高中数学选修1-2知识点及典型题
- 格式:doc
- 大小:481.50 KB
- 文档页数:7
第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理A级基础巩固一、选择题1.下列推理是归纳推理的是()A.F1,F2为定点,动点P满足|PF1|+|PF2|=2a>|F1F2|,得P 的轨迹为椭圆B.由a1=1,a n=3n-1,求出S1,S2,S3,猜想出数列的前n 项和S n的表达式C.由圆x2+y2=r2的面积πr2,猜想出椭圆x2a2+y2b2=1的面积S=πabD.科学家利用鱼的沉浮原理制造潜艇解析:由归纳推理的定义知,B项为归纳推理.答案:B2.根据给出的数塔猜测123 456×9+7等于()1×9+2=1112×9+3=111123×9+4=1 1111 234×9+5=11 11112 345×9+6=111 111A.111 1110B.1 111 111C.1 111 112 D.1 111 113解析:由1×9+2=11;12×9+3=111;123×9+4=1 111;1 234×9+5=111 111;…归纳可得,等式右边各数位上的数字均为1,位数跟等式左边的第二个加数相同,所以123 456×9+7=1 111 111.答案:B3.观察图形规律,在其右下角的空格内画上合适的图形为()解析:观察可发现规律:①每行、每列中,方、圆、三角三种形状均各出现一次,②每行、每列有两个阴影一个空白,应为黑色矩形.答案:A4.设n是自然数,则18(n2-1)[1-(-1)n]的值()A.一定是零B.不一定是偶数C.一定是偶数D.是整数但不一定是偶数解析:当n为偶数时,18(n2-1)[1-(-1)n]=0为偶数;当n为奇数时(n=2k+1,k∈N),18(n2-1)[1-(-1)n]=18(4k2+4k)·2=k(k+1)为偶数.所以18(n 2-1)[1-(-1)n ]的值一定为偶数. 答案:C5.在平面直角坐标系内,方程x a +y b=1表示在x 轴,y 轴上的截距分别为a 和b 的直线,拓展到空间,在x 轴,y 轴,z 轴上的截距分别为a ,b ,c (abc ≠0)的平面方程为( )A.x a +y b +z c=1 B.x ab +y bc +z ca =1 C.xy ab +yz bc +zx ca =1 D .ax +by +cz =1解析:从方程x a +y b=1的结构形式来看,空间直角坐标系中,平面方程的形式应该是x a +y b +z c=1. 答案:A二、填空题6.已知a 1=1,a n +1>a n ,且(a n +1-a n )2-2(a n +1+a n )+1=0,计算a 2,a 3,猜想a n =________.解析:计算得a 2=4,a 3=9,所以猜想a n =n 2.答案:n 27.在平面上,若两个正三角形的边长比为1∶2.则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为________.解析:V 1V 2=13S 1h 113S 2h 2=S 1S 2·h 1h 2=14×12=18. 答案:1∶88.观察下列各式:①(x3)′=3x2;②(sin x)′=cos x;③(e x-e-x)′=e x+e-x;④(x cos x)′=cos x-x sin x.根据其中函数f(x)及其导数f′(x)的奇偶性,运用归纳推理可得到的一个命题是__________________________________________.解析:对于①,f(x)=x3为奇函数,f′(x)=3x2为偶函数;对于②,g(x)=sin x为奇函数,f′(x)=cos x为偶函数;对于③,p(x)=e x-e-x为奇函数,p′(x)=e x+e-x为偶函数;对于④,q(x)=x cos x 为奇函数,q′(x)=cos x-x sin x为偶函数.归纳推理得结论:奇函数的导函数是偶函数.答案:奇函数的导函数是偶函数三、解答题9.有以下三个不等式:(12+42)(92+52)≥(1×9+4×5)2;(62+82)(22+122)≥(6×2+8×12)2;(132+52)(102+72)≥(13×10+5×7)2.请你观察这三个不等式,猜想出一个一般性结论,并证明你的结论.解:一般性结论为(a2+b2)(c2+d2)≥(ac+bd)2.证明:因为(a2+b2)(c2+d2)-(ac+bd)2=a2c2+b2c2+a2d2+b2d2-(a2c2+2abcd+b2d2)=b2c2+a2d2-2abcd=(bc-ad)2≥0,所以(a2+b2)(c2+d2)≥(ac+bd)2.10.如图所示,在△ABC中,射影定理可表示为a=b·cos C+c·cos B,其中a,b,c分别为角A,B,C的对边,类比上述定理,写出对空间四面体性质的猜想.解:如右图所示,在四面体PABC中,设S1,S2,S3,S分别表示△PAB,△PBC,△PCA,△ABC的面积,α,β,γ依次表示平面PAB,平面PBC,平面PCA与底面ABC所成二面角的大小.猜想射影定理类比推理到三维空间,其表现形式应为S=S1·cos α+S2·cos β+S3·cos γ.B级能力提升1.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n个“金鱼”图需要火柴的根数为() A.6n-2 B.8n-2C.6n+2 D.8n+2解析:从①②③可以看出,从图②开始每个图中的火柴棒都比前一个图中的火柴棒多6根,故火柴棒数成等差数列,第一个图中火柴棒为8根,故可归纳出第n个“金鱼”图需火柴棒的根数为6n+2.答案:C2.等差数列{a n}中,a n>0,公差d>0,则有a4·a6>a3·a7,类比上述性质,在等比数列{b n}中,若b n>0,q>1,写出b5,b7,b4,b8的一个不等关系________.解析:将乘积与和对应,再注意下标的对应,有b4+b8>b5+b7.答案:b4+b8>b5+b73.