高中数学竞赛专题讲座竞赛讲座 22因式分解
- 格式:doc
- 大小:37.00 KB
- 文档页数:5
高中数学竞赛优秀教案教学内容:整式的乘法和因式分解教学目标:1.掌握整式的乘法运算规则,能够熟练进行整式的乘法运算。
2.了解因式分解的定义和方法,能够灵活运用因式分解解题。
3.培养学生的逻辑思维能力和数学解决问题的能力。
教学重点:1.整式的乘法运算规则。
2.因式分解的方法和应用。
教学难点:1.多项式的乘法运算中乘法运算法则的运用。
2.因式分解的多项式中,如何确定公因式进行因式分解。
教学准备:1.教学课件和教材。
2.习题集和解答。
3.黑板和粉笔。
4.教学实物和辅助教具。
教学过程:Step1.导入:教师用具体的例子引导学生了解整式乘法的基本规则,激发学生的学习兴趣。
Step2.讲解:教师介绍整式的乘法运算规则和因式分解的方法,同时讲解相关的概念和定理。
Step3.示范:教师通过示范习题,让学生掌握整式的乘法运算和因式分解的方法,培养学生的解题能力。
Step4.练习:让学生进行一定数量的练习题,巩固所学知识,提高解题速度和准确率。
Step5.讲评:教师对学生的练习情况进行讲解和评价,指导学生如何更好地解题。
Step6.拓展:让学生进行一些更具挑战性的习题,提高学生的解题能力和思维水平。
Step7.总结:教师对本节课的学习内容进行总结,强调重点知识和方法。
教学反馈:通过课堂练习和学生表现,评价学生的学习情况,及时发现问题,引导学生提高。
教学评价:通过学生的考试成绩和课堂表现,评价教学效果,及时调整教学方法。
教学延伸:引导学生进一步学习相关知识和解题方法,提高学生的数学竞赛能力。
教学资源:给学生提供更多的练习资源和参考资料,帮助学生更好地理解和掌握知识。
教学反思:教师反思本节课教学过程和效果,总结经验教训,进一步完善教学方法和手段。
因式分解把一个多项式化成几个整式的积的形式,叫做多项多式的因式分解。
因式分解是整数质因数分解的发展,实质是多项式乘法的逆运算。
它是多项式的一种重要的变化方法,是解决许多数学问题的有力工具。
在几何、三角等解题与证明中扮演着重要角色,因式分解方法灵活,技巧性强,有利于培养学生的解题技能,发展学生思维能力。
它主要包括以下几个方面的内容:(1) 因式分解的对象是多项式,无论是被分解式还是分解后的每个因式都必须是多项式或单项式。
(2) 因式分解的过程是多项式的恒等变形,每一步都必须保持前后两式相等。
(3) 要注意因式分解的范围是在实数范围几因式分解,还是在有理数范围内因式分解。
(4) 因式分解的结果都是整式的乘积的形式,每一个多项式都要在规定范围内分解到不能再分解为止。
主要方法:提公因式法、公式法、分组分解法、十字相乘法、拆项添项法、待定系数法等。
重要公式及结论:()3223333b ab b a a b a ±+±=± ()()3322b a b ab a b a ±=+±()bcac ab c b a c b a 2222222+++++=++()()()()c a c b b a c b a c b a +++-++=++33333 ()()()b x a x ab x b a x ++=+++2()()122321-----+++++-=-n n n n n n n b ab b a b a a b a b a (n 为正整数)()()122321------+-+-+=-n n n n n n n b ab b a b a a b a b a (n 为偶数)()()122321-----+--+-+=+n n n n n n n b ab b a b a a b a b a (n 为奇数)待定系数法因式分解的依据是: n n n n n n n n n n b a b a b a b x b x b x b a x a x a x a ===⇔++++=++++----,,,110011101110 因式定理:如果多项式()001110≠++++--a a x a x a x a n n n n 当a x =时,它的值为0,那么它有因式a x -。
数学竞赛专题讲座因式分解1.双十字相乘法分解二次三项式时,我们常用十字相乘法.关于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也能够用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,因此上式可变形为2x2-(5+7y)x-(22y2-35y+3),能够看作是关于x的二次三项式.关于常数项而言,它是关于y的二次三项式,也能够用十字相乘法,分解为即-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解因此原式=[x+(2y-3)][2x+(-11y+1)]=(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.假如把这两个步骤中的十字相乘图合并在一起,可得到下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.这确实是所谓的双十字相乘法.用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1 分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;(4)6x2-7xy-3y2-xz+7yz-2z2.解 (1)原式=(x-5y+2)(x+2y-1).(2)原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.原式=(y+1)(x+y-2).(4)原式=(2x-3y+z)(3x+y-2z).说明 (4)中有三个字母,解法仍与前面的类似.2.求根法我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x 的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.