),(2,2)(,0)x y pt pt pt pt t t t t ≠≠且则,211OM (,),(2,2),x y OA pt pt ==222(2,2),OB pt pt =222121(2(),2())AB p t t p t t =--0OA OB OA OB ⊥⇒=,即:22121212(2)(2)01pt t p t t t t +=⇒=-…………………①OM OM 0AB AB ⊥⇒⊥=,即:222121122()2()0()0px t t py t t x t t y -+-=⇒++= 即:12(0)yt t x x+=-≠……………………………………………………………………② 又221212,,AM//(2)(2)(2)(2)A M B x pt pt y y pt pt x ⇔⇔--=--三点共线MB 即:1212()20y t t pt t x +--=………………………………………………………………③ 由①②③可得:点M 的轨迹方程为2220(0)x y px x +-=≠师:这位同学的解答利用了抛物线的参数方程,设出A 、B 两点的坐标,再利用题中三个独立的已知条件建立三个方程,再联立方程消参,便可得到所求的轨迹方程。