观察下列等式: ①sin 210°+cos 240°+sin 10°cos 40°=34; ②sin 26°+cos 236°+sin6°cos36°=34. 由上面两题的结构规律,你能否提出一个猜想?并证明你的猜想.解:由①②知,两角相差30°,运算结果为34, 猜想:sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34. 证明:左边=1-cos 2α2+1+cos (2α+60°)2+sin αcos(α+30°)=1-cos 2α2+cos 2αcos 60°-sin 2αsin 60°2+ sin α⎝ ⎛⎭⎪⎫32cos α-sin α2 =1-12cos 2α+14cos 2α-34sin 2α+34sin 2α-1-cos 2α4=34=右边 故sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34. 2.1.2 演绎推理A 级 基础巩固一、选择题1.若大前提是“任何实数的平方都大于0”,小前提是“a∈R”,结论是“a2>0”,那么这个演绎推理()A.大前提错误B.小前提错误C.推理形式错误D.没有错误解析:因为“任何实数的平方非负”,所以“任何实数的平方都大于0”是错误的,即大前提错误.答案:A2.在“△ABC中,E,F分别是边AB,AC的中点,则EF∥BC”的推理过程中,大前提是()A.三角形的中位线平行于第三边B.三角形的中位线等于第三边长的一半C.E,F为AB,AC的中点D.EF∥BC解析:大前提是“三角形的中位线平行于第三边”.答案:A3.下列四个推导过程符合演绎推理“三段论”形式且推理正确的是()A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数解析:对于A,小前提与结论互换,错误;对于B,符合演绎推理过程且结论正确;对于C和D,均为大小前提及结论颠倒,不符合演绎推理“三段论”形式.答案:B4.下列四类函数中,具有性质“对任意的x>0,y>0,函数f(x)满足f(x+y)=f(x)·f(y)”的是()A.幂函数B.对数函数C.指数函数D.余弦函数解析:只有指数函数f(x)=a x(a>0,a≠1)满足条件.答案:C5.有这样一段演绎推理:“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,这是因为() A.大前提错误B.小前提错误C.推理形式错误D.非以上错误解析:用小前提“S是M”,判断得到结论“S是P”时,大前提“M是P”必须是所有的M,而不是部分,因此此推理不符合演绎推理规则.答案:C二、填空题6.已知△ABC中,∠A=30°,∠B=60°,求证a<b.证明:∵∠A=30°,∠B=60°,∴∠A<∠B,∴a<b,画线部分是演绎推理的________.解析:结合三段论的特征可知,该证明过程省略了大前提“在同一个三角形中大角对大边”,因此画线部分是演绎推理的小前提.答案:小前提7.在求函数y =log 2x -2的定义域时,第一步推理中大前提是当a 有意义时,a ≥0;小前提是log 2x -2有意义;结论是________.解析:要使函数有意义,则log 2x -2≥0,解得x ≥4,所以函数y =log 2x -2的定义域是[4,+∞).答案:函数y =log 2x -2的定义域是[4,+∞)8.下面几种推理过程是演绎推理的是________(填序号).①两条直线平行,同旁内角互补,如果∠A 和∠B 是两条平行线的同旁内角,那么∠A +∠B =180°②由平面三角形的性质,推测空间四面体的性质③某高校共有10个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人④在数列{a n }中,a 1=1,a n =12⎝ ⎛⎭⎪⎫a n -1+1a n -1(n ≥2),由此归纳出{a n }的通项公式.解析:①为演绎推理,②为类比推理,③④为归纳推理.答案:①三、解答题9.设m 为实数,利用三段论求证方程x 2-2mx +m -1=0有两个相异实根.证明:如果一元二次方程ax 2+bx +c =0(a ≠0)的判别式Δ=b 2-4ac >0,那么方程有两相异实根.(大前提)一元二次方程x 2-2mx +m -1=0的判别式Δ=(2m )2-4(m -1)=4m 2-4m +4=(2m -1)2+3>0,(小前提)所以方程x 2-2mx +m -1=0有两相异实根.(结论)10.设函数f (x )=sin(2x +φ)(-π<φ<0),y =f (x )的图象的一条对称轴是直线x =π8. (1)求φ;(2)求函数f (x )的单调增区间.解:(1)∵x =π8是函数y =f (x )的图象的对称轴, ∴sin ⎝ ⎛⎭⎪⎫2×π8+φ=±1.∴π4+φ=k π+π2,k ∈Z. ∵-π<φ<0,∴φ=-3π4. (2)由(1)知φ=-3π4,因此y =sin ⎝⎛⎭⎪⎫2x -3π4. 由题意,得2k π-π2≤2x -3π4≤2k π+π2,k ∈Z , ∴k π+π8≤x ≤5π8+k π,k ∈Z. 故函数f (x )的增区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8,k ∈Z. B 级 能力提升1.某人进行了如下的“三段论”:如果f ′(x 0)=0,则x =x 0是函数f (x )的极值点,因为函数f (x )=x 3在x =0处的导数值f ′(0)=0,所以x =0是函数f (x )=x 3的极值点.你认为以上推理的( )A .大前提错误B .小前提错误C .推理形式错误D .结论正确解析:若f ′(x 0),则x =x 0不一定是函数f (x )的极值点,如f (x )=x 3,f ′(0)=0,但x =0不是极值点,故大前提错误.答案:A2.设a >0,f (x )=e x a +a e x 是R 上的偶函数,则a 的值为________. 解析:因为f (x )是R 上的偶函数,所以f (-x )=f (x ),所以⎝ ⎛⎭⎪⎫a -1a ⎝ ⎛⎭⎪⎫e x -1e x =0对于一切x ∈R 恒成立,由此得a -1a =0,即a 2=1.