依照因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.关于任意多项式f(x),要求出它的根是没有一样方法的,然而当多项式f(x)的系数差不多上整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是a n的约数.专门地,当a0=1时,整系数多项式f(x)的整数根均为a n的约数.我们依照上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例2 分解因式:x3-4x2+6x-4.分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,因此依照定理1,原式必有因式x-2.解法1 用分组分解法,使每组都有因式(x-2).原式=(x3-2x2)-(2x2-4x)+(2x-4)=x2(x-2)-2x(x-2)+2(x-2)=(x-2)(x2-2x+2).解法2 用多项式除法,将原式除以(x-2),因此原式=(x-2)(x2-2x+2).说明在上述解法中,专门要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.例3 分解因式:9x4-3x3+7x2-3x-2.分析因为9的约数有±1,±3,±9;-2的约数有±1,±为:因此,原式有因式9x2-3x-2.解 9x4-3x3+7x2-3x-2=9x4-3x3-2x2+9x2-3x-2=x2(9x3-3x-2)+9x2-3x-2=(9x2-3x-2)(x2+1)=(3x+1)(3x-2)(x2+1)说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式能够化为9x2-3x-2,如此能够简化分解过程.总之,对一元高次多项式f(x),假如能找到一个一次因式(x-a),那么f(x)就能够分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,如此,我们就能够连续对g(x)进行分解了.3.待定系数法待定系数法是数学中的一种重要的解题方法,应用专门广泛,那个地点介绍它在因式分解中的应用.在因式分解时,一些多项式通过分析,能够确信它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时能够用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,依照多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个专门值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.例4 分解因式:x2+3xy+2y2+4x+5y+3.分析由于(x2+3xy+2y2)=(x+2y)(x+y),若原式能够分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决.解设x2+3xy+2y2+4x+5y+3=(x+2y+m)(x+y+n)=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,比较两边对应项的系数,则有解之得m=3,n=1.因此原式=(x+2y+3)(x+y+1).说明本题也可用双十字相乘法,请同学们自己解一下.例5 分解因式:x4-2x3-27x2-44x+7.分析本题所给的是一元整系数多项式,依照前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,因此,在有理数集内,原式没有一次因式.假如原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.解设原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,因此有由bd=7,先考虑b=1,d=7有因此原式=(x2-7x+1)(x2+5x+7).说明由于因式分解的唯独性,因此对b=-1,d=-7等能够不加以考虑.本题假如b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.练习二1.用双十字相乘法分解因式:(1)x2-8xy+15y2+2x-4y-3;(2)x2-xy+2x+y-3;(3)3x2-11xy+6y2-xz-4yz-2z2.2.用求根法分解因式:(1)x3+x2-10x-6;(2)x4+3x3-3x2-12x-4;(3)4x4+4x3-9x2-x+2.3.用待定系数法分解因式:(1)2x2+3xy-9y2+14x-3y+20;(2)x4+5x3+15x-9.。
第一讲 因式分解(一)1、 几种常用的因式分解方法①、拆项和添项:把代数式中的某项拆成两项或更多项的代数和,叫做拆项;把代数式添上两个符号相反的项,叫做添项。
一般情况下,如何拆项或添项,依赖于对题目特点的观察和分析。
例1、分解因式:⑴、2426923+++x x x ⑵、15++x x例2、分解因式:24222)1()1(2)1(y x y x y -++-+例3、分解因式:abc c b a 3333-++例4、若a 为正整数,则9324+-a a 是质数还是合数?给出你的证明。
②、按一个变量降次排列:按一个变量降次排列在代数式变换中,是常用的方法之一,按一个变量降次排列的方法,常有利于因式分解的进行。
例5、分解因式:1+++++++z y x zx yz xy xyz例6、分解因式:a x a x a x +++++)12()2(23③、换元法:在作代数式变换时,常常要考虑把一个式子看成一个数(或字母),从而应用基本知识解决问题。
例7、分解因式:2)1()2)(2(ab b a ab b a -+-+-+例8、分解因式:333)42()323()(a b c c b a c b a -++--+++例9、证明:四个连续自然数的积与1之和必是一个完全平方数。