又a >0,所以a =1.答案:13.在数列{a n }中,a 1=2,a n +1=4a n -3n +1(n ∈N *).(1)证明数列{a n -n }是等比数列;(2)求数列{a n }的前n 项和S n ;(3)证明不等式S n +1≤4S n 对任意n ∈N *皆成立.(1)证明:由已知a n +1=4a n -3n +1,得a n +1-(n +1)=4(a n -n ),n ∈N *,又a 1-1=2-1=1≠0,所以数列{a n -n }是首项为1,公比为4的等比数列.(2)解:由(1)得a n -n =4n -1,所以a n =4n -1+n .所以S n =a 1+a 2+a 3+…+a n =1+4+42+…+4n -1+(1+2+3+…+n )=4n -13+n (n +1)2. (3)证明:对任意的n ∈N *,S n +1-4S n =4n +1-13+(n +1)(n +2)2-4⎣⎢⎡⎦⎥⎤4n -13+n (n +1)2=-12(3n 2+n -4)=-12(3n +4)(n -1)≤0. 所以不等式S n +1≤4S n 对任意n ∈N *皆成立.2.2 直接证明与间接证明2.2.1 综合法和分析法第1课 时综合法A 级 基础巩固一、选择题1.在下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是( )A .f (x )=1xB .f (x )=(x -1)2C .f (x )=e xD .f (x )=ln(x +1)解析:由题设知,f (x )在(0,+∞)上是减函数,由f (x )=1x,得f ′(x )=-1x2<0,所以f (x )=1x 在(0,+∞)上是减函数. 答案:A2.已知函数f (x )=lg 1-x 1+x,若f (a )=b ,则f (-a )等于( ) A .bB .-b C.1b D .-1b解析:f (x )定义域为(-1,1),f (-a )=lg 1+a 1-a =lg ⎝ ⎛⎭⎪⎫1-a 1+a -1=-lg 1-a 1+a =-f (a )=-b .答案:B3.命题“如果数列{a n }的前n 项和S n =2n 2-3n ,那么数列{a n }一定是等差数列”是否成立( )A .不成立B .成立C .不能断定D .与n 取值有关解析:当n ≥2时,a n =S n -S n -1=4n -5又a 1=S 1=2×12-3×1=-1适合上式.∴a n =4n -5(n ∈N *),则a n -a n -1=4(常数)故数列{a n }是等差数列.答案:B4.若a ,b ∈R ,则下面四个式子中恒成立的是( )A .lg(1+a 2)>0B .a 2+b 2≥2(a -b -1)C .a 2+3ab >2b 2 D.a b <a +1b +1解析:在B 中,因为a 2+b 2-2(a -b -1)=(a 2-2a +1)+(b 2+2b +1)=(a -1)2+(b +1)2≥0,所以a 2+b 2≥2(a -b -1)恒成立.答案:B5.在△ABC 中,已知sin A cos A =sin B cos B ,则该三角形是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形解析:由sin A cos A =sin B cos B 得sin 2A =sin 2B ,所以2A =2B 或2A =π-2B ,即A =B 或A +B =π2.所以该三角形是等腰或直角三角形.答案:D二、填空题6.命题“函数f(x)=x-x ln x在区间(0,1)上是增函数”的证明过程“对函数f(x)=x-x ln x求导,得f′(x)=-ln x,当x∈(0,1)时,f′(x)=-ln x>0,故函数f(x)在区间(0,1)上是增函数”,应用了________的证明方法.解析:本命题的证明,利用题设条件和导数与函数单调性的关系,经推理论证得到了结论,所以应用的是综合法的证明方法.答案:综合法7.角A,B为△ABC内角,A>B是sin A>sin B的________条件(填“充分”“必要”“充要”或“即不充分又不必要”).解析:在△ABC中,A>B⇔a>b由正弦定理asin A=bsin B,从而sin A>sin B.因此A>B⇔a>b⇔sin A>sin B,为充要条件.答案:充要8.已知p=a+1a-2(a>2),q=2-a2+4a-2(a>2),则p,q的大小关系为________.解析:因为p=a+1a-2=(a-2)+1a-2+2≥2(a-2)·1a-2+2=4,又-a2+4a-2=2-(a-2)2<2(a>2),所以q=2-a2+4a-2<4≤p.答案:p>q三、解答题9.已知a>0,b>0,且a+b=1,求证:1a+1b≥4.证明:因为a >0,b >0且a +b =1,所以1a +1b =a +b a +a +b b =2+b a +a b≥2+2 b a ·a b =4. 当且仅当b a =a b,即a =b 时,取等号, 故1a +1b≥4. 10.设函数f (x )=ax 2+bx +c (a ≠0),若函数y =f (x +1)与y =f (x )的图象关于y 轴对称,求证:函数y =f ⎝ ⎛⎭⎪⎫x +12为偶函数. 证明:∵函数y =f (x )与y =f (x +1)的图象关于y 轴对称.∴f (x +1)=f (-x )则y =f (x )的图象关于x =12对称 ∴-b 2a =12,∴a =-b . 则f (x )=ax 2-ax +c =a ⎝ ⎛⎭⎪⎫x -122+c -a 4 ∴f ⎝ ⎛⎭⎪⎫x +12=ax 2+c -a 4为偶函数. B 级 能力提升1.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,若x 1+x 2>0,则f (x 1)+f (x 2)的值( )A .恒为负值B .恒等于零C .恒为正值D .无法确定正负解析:由f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,可知f (x )是R 上的单调递减函数,由x 1+x 2>0,可知x 1>-x 2,f (x 1)<f (-x 2)=-f (x 2),则f (x 1)+f (x 2)<0.答案:A2.已知sin x=55,x∈⎝⎛⎭⎪⎫π2,3π2,则tan⎝⎛⎭⎪⎫x-π4=________.解析:∵sin x=55,x∈⎝⎛⎭⎪⎫π2,3π2,∴cos x=-45,∴tan x=-12,∴tan⎝⎛⎭⎪⎫x-π4=tan x-11+tan x=-3.答案:-33.(2016·江苏卷)如图,在直三棱柱ABC A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.证明:(1)在直三棱柱ABC A1B1C1中,A1C1∥AC.在△ABC中,因为D,E分别为AB,BC的中点,所以DE∥AC,所以DE∥A1C1.因为DE⊄平面A1C1F,A1C1⊂平面A1C1F,所以直线DE∥平面A1C1F.(2)在直三棱柱ABC A1B1C1中,A1A⊥平面A1B1C1,因为A1C1⊂平面A1B1C1,所以A1A⊥A1C1.又A1C1⊥A1B1,A1A⊂平面ABB1A1,A1B1⊂平面ABB1A1,A1A∩A1B1=A1,所以A1C1⊥平面ABB1A1.又因为B1D⊂平面ABB1A1,所以A1C1⊥B1D.又B1D⊥A1F,A1C1⊂平面A1C1F,A1F⊂平面A1C1F,A1C1∩A1F=A1,所以B1D⊥平面A1C1F.因为B1D⊂平面B1DE,所以平面B1DE⊥平面A1C1F.第2课时分析法A级基础巩固一、选择题1.关于综合法和分析法的说法错误的是()A.综合法和分析法是直接证明中最基本的两种证明方法B.综合法又叫顺推证法或由因导果法C.综合法和分析法都是因果分别互推的两头凑法D.分析法又叫逆推证法或执果索因法解析:由综合法和分析法的意义与特点,知C错误.答案:C2.分析法又叫执果索因法,若使用分析法证明:设a>b>c,且a+b+c=0,求证:b2-ac<3a,则证明的依据应是() A.a-b>0B.a-c>0C.(a-b)(a-c)>0 D.(a-b)(a-c)<0解析:b2-ac<3a⇔b2-ac<3a2⇔(a+c)2-ac<3a2⇔(a-c)·(2a +c)>0⇔(a-c)(a-b)>0.答案:C3.在不等边△ABC中,a为最大边,要想得到A为钝角的结论,对三边a,b,c应满足的条件,判断正确的是()A.a2<b2+c2B.a2=b2+c2C.a2>b2+c2D.a2≤b2+c2解析:要想得到A为钝角,只需cos A<0,因为cos A=b2+c2-a22bc,所以只需b2+c2-a2<0,即b2+c2<a2.答案:C4.对于不重合的直线m,l和平面α,β,要证明α⊥β,需要具备的条件是()A.m⊥l,m∥α,l∥βB.m⊥l,α∩β=m,l⊂αC.m∥l,m⊥α,l⊥βD.m∥l,l⊥β,m⊂α解析:对于选项A,与两相互垂直的直线平行的平面的位置关系不能确定;对于选项B,平面内的一条直线与另一个平面的交线垂直,这两个平面的位置关系不能确定;对于选项C,这两个平面有可能平行或重合;根据面面垂直的判定定理知选项D正确.答案:D5.设P=2,Q=7-3,R=6-2,则P,Q,R的大小关系是()A.P>Q>R B.P>R>QC.Q>P>R D.Q>R>P解析:先比较Q与R的大小.Q-R=7-3-(6-2)=(7+2)-(6+3).因为(7+2)2-(6+3)2=7+2+214-(6+3+218)=2(14-18)<0,所以Q<R.又P=2>R=2(3-1),所以P>R>Q.答案:B二、填空题6.如果a a+b b>a b+b a,则实数a,b应满足的条件是________.解析:a a+b b>a b+b a⇔a a-a b>b a-b b⇔a(a-b)>b(a-b)⇔(a-b)(a-b)>0⇔(a+b)(a-b)2>0,故只需a≠b且a,b都不小于零即可.答案:a≥0,b≥0且a≠b7.当x>0时,sin x与x的大小关系为________.解析:令f(x)=x-sin x(x>0),则f′(x)=1-cos x≥0,所以f(x)在(0,+∞)上是增函数,因此f(x)>f(0)=0,则x>sin x.答案:x>sin x8.如图,在直四棱柱A1B1C1D1ABCD(侧棱与底面垂直)中,当底面四边形ABCD满足条件________时,有A1C⊥B1D1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形).解析:要证明A 1C ⊥B 1D 1只需证明B 1D 1⊥平面A 1C 1C因为CC 1⊥B 1D 1只要再有条件B 1D 1⊥A 1C 1,就可证明B 1D 1⊥平面A 1CC 1 从而得B 1D 1⊥A 1C 1.答案:B 1D 1⊥A 1C 1(答案不唯一)三、解答题9.已知a >1,求证:a +1+a -1<2a .证明:因为a >1,要证a +1+a -1<2a ,只需证(a +1+a -1)2<(2a )2,只需证a +1+a -1+2(a +1)(a -1)<4a , 只需证(a +1)(a -1)<a ,只需证a 2-1<a 2,即证-1<0.该不等式显然成立,故原不等式成立.10.求证:2cos(α-β)-sin (2α-β)sin α=sin βsin α. 证明:欲证原等式2cos(α-β)-sin (2α-β)sin α=sin βsin α成立. 只需证2cos(α-β)sin α-sin(2α-β)=sin β,①因为①左边=2cos(α-β)sin α-sin[(α-β)+α]=2cos(α-β)sin α-sin(α-β)cos α-cos(α-β)sin α =cos(α-β)sin α-sin(α-β)cos α=sin β=右边.所以①成立,所以原等式成立.B 级 能力提升1.