④、待定系数法:待定系数法也是代数式变换的一个常用方法,这个方法的特点是假设变换已经完成,然后再去求出那些尚未确定的系数。
例10、分解因式:35825322-+--+y x y xy x例11、化简912104234++++x x x x例12、分解因式:4925322-++-+y x y xy x例13、求证:y x y xy x +++-22不能分解成两个一次因式的乘积。
例14、求证:1234++++x x x x 可表示成两个多项式的平方差第一讲 因式分解(一)练习1、分解因式:①、32422+++-b a b a =___________________________.②、.____________________262793223=-+-a x a ax x③、._____________________20)5)(3)(1(2=-++-x x x④、._________________________2414723522=-+--+y x y xy x⑤、.__________________________12)2)((42222=-++++y y xy x y xy x ⑥、.___________________________)1)(1)(1(=++++xy y x xy⑦、._______________________)1()2)(2(2=++++-+ab b a ab b a⑧、.___________________________)(3333=---++c b a c b a2、m 为何值时,多项式m y x y xy x +-++-5112101222能分解成两个一次因式的积?3、求满足19832222=-++-x x y xy y x 的整数对),(y x .4、在实数范围内分解因式:1)2(3+++-a x a x .5、已知33332222,,c z y x b z y x a z y x =++=++=++,求xyz 。
第一讲因式分解(一)多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.解 (1)原式=-2x n-1y n(x4n-2x2n y2+y4)=-2x n-1y n[(x2n)2-2x2n y2+(y2)2]=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2=(a-b)2+2c(a-b)+c2=(a-b+c)2.本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)=(a-b+c)2(4)原式=(a7-a5b2)+(a2b5-b7)=a5(a2-b2)+b5(a2-b2)=(a2-b2)(a5+b5)=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)例2 分解因式:a3+b3+c3-3abc.本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性,现将此公式变形为a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式,本题就借助于它来推导.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a3+b3+c3-3abc显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc ≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3≥0,y=b3≥0,z=c3≥0,则有等号成立的充要条件是x=y=z.这也是一个常用的结论.例3 分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1),所以说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2 将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3 将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4 添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例5 分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.解 (1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=[(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例6 分解因式:(x2+x+1)(x2+x+2)-12.分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y 的二次三项式的因式分解问题了.解设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.例7 分解因式:(x2+3x+2)(4x2+8x+3)-90.分析先将两个括号内的多项式分解因式,然后再重新组合.解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x2+5x+3)(2x2+5x+2)-90.令y=2x2+5x+2,则原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).说明对多项式适当的恒等变形是我们找到新元(y)的基础.例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.解设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.例9分解因式:6x4+7x3-36x2-7x+6.