设a ,b ,c ,d 为正实数,若a +d =b +c 且|a -d |<|b -c |,则有( )A .ad =bcB .ad <bcC .ad >bcD .ad ≤bc解析:∵|a -d |<|b -c |⇔(a -d )2<(b -c )2⇔a 2+d 2-2ad <b 2+c 2-2bc ①又a +d =b +c∴a 2+d 2+2ad =b 2+c 2+2bc ②由②-①,得4ad >4bc ,即ad >bc .答案:C2.设函数f (x )是定义在R 上的以3为周期的奇函数,若f (1)>1,f (2)=3a -4a +1,则实数a 的取值范围是________. 解析:因为f (x )是周期为3的奇函数,且f (1)>1,所以f (2)=f (-1)=-f (1),因此3a -4a +1<-1,则4a -3a +1<0, 解之得-1<a <34. 答案:⎝ ⎛⎭⎪⎫-1,34 3.设实数a ,b ,c 成等比数列,非零实数x ,y 分别为a 与b ,b 与c 的等差中项,证明:a x +c y=2.证明:要证明ax+cy=2,只要证ay+cx=2xy,也就是证明2ay+2cx=4xy.由题设条件b2=ac,2x=a+b,2y=b+c,所以2ay+2cx=a(b+c)+(a+b)c=ab+2ac+bc,4xy=(a+b)(b+c)=ab+b2+bc+ac=ab+2ac+bc,所以2ay+2cx=4xy成立,故ax+cy=2成立.2.2.2 反证法A级基础巩固一、选择题1.应用反证法推出矛盾的推导过程中,要把下列哪些作为条件使用()①结论的否定即假设;②原命题的条件;③公理、定理、定义等;④原命题的结论.A.①②B.①②④C.①②③D.②③解析:由反证法的定义知,可把①②③作为条件使用,而④原命题的结论是不可以作为条件使用的.答案:C2.用反证法证明命题:“设a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是()A.方程x2+ax+b=0没有实根B.方程x2+ax+b=0至多有一个实根C.方程x2+ax+b=0至多有两个实根D.方程x2+ax+b=0恰好有两个实根解析:“方程x2+ax+b=0至少有一个实根”的反面是“方程x2+ax+b=0没有实根.”答案:A3.用反证法证明命题“若直线AB、CD是异面直线,则直线AC、BD也是异面直线”的过程归纳为以下三个步骤:①则A、B、C、D四点共面,所以AB、CD共面,这与AB、CD是异面直线矛盾;②所以假设错误,即直线AC、BD也是异面直线;③假设直线AC、BD是共面直线.则正确的序号顺序为()A.①②③B.③①②C.①③②D.②③①解析:结合反证法的证明步骤可知,其正确步骤为③①②.答案:B4.否定结论“自然数a,b,c中恰有一个偶数”时,正确的反设为()A.a,b,c都是奇数B.a,b,c都是偶数C.a,b,c中至少有两个偶数D.a,b,c都是奇数或至少有两个偶数解析:自然数a,b,c中奇数、偶数的可能情况有:全为奇数,恰有一个偶数,恰有两个偶数,全为偶数.除去结论即为反设,应选D.答案:D5.设实数a 、b 、c 满足a +b +c =1,则a ,b ,c 中至少有一个数不小于( )A .0B.13C.12 D .1解析:假设a ,b ,c 都小于13,则a +b +c <1,与a +b +c =1矛盾,选项B 正确.答案:B二、填空题6.已知平面α∩平面β=直线a ,直线b ⊂α,直线c ⊂β,b ∩a =A ,c ∥a ,求证:b 与c 是异面直线,若利用反证法证明,则应假设________.解析:∵空间中两直线的位置关系有3种:异面、平行、相交, ∴应假设b 与c 平行或相交.答案:b 与c 平行或相交7.完成反证法证题的全过程.设a 1,a 2,…,a 7是1,2,…,7的一个排列,求证:乘积p =(a 1-1)(a 2-2)…(a 7-7)为偶数.证明:假设p 为奇数,则a 1-1,a 2-2,…,a 7-7均为奇数.因奇数个奇数之和为奇数,故有奇数=________=0.但0≠奇数,这一矛盾说明p 为偶数.解析:由假设p 为奇数可知(a 1-1),(a 2-2),…,(a 7-7)均为奇数,故(a 1-1)+(a 2-2)+…+(a 7-7)=(a 1+a 2+…a 7)-(1+2+…+7)=0为偶数.答案:(a 1-1)+(a 2-2)+…+(a 7-7)8.已知数列{a n },{b n }的通项公式分别为a n =an +2,b n =bn +1(a ,b 是常数,且a >b ),那么这两个数列中序号与数值均对应相同的项有________个.解析:假设存在序号和数值均相等的项,即存在n 使得a n =b n ,由题意a >b ,n ∈N *,则恒有an >bn ,从而an +2>bn +1恒成立,所以不存在n 使a n =b n .答案:0三、解答题9.设x ,y 都是正数,且x +y >2,试用反证法证明:1+x y <2和1+y x<2中至少有一个成立.证明:假设1+x y <2和1+y x <2都不成立,即1+x y ≥2,1+y x≥2. 又因为x ,y 都是正数,所以1+x ≥2y ,1+y ≥2x .两式相加,得2+x +y ≥2x +2y ,则x +y ≤2,这与题设x +y >2矛盾,所以假设不成立.故1+x y <2和1+y x<2中至少有一个成立. 10.已知三个正数a ,b ,c ,若a 2,b 2,c 2成公比不为1的等比数列,求证:a ,b ,c 不成等差数列.证明:假设a ,b ,c 成等差数列,则有2b =a +c ,即4b 2=a 2+c 2+2ac ,又a2,b2,c2成公比不为1的等比数列,且a,b,c为正数,所以b4=a2c2且a,b,c互不相等,即b2=ac,因此4ac=a2+c2+2ac,所以(a-c)2=0,从而a=c=b,这与a,b,c互不相等矛盾.故a,b,c不成等差数列.B级能力提升1.设a,b,c大于0,则3个数:a+1b,b+1c,c+1a的值()A.都大于2 B.至少有一个不大于2 C.都小于2 D.至少有一个不小于2解析:假设a+1b,b+1c,c+1a都小于2则a+1b<2,b+1c<2,c+1a<2∴a+1b+b+1c+c+1a<6,①又a,b,c大于0所以a+1a≥2,b+1b≥2,c+1c≥2.∴a+1b+b+1c+c+1a≥6.②故①与②式矛盾,假设不成立所以a+1b,b+1c,c+1a至少有一个不小于2.答案:D2.对于定义在实数集R上的函数f(x),如果存在实数x0,使f(x0)=x0,那么x0叫作函数f(x)的一个好点.已知函数f(x)=x2+2ax+1不存在好点,那么a的取值范围是()A.⎝ ⎛⎭⎪⎫-12,32B.⎝ ⎛⎭⎪⎫-32,12 C .(-1,1) D .(-∞,-1)∪(1,+∞)解析:假设函数f (x )存在好点,则x 2+2ax +1=x 有实数解,即x 2+(2a -1)x +1=0有实数解.所以Δ=(2a -1)2-4≥0,解得a ≤-12或a ≥32. 所以f (x )不存在好点时,a 的取值范围是⎝ ⎛⎭⎪⎫-12,32. 答案:A3.已知二次函数f (x )=ax 2+bx +c (a >0,c >0)的图象与x 轴有两个不同的交点,若f (c )=0且0<x <c 时,恒有f (x )>0.(1)证明:1a是f (x )=0的一个根; (2)试比较1a与c 的大小. (1)证明:因为f (x )的图象与x 轴有两个不同的交点,所以f (x )=0有两个不等实根x 1,x 2.因为f (c )=0,所以x 1=c 是f (x )=0的根,又x 1x 2=c a, 所以x 2=1a ⎝ ⎛⎭⎪⎫1a ≠c , 所以1a是f (x )=0的一个根. (2)解:假设1a<c ,又1a>0,且0<x <c 时,f (x )>0, 所以知f ⎝ ⎛⎭⎪⎫1a >0,这与f ⎝ ⎛⎭⎪⎫1a =0矛盾, 因此1a≥c , 又因为1a≠c , 所以1a>c .。
高中数学选修1-2知识点总结第一章 统计案例1.线性回归方程①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系③线性回归方程:a bx y +=∧(最小二乘法)其中,1221ni i i nii x y nx y b x nx a y bx==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑ 注意:线性回归直线经过定点),(y x .2.相关系数(判定两个变量线性相关性):∑∑∑===----=ni ni i ini i iy y x xy y x xr 11221)()())((注:⑴r >0时,变量y x ,正相关;r <0时,变量y x ,负相关;⑵①||r 越接近于1,两个变量的线性相关性越强;②||r 接近于0时,两个变量之间几乎不存在线性相关关系。
1.(2011·山东)某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得回归方程y =b x +a 中的b 为9.4,据此模型预报广告费用为6万元时销售额为 ( ).A .63.6万元B .65.5万元C .67.7万元D .72.0万元 解析 ∵x -=4+2+3+54=72,y -=49+26+39+544=42,又y ^=b ^x +a ^必过(x -,y -),∴42=72×9.4+a ^,∴a ^=9.1.∴线性回归方程为y ^=9.4x +9.1.∴当x =6时,y ^=9.4×6+9.1=65.5(万元). 答案 B2.(2011·江西)为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则A.y ^=x -1 B.y ^=x +1 C.y ^=88+12x D.y ^=176解析 因为x -=174+176+176+176+1785=176,y -=175+175+176+177+1775=176,又y 对x 的线性回归方程表示的直线恒过点(x -,y -), 所以将(176,176)代入A 、B 、C 、D 中检验知选C. 答案 C3.(2011·陕西)设(x1,y 1),(x 2,y 2),…,(x n ,y n )是变量x 和y 的n 个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论中正确的是( ). A .x 和y 的相关系数为直线l 的斜率 B .x 和y 的相关系数在0到1之间C .当n 为偶数时,分布在l 两侧的样本点的个数一定相同D .直线l 过点(x -,y -)解析 因为相关系数是表示两个变量是否具有线性相关关系的一个值,它的 绝对值越接近1,两个变量的线性相关程度越强,所以A 、B 错误.C 中n 为偶数时,分布在l 两侧的样本点的个数可以不相同,所以C 错误.根据回 归直线方程一定经过样本中心点可知D 正确,所以选D. 答案 D4.(2011·广东)为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x (单位:小时)与当天投篮命中率y 之间的关系:6号打6小时篮球的投篮命中率为________. 解析 小李这5天的平均投篮命中率 y -=0.4+0.5+0.6+0.6+0.45=0.5,可求得小李这5天的平均打篮球时间x -=3.根据表中数据可求得b ^=0.01,a ^= 0.47,故回归直线方程为y ^=0.47+0.01x ,将x =6代入得6号打6小时篮球的 投篮命中率约为0.53. 答案 0.5 0.535.(2011·辽宁)调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归直线方程:y ^=0.254x +0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加________万元.解析 由题意知[0.254(x +1)+0.321]-(0.254x +0.321)=0.254. 答案 0.2546.(2011·安徽)某地最近十年粮食需求量逐年上升,下表是部分统计数据:(1)利用所给数据求年需求量与年份之间的回归直线方程y =b x +a ; (2)利用(1)中所求出的直线方程预测该地2012年的粮食需求量.解 (1)由所给数据看出,年需求量与年份之间是近似直线上升的,下面求回归直线方程.