解法1 原式=6(x4+1)+7x(x2-1)-36x2=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2=6[(x2-1)2+2x2]+7x(x2-1)-36x2=6(x2-1)2+7x(x2-1)-24x2=[2(x2-1)-3x][3(x2-1)+8x]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).说明本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.解法2原式=x2[6(t2+2)+7t-36]=x2(6t2+7t-24)=x2(2t-3)(3t+8)=x2[2(x-1/x)-3][3(x-1/x)+8]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).例10 分解因式:(x2+xy+y2)-4xy(x2+y2).分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2.练习一1.分解因式:(2)x10+x5-2;(4)(x5+x4+x3+x2+x+1)2-x5.2.分解因式:(1)x3+3x2-4;(2)x4-11x2y2+y2;(3)x3+9x2+26x+24;(4)x4-12x+323.3.分解因式:(1)(2x2-3x+1)2-22x2+33x-1;(2)x4+7x3+14x2+7x+1;(3)(x+y)3+2xy(1-x-y)-1;(4)(x+3)(x2-1)(x+5)-20.。
第一讲因式分解(一)多项式的因式分解是代数式恒等变形的基本形式之一:它被广泛地应用于初等数学之中:是我们解决许多数学问题的有力工具.因式分解方法灵活:技巧性强:学习这些方法与技巧:不仅是掌握因式分解内容所必需的:而且对于培养学生的解题技能:发展学生的思维能力:都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上:对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中:我们学过若干个乘法公式:现将其反向使用:即为因式分解中常用的公式:例如:(1)a2-b2=(a+b)(a-b):(2)a2±2ab+b2=(a±b)2:(3)a3+b3=(a+b)(a2-ab+b2):(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2:(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca):(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数:(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1):其中n为偶数:(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1):其中n为奇数.运用公式法分解因式时:要根据多项式的特点:根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4:(2)x3-8y3-z3-6xyz:(3)a2+b2+c2-2bc+2ca-2ab:(4)a7-a5b2+a2b5-b7.解 (1)原式=-2x n-1y n(x4n-2x2n y2+y4)=-2x n-1y n[(x2n)2-2x2n y2+(y2)2]=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2=(a-b)2+2c(a-b)+c2=(a-b+c)2.本小题可以稍加变形:直接使用公式(5):解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)=(a-b+c)2(4)原式=(a7-a5b2)+(a2b5-b7)=a5(a2-b2)+b5(a2-b2)=(a2-b2)(a5+b5)=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)例2 分解因式:a3+b3+c3-3abc.本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性:现将此公式变形为a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式:本题就借助于它来推导.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式(6)是一个应用极广的公式:用它可以推出很多有用的结论:例如:我们将公式(6)变形为a3+b3+c3-3abc显然:当a+b+c=0时:则a3+b3+c3=3abc:当a+b+c>0时:则a3+b3+c3-3abc ≥0:即a3+b3+c3≥3abc:而且:当且仅当a=b=c时:等号成立.如果令x=a3≥0:y=b3≥0:z=c3≥0:则有等号成立的充要条件是x=y=z.这也是一个常用的结论.例3 分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项:从最高次项x15开始:x的次数顺次递减至0:由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1):所以说明在本题的分解过程中:用到先乘以(x-1):再除以(x-1)的技巧:这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时:整理、化简常将几个同类项合并为一项:或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时:需要恢复那些被合并或相互抵消的项:即把多项式中的某一项拆成两项或多项:或者在多项式中添上两个仅符合相反的项:前者称为拆项:后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.