为此对数据预处理如下:对预处理后的数据,容易算得x =0,y =3.2.b ^=(-4)×(-21)+(-2)×(-11)+2×19+4×29-5×0×3.2(-4)2+(-2)2+22+42-5×02=26040=6.5,a ^=y --b x -=3. 由上述计算结果,知所求回归直线方程为 y ^-257=b ^(x -2 006)+a ^=6.5(x -2 006)+3.2, 即y ^=6.5(x -2 006)+260.2.①(2)利用直线方程①,可预测2012年的粮食需求量为 6.5×(2012-2006)+260.2=6.5×6+260.2=299.2(万吨).7.(2010·新课标全国)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:(1)(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例? 说明理由. 附:K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d )解 (1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估计值为70500=14%.(2)K 2=500×(40×270-30×160)270×300×200×430≈9.967.由于9.967>6.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关.(3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.8.(2010·辽宁)为了比较注射A,B两种药物后产生的皮肤疱疹的面积,选200只家兔做试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物A,另一组注射药物B.下表1和表2分别是注射药物A和药物B后的试验结果.(疱疹面积单位:mm2)表1:注射药物A后皮肤疱疹面积的频数分布表(2)完成下面2×2列联表,并回答能否有99.9%的把握认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”.表3:附:K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d )从频率分布直方图中可以看出注射药物A 后皮肤疱疹面积的中位数在65至70之间,而注射药物B 后皮肤疱疹面积的中位数在70至75之间,所以注射药物A 后疱疹面积的中位数小于注射药物B 后疱疹面积的中位数. (2)表3:K 2=200×(70×65-35×30)100×100×105×95≈24.56.由于K 2>10.828,所以有99.9%的把握认为“注射药物A 后的疱疹面积与注射药物B 后的疱疹面积有差异”.。
数学选修1至2知识点总结一、选修11. 一次函数一次函数是数学中的一种基本类型的函数,其一般形式为y=ax+b,其中a,b为常数且a≠0。
一次函数的图像是一条通过原点的直线,斜率a表示直线的倾斜程度,常数b表示直线与y轴的交点。
在数学上,一次函数是一种简单串直线函数,但它在实际应用中有着广泛的用途,如经济学、物理学等领域均可利用一次函数来描述问题。
2. 二次函数二次函数是一种常见的函数类型,其一般形式为y=ax²+bx+c,其中a,b,c为常数且a≠0。
二次函数的图像是一条开口向上或向下的抛物线,其开口方向取决于a的正负。
二次函数对应的抛物线有着许多特性,如顶点坐标、对称轴、焦点、直焦距等,这些特性能够帮助我们更好地理解二次函数的性质。
3. 多项式函数多项式函数是由常数组成的数列f(n),在数学中,n是一个变量,它的值可以是实数或者复数,但不是整数或负数,并有定义域。
封闭整数或负数的情况是另一种基于变量方面的数列。
4. 分式函数分式函数是由两个多项式相除而得到的函数,分母不能取0。
5. 指数函数、对数函数指数函数和对数函数是常见的特殊函数类型,它们在数学和实际应用中都有着重要的作用。
指数函数的一般形式是y=a^x,其中a为底数,x为指数,而对数函数的一般形式是y=loga(x),其中a为底数,x为真数。
指数函数和对数函数之间存在着互为反函数的关系,它们在代数、几何、概率等方面均有广泛的应用。
6. 三角函数三角函数是用于描述角度与变化的函数,常见的三角函数包括正弦函数、余弦函数、正切函数等,它们在三角学和实际问题中都有着重要的应用。
三角函数不仅能够描述角度的变化,还能够描述周期性的现象,如振动、波动等。
7. 数列与数学归纳法数列是由一系列按照一定规律排列的数构成的序列,数学归纳法是一种证明数学命题的常用方法。
数列与数学归纳法是数学中重要的概念和方法,它们在数学分析、组合数学、离散数学等领域都有着广泛的应用。
数学归纳法【学习目标】1.知识与技能(1)了解数学归纳法的原理,理解数学归纳法的一般步骤;(2)能用数学归纳法证明一些简单的数学命题。
2.过程与方法(1)通过学习数学归纳法的原理和基本思想,了解数学方法的博大、精妙,形成对数学证明方法的进一步认识。
(2)通过了解数学归纳法是专门证明与正整数有关的命题,感受递推的思想。
3.情感、态度与价值观通过学习,加深对由一般到特殊以及由一般到特殊的认识规律的认识,进一步认识有限与无限的辩证关系,培养辩证的观点。
【要点梳理】要点一:数学归纳法的概念与原理数学归纳法的定义对于某些与自然数n有关的命题常常采用下面的方法来证明它的正确性:先证明当n取第一个值n0时命题成立;然后假设当n=k(k N*,k≥n0)时命题成立,证明当n=k+1时命题也成立这种证明方法就叫做数学归纳法要点诠释:即先验证使结论有意义的最小的正整数n0,如果当n=n0时,命题成立,再假设当n=k(k≥n0,k∈N*)时,命题成立.(这时命题是否成立不是确定的),根据这个假设,如能推出当n=k+1时,命题也成立,那么就可以递推出对所有不小于n0的正整数n0+1,n0+2,…,命题都成立.数学归纳法的原理数学归纳法是专门证明与正整数集有关的命题的一种方法,它是一种完全归纳法。