分析本题解法很多:这里只介绍运用拆项、添项法分解的几种解法:注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2 将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3 将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4 添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).说明由此题可以看出:用拆项、添项的方法分解因式时:要拆哪些项:添什么项并无一定之规:主要的是要依靠对题目特点的观察:灵活变换:因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例5 分解因式:(1)x9+x6+x3-3:(2)(m2-1)(n2-1)+4mn:(3)(x+1)4+(x2-1)2+(x-1)4:(4)a3b-ab3+a2+b2+1.解 (1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=[(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).说明 (4)是一道较难的题目:由于分解后的因式结构较复杂:所以不易想到添加+ab-ab:而且添加项后分成的三项组又无公因式:而是先将前两组分解:再与第三组结合:找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在:同学们需多做练习:积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体:并用一个新的字母替代这个整体来运算:从而使运算过程简明清晰.例6 分解因式:(x2+x+1)(x2+x+2)-12.分析将原式展开:是关于x的四次多项式:分解因式较困难.我们不妨将x2+x看作一个整体:并用字母y来替代:于是原题转化为关于y 的二次三项式的因式分解问题了.解设x2+x=y:则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体:比如今x2+x+1=u:一样可以得到同样的结果:有兴趣的同学不妨试一试.例7 分解因式:(x2+3x+2)(4x2+8x+3)-90.分析先将两个括号内的多项式分解因式:然后再重新组合.解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x2+5x+3)(2x2+5x+2)-90.令y=2x2+5x+2:则原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).说明对多项式适当的恒等变形是我们找到新元(y)的基础.例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.解设x2+4x+8=y:则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).说明由本题可知:用换元法分解因式时:不必将原式中的元都用新元代换:根据题目需要:引入必要的新元:原式中的变元和新变元可以一起变形:换元法的本质是简化多项式.例9分解因式:6x4+7x3-36x2-7x+6.解法1 原式=6(x4+1)+7x(x2-1)-36x2=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2=6[(x2-1)2+2x2]+7x(x2-1)-36x2=6(x2-1)2+7x(x2-1)-24x2=[2(x2-1)-3x][3(x2-1)+8x]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).说明本解法实际上是将x2-1看作一个整体:但并没有设立新元来代替它:即熟练使用换元法后:并非每题都要设置新元来代替整体.解法2原式=x2[6(t2+2)+7t-36]=x2(6t2+7t-24)=x2(2t-3)(3t+8)=x2[2(x-1/x)-3][3(x-1/x)+8]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).例10 分解因式:(x2+xy+y2)-4xy(x2+y2).分析本题含有两个字母:且当互换这两个字母的位置时:多项式保持不变:这样的多项式叫作二元对称式.对于较难分解的二元对称式:经常令u=x+y:v=xy:用换元法分解因式.解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u:xy=v:则原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2.练习一1.分解因式:(2)x10+x5-2:(4)(x5+x4+x3+x2+x+1)2-x5.2.分解因式:(1)x3+3x2-4:(2)x4-11x2y2+y2:(3)x3+9x2+26x+24:(4)x4-12x+323.3.分解因式:(1)(2x2-3x+1)2-22x2+33x-1:(2)x4+7x3+14x2+7x+1:(3)(x+y)3+2xy(1-x-y)-1:(4)(x+3)(x2-1)(x+5)-20.。
第2讲 因式分解(二)1、有理系数多项式的分解①、定义:形如0111a x a x a x a n n n n +++-- …⑴的代数式叫做一元多项式,这里x 是文字,n 是非负整数,且0≠n a ,常用)(x f 简单地表示多项式⑴,用)(a f 表示当a x =时多项式的值,特别当0)(=a f 时,a 叫做)(x f 的根。
若多项式⑴的所有系数都是整数,则称⑴为整系数多项式。
②、因式定理:若a 是多项式)(x f 的根,即0)(=a f ,则)(x f 能被a x -整除(即a x -是)(x f 的一个因式)。
例1、 证明:32+x 为多项式181********++--x x x x 的因式。
③、定理:设)(x f 是整系数多项式⑴,若pq x =(q p ,是互质整数)是它的根,则p 是 首项系数n a 的约数,q 是末项系数0a 的约数。
推论:对于首项系数为1的整系数多项式0111a x a x a x n n n ++++-- ,若整数b 是它的根,则b 是0a 的约数。
例2、 在实数范围内分解因式:61023+-+x x x例3、分解因式:8292234+--+x x x x2、对称多项式的分解①、定义:在一个含有若干个元的多项式中,如果任意互换两个元的位置,多项式不变,这种多项式叫做对称多项式。
例如:444)(y y x x +++是二元对称多项式,xyz z y x 3333-++是三元对称多项式。
②、轮换对称多项式:一个关于w z y x ,,,的多项式,若依某种顺序把文字进行轮换(如把x 换成y ,y 换成z ,…w 换成x )多项式不变,这种多项式叫做轮换对称多项式。
例如:x z z y y x 222++,))()((b a c a c b c b a +-+-+-都是三元轮换对称多项式。
说明:⑴、显然,对称多项式都是轮换对称多项式;但轮换对称多项式不一定是对称多项式,例如:x z z y y x 222++是轮换式,但若互换y x ,得到的是y z z x x y 222++不是原式,所以原式不是对称式。
高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。
全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的几个特殊点:旁心、费马点,欧拉线。
几何不等式。
几何极值问题。
几何中的变换:对称、平移、旋转。
圆的幂和根轴。
面积方法,复数方法,向量方法,解析几何方法。
2.代数周期函数,带绝对值的函数。
三角公式,三角恒等式,三角方程,三角不等式,反三角函数。
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。
第二数学归纳法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。
复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。
多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。
n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。
函数迭代,简单的函数方程*3.初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。
4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。
组合计数,组合几何。
抽屉原理。
容斥原理。
极端原理。
图论问题。
集合的划分。
覆盖。
平面凸集、凸包及应用*。
注:有*号的内容加试中暂不考,但在冬令营中可能考。
二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。
课程简介:全国高中数学联赛是中国高中数学学科的最高等级的数学竞赛,其地位远高于各省自行组织的数学竞赛。
在这项竞赛中取得优异成绩的全国约90名学生有资格参加由中国数学会主办的“中国数学奥林匹克(CMO)暨全国中学生数学冬令营”。
优胜者可以自动获得各重点大学的保送资格。
各省赛区一等奖前6名可参加中国数学奥林匹克,获得进入国家集训队的机会。
中小学教育网重磅推出“全国高中数学联赛”辅导课程,无论是有意向参加竞赛的初学者,还是已入围二试的竞赛选手,都有适合的课程提供。
本套课程由中国数学奥林匹克高级教练熊斌、人大附中数学教师李秋生等名师主讲,轻松突破你的数学极限!课程招生简章:/webhtml/project/liansaigz.shtml选课中心地址:/selectcourse/commonCourse.shtm?courseeduid=170037#_170037_第一章数论专题我们把未知数的个数多于方程的个数,且其解受到某种限制的方程,叫做不定方程.通常主要研究不定方程的正整数解、整数解、有理数解等.不定方程问题的常见类型是:(1)求不定方程的解;(2)判定不定方程是否有解;(3)确定不定方程解的数量(有限还是无限).不定方程问题的常用解法是:(1)代数分析与恒等变形法,如因式分解、配方、换元等;(2)估计范围法,利用不等式放缩等方法,确定出方程中某些变量的取值范围,进而求整解;(3)同余法,即恰当选取模m,对方程两边做同余分析,以缩小变量的范围或发现性质,从而得出整解或判定无解;(4)构造法,构造出符合要求的特解,或构造一个求解的递推式,证明方程有无穷多解;(5)无穷递降法,无穷递降法是一种用反证法表现的特殊形式的归纳法,由Fermat创立并运用它证明了方程x4+y4=z4没有非零整解.从此,无穷递降作为一种重要的数学思想方法广为流传应用,并在平面几何、图论及组合中经常用到它.引例:求所有正整数对(x,y)满足x y=y x-y.1.二元一次不定方程定义1形如ax+by=c(a,b,c∈Z, a,b不同时为0)的方程,称为二元一次不定方程.定理1 不定方程ax+by=c有整数解的充要条件是(a,b)|c.定理2 设(x0,y0)是不定方程ax+by=c的一组整解,则此方程的一切整数解为(x,y)=(),其中t∈Z.当(a,b)=1时, (x,y)=(x0+bt,y0-at).例1求不定方程3x+2y+8z=40的正整数解。
高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。
全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的几个特殊点:旁心、费马点,欧拉线。
几何不等式。
几何极值问题。
几何中的变换:对称、平移、旋转。
圆的幂和根轴。
面积方法,复数方法,向量方法,解析几何方法。
2.代数周期函数,带绝对值的函数。
三角公式,三角恒等式,三角方程,三角不等式,反三角函数。
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。
第二数学归纳法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。
复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。
多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。
n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。
函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。
4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。
组合计数,组合几何。
抽屉原理。
容斥原理。
极端原理。
图论问题。
集合的划分。
覆盖。
平面凸集、凸包及应用*。
注:有*号的内容加试中暂不考,但在冬令营中可能考。
二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。
竞赛讲座22-因式分解因式分解是中学数学中最重要的恒等变形之一,具有一定的灵活性和技巧性,下面我们在初中教材已经介绍过基本方法的基础上,结合竞赛再补充介绍添项、拆项法,待定系数法、换元法、对称式的分解等有关内容和方法.1.添项.拆项法添项、拆项的目的是在各项间制造公因式或便于利用公式分解因式,解题时要注意观察分析题目的特点.例1 (1986年扬州初一数学竞赛题)分解因式(1+y)2-2x2(1+y2)+x4(1-y)2解:原式=(1+y)2+2(1+y)x2(1+y)+x4(1-y)2-2(1+y)x2(1-y)-2x2(1+y2)=[(1+y)+x2(1-y)]2-2(1+y)x2(1-y)-2x2(1+y2)=[(1+y)+x2(1-y)]2-(2x)2=[(1+y)+x2(1-y)+2x]·[(1+y)+x2(1-y)-2x]=(x2-x2y+2x+y+1)(x2-x2y-2x+y+1)=[(x+1)2-y(x2-1)][(x-1)2-y(x2-1)]=(x+1)(x+1-xy+y)(x-1)(x-1-xy-y)例2(第11届国际数学竞赛题)证明:具有如下性质的自然数a有无穷多个,对于任意的自然数m.z=n4+a都不是素数.证明设a=4k4(k为大于1的自然数),则z=n4+a=n4+4k4=n4+4n2k2+4k4-4n2k2=(n2+2k2)2-4n2k2=(n2+2k2+2nk)(n2+2k2-2nk)=[(n+k)2+k2][(n-k)2+k2]. ①∵k为大于1的自然数,∴(n+k)2+k2>1, (n-k)2+k2>1故①的右边两个因子都大于1,故当k>1时,z是合数.由于大于1的自然数k有无穷多个,故有无穷多个自然数a,使n4+a对一切自然数n总非素数2.待定系数法若两多项式f(x)=g(x),则它们同次的对应项系数一定相等,利用这条结论可将某些因式分解的问题转化为解方程组的问题来解决.例3分解因式3x2+5xy-2y2+x+9y-4.解由于3x2+5xy-2y2=(3x-y)(x+2y),故可设3x2+5xy-2y2+x+9y-4=(3x-y+a)(x+2y+b)=3x2+5xy-2y2+(a+3b)x+(2a-b)y+ab.①②③比较两边系数得由①,②联立得a=4,b=-1,代入③式适合.∴原式=(3x-y+4)(x+2y-1).例4 (1963年北京中学生数学竞赛试题)已知多项式x3+bx2+cx+d的系数都是整数,若bd+cd是奇数,,证明这个多项式不能分解为两个整系数多项式的乘积.证明设x3+bx2+cx+d=(x+p)(x2+qx+r)=x3+(p+q)x2+(pq+r)x+pr(其中p、q、r均为整数)比较两边系数得 pr=d.又 bd+cd=d(b+c)是奇数,故b+c与d均为奇数,那么pr也是奇数,即p与r也是奇数.今以x=1代入(因为它是恒等式)得1+b+c+d=(1+p)(1+q+r). ①∵b+c,d为奇数,∴1+b+c+d也为奇数,而p为奇数,∴1+p为偶数.∴(1+p)(1+q+r)为偶数.这说明等式①的左端为奇数,右端为偶数,这是不可能的.所以,所述多项式不能分解成两个整系数多项式的乘积.3.换元法例5 分解因式 (x2+3x+2)(x2+7x+12)-120.解原式=(x+2)(x+1)(x+4)(x+3)-120=(x+2)(x+3)(x+1)(x+4)-120=(x2+5x+6)(x2+5x+4)-120令 x2+5x=A, 代入上式,得原式=(A+6)(A+4)-120=A2+10A-96=(A+16)(A-6)=(x2+5x+16)(x2+5x-6)=(x2+5x+16)(x+6)(x-1)例6 证明a(a+1)(a+2)(a+3)+1必为完全平方数解原式=a(a+3)(a+1)(a+2)+1=(a2+3a)(a2+3a+2)+1=(a2+3a)2+2(a2+3a)+1=(a2+3a+1)2∴a(a+1)(a+2)(a+3)+1为完全平方数.说明:这里未设新元,但在思想上把a2+3a看作一个新元素.4.对称式的因式分解在一个含有若干个元的多项式中,如果任意交换两个元的位置,多项式不变,这样的多项式叫做对称多项式.例7分解因式x4+(x+y)4+y4分析这是一个二元对称式,二元对称式的基本对称式是x+y,xy任何二元对称多项式都可用x+y,xy表示,如x2+y2=(x+y)2-2xy,二元对称多项式的分解方法之一是:先将其用xy,x+y表示,再行分解.解∵x4+y4=(x+y)4-4x3y-6x2y2-4xy2=(x+y)4-4xy(x+y)2+2x2y2.∴原式=(x+y)4-4xy(x+y)2+2x2y2+(x+y)4=2(x+y)4-4xy(x+y)2+2x2y2=2[(x+y)4-2xy(x+y)2+(xy)2]=2[(x+y)2-xy]2-2(x2+y2+xy)2,例8分解因式a2(b-c)+b2(c-a)+c2(a-b).此题中若将式中的b换成a,c换成b,a换成c,即为c2(a-b)+a2(b-c)+b2(c-a),,原式不变,这类多项式称为关于a、b、c的轮换对称式,轮换对称式的因式分解,用因式定理及待定系数法比较简单,下面先粗略介绍一下因式定理,为了叙述方便先引入符f(x)、f(a)如对一元多项式3x2-5x-2可记作f(x)=3x2-5x-2,f(a)即表示当x=a时多项式的值,如x=1时多项式3x2-5x-2的值为f(1)=3×12-5×1-2=-4,当x=2时多项式3x2-5x-2的值为f(2)=3×22-5×2-2=0.因式定理如果x=a时多项式f(x)的值为零,即f(a)=0,则f(x)能被x-a整除(即含有x-a 之因式).如多项式f(x)=3x2-5x-2,当x=2时,f(2)=0,即f(x)含有x-2的因式,事实上f(x)=3x2-5x-2=(3x+1)(x-2).证明设f(x)=anxn+an-1xn-1+…+a1x+a0,若f(a)=0,则f(x)=f(x)-f(a)=(anxn+an-1xn-1+…+a1x+a0)=(anan+an-1an-1+…+a1a+a0)=an(xn-an)+an-1(xn-1-an-1)+…+a1(x-a),由于(x-a)|(xn-an),(x-a)|(xn-1-an-1),…,(x-a)|(x-a),∴(x-a)|f(x),对于多元多项式,在使用因式定理时可以确定一个主元,而将其它的元看成确定的数来处理.现在我们用因式定理来解例8.解这是一个含有a、b、c三个字母的三次多项式,现以a为主元,设f(a)=a2(b-c)+b2(c-a)+c2(a-b),易知当a=b和a=c时,都有f(a)=0,故a-b和a-c是多项式的因式,而视b为主元时,同理可知b-c也是多项式的因式,而三次多项式至多有三个因式故可设a2(b-c)+b2(c-a)+c2(a-b)=k(a-b)(b-c)(c-a),其中k为待定系数,令a=0,b=1,c=-1可得k=-1.∴a2(b-c)+b2(c-a)+c2(a-b)=-(a-b)(b-c)(c-a).例9分解因式a3(b-c)+b3(c-a)+c3(a-b).分析这是一个关于a、b、c的四次齐次轮换多项式,可用因式定理分解,易知a-b,b-c,c-a是多项式的三个因式,而四次多项式还有一个因式,由轮换对称性可知这个一次因式应是a+b+c,故可设a3(b-c)+b3(c-a)+c3(a-b)=k(a-b)(b-c)(c-a)(a+b+c)(其中k为待定系数),取,a=0,b=1,c=-1可得k=-1,所以原式=-(a-b)(b-c)(c-a)(a+b+c).因式定理使用得更多的还是一元n次多项式的因式分解.例10 (1985年武汉市初中数学竞赛题)证明:2x+3为多项式2x4-5x3-10x2+15x+18的因式.证明以 f(x)记多项式.+15-∴2x+3是f(x)的因式.例11 分解因式x3-19x-30.分析这里常数项是30,如果多项式f(x)=x3-19x-30有x-a这种形式的因式,那么a一定是30的因数,这是因为f(a)=a3-19a-30=0即a3-19a=30.∵a|(a3-19a), ∴a|30解 30的因数为±1,±2,±3,±4,±5,±6,±10,±15,±30.∵f(1)=-48,f(-1)=-12,f(2)=-60,f(-2)=0,f(3)=-60,f(-3)=0,f(5)=0.(这里已有f(-2)、f(-3)、f(5)等于零了,三次多项式只有三个一次因式,所以不必再计算了.)∴x3-19x-30=k(x+2)(x+3)(x-5),∴x3的系数为1,∴k=1,故 x3-19x-30=(x+2)(x+3)(x-5).练习1.选择题(1)在1到100之间若存在整数n,使x2+x-n能分解为两个整系数一次式的乘积,这样的n有( )个(A) 0 (B)1 (C)2 (D)9 (E)10(2)二次多项式x2+2kx-3k2能被x-1整除,那么k值是( )(A)1或(B)-1或(C)0 (D)1或-1(3)如果100x2-kxy+49y2是一个完全平方式,那么k=( )(A)4900 (B)9800 (C)140 (D)702.填空(1)多项式6x2+mxy-3y2+3x+10y-3能分解成关于x、y的一次多项式,则m=____. (2)已知x2+x-1=0,则x3+2x2+1985=____.3.(1)分解因式a2-b2+4a+2b+3(2)分解因式(x2+x+1)(x2+x+2)-12.4.(1)分解因式a3b-ab3+a2+b2+1(2)(1989年广州等五市联赛)分解因式(x+y)(x-y)+4(y-1).5.(1986年全国初中数学知识竞赛)分解因式(x+y)3+2xy(1-x-y)-1.6.证明是合数.7.分解因式(x+y)3-x3-y3+3xy.8.分解因式(ab+bc+ca)(a+b+c)-abc.9.(1986年五城市联赛试题)若a为自然数,则a4-3a2+9是质数,还是合数?给出你的证明.10.(1985年北京市初中数学竞赛题)若a为自然数,证明10|(a1985-a1949).练习1.D.A.C.2.(1)m=7.(2)19863.(1)(a+b+1)(a-b+3).(2)(x+2)(x-1)(x2+x+5)4.(1)(a2-ab+1)(ab+b2+1)(2)(x-y+2)(x+y-2)5.(x+y-1)(x2+y2+x+y+1).6.A=101986+1=(10662)8+1=…分角为两因数之积,且两因数均大于1即可得证.7.原式=(x+y)3-(x3+y3)+3xy=…=3xy(x+y+1).8.(a+b)(b+c)(c+a).9.原式=(a2-3a+3)(a2+3a+3).再讨论:a=1或2时,知为质数,a>2为合数.10.∵a1985-a1949=a1949(a2+1)(a4-a2+1)(a12-a6+1)(a+1)(a2-a+1)(a6-a3+1)(a6+a3+1)(a2+a+1)(a-1).当a的个位数字分别为0~9时,上式右端总含有因数2和5,∴10|(a1985-a1949).。