它的证明共分两步:①证明了第一步,就获得了递推的基础。
但仅靠这一步还不能说明结论的普遍性.在第一步中,考察结论成立的最小正整数就足够了,没有必要再考察几个正整数,即使命题对这几个正整数都成立,也不能保证命题对其他正整数也成立;②证明了第二步,就获得了递推的依据。
但没有第一步就失去了递推的基础.只有把第一步和第二步结合在一起,才能获得普遍性的结论。
其中第一步是命题成立的基础,称为“归纳基础”(或称特殊性),第二步是递推的证据,解决的是延续性问题(又称传递性问题)。
数学归纳法的功能和适用范围1.数学归纳法具有证明的功能,它将无穷的归纳过程根据归纳公理转化为有限的特殊演绎(直接验证和演绎推理相结合)过程.2. 数学归纳法一般被用于证明某些与正整数n(n取无限多个值)有关的数学命题。
高中数学选修1-2复习题2P(k K ≥2) 0.500.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828 一:选择题1.工人月工资(元)依劳动生产率(千元)变化的回归直线方程为ˆ6090yx =+,下列判断正确的是( ) A .劳动生产率为1000元时,工资约为50元 B .劳动生产率提高1000元时,工资约提高150元 C .劳动生产率提高1000元时,工资约提高90元 D .劳动生产率为1000元时,工资约为90元 2.下列说法正确的是( )A 、若a >b ,c >d ,则ac >bdB 、若ba 11>,则a <b C 、若b >c ,则|a|·b ≥|a|·cD 、若a >b ,c >d ,则a-c >b-d3.若复数z 满足方程022=+z ,则=3z ( )A.22± B. 22- C. i 22- D. i 22±4.已知集合M={1,i m m m m )65()13(22--+--},N ={1,3},M ∩N ={1,3},则实数m 的值为( )A. 4B. -1 C .4或-1 D. 1或6 5.若a,b,c 成等比数列,m 是a,b 的等差中项,n 是b,c 的等差中项,则=+ncm a ( ) (A)4 (B)3 (C)2 (D)1 6.已知复数ii Z +-=11,则4321Z Z Z Z ++++的值是:( )A . 1 B .1- C .i D .i - 7. i 是虚数单位,(-1+i )(2+i )i 3的虚部为( )A .-1B .-iC .-3D .-3i8. 设复数z 满足|1|1z i +-=,求|1|z i -+的最小值为( ) A )1 B )1+2C )21-D )221-9.已知54)2321()1(i i z +--+=,则z 的共轭复数对应的点在第( )象限 A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限10.已知11-=+xx ,则3422)1)(1(x x x x x +-+-的值为( )(A)-1 (B)4 (C)0 (D)2 11.复数z 对应的点在第二象限,它的模为3,实部是5-,则z 是( )A 、5-+2iB 、5--2iC 、5+2iD 、5-2i12.满足条件|z-i|=|3+4i|复数z 在复平面上对应点的轨迹是( )(A )一条直线 B )两条直线 C )圆 D )椭圆 13.已知{}622=-++=z z z M ,{}11=+=z z N ,则N M ,的关系是 ( )(A)N M ⊂ (B) N M ⊃ (C) M N M =⋃ (D) ∅=⋂N M 14.把正整数按下图所示的规律排序,则从2003到2005的箭头方向依次为( )15.在△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,CD ⊥AB 于D ,AB =a ,则DB =( )16.对全国10大城市进行职工人均工资x 与居民人均消费额y 进行统计调查, y 与x 具有相关关系,回归方程562.166.0ˆ+=x y(单位:千元),若某城市居民人均消费额为7.675千元,请估计该城市人均消费额占工资收入的百分比为( ) (A) 66% (B) 72.3% (C) 67.3% (D) 83%17.考察棉花种子经过处理跟生病之间的关系得到如下表数据:根据以上数据,则( ) A.种子经过处理跟是否生病有关 B.种子经过处理跟是否生病无关 C.种子是否经过处理决定是否生病 D.以上都是错误的18. 在如上图的列联表中,ad 和cd 相差越大,则两个变量有关系的可能性就( )A .越大B .越小C .无法判断D .以上对不对 19.根据右边程序框图,当输入10时,输出的是( )A .12B .19C .14.1D .-3020.右图是《集合》的知识结构图,如果要加入“子集”,则应该放在( )A .“集合的概念”的下位B .“集合的表示”的下位C .“基本关系”的下位D .“基本运算”的下位 21.下面框图属于( )A .流程图B .结构图C .程序框图D .工序流程图22.根据右边的结构图,总经理的直接下属是( )A .总工程师和专家办公室 C .总工程师、专家办公室和开发部B .开发部 D .总工程师、专家办公室和所有七个部 23.两个实数对(a ,b )和(c,d), 规定(a ,b )=(c,d)当且仅当a =c,b =d;运算“⊗”为:),(),(),(ad bc bd ac d c b a +-=⊗,运算“⊕”为:),(),(),(d b c a d c b a ++=⊕, 设R q p ∈,,若)0,5(),()2,1(=⊗q p 则=⊕),()2,1(q p ( ) A. )0,4( B. )0,2( C.)2,0( D.)4,0(- 二、填空题:24.已知复数z 1=3+4i, z 2=t+i,,且z 1·2z 是实数,则实数t 等于25.在复平面内,复数6+5i 与-3+4i 对应的向量分别是OA 与OB ,其中O 是原点,则向量AB 对应的复数是_ 。
(名师选题)(精选试题附答案)高中数学选修一知识点归纳总结(精华版)单选题1、已知双曲线x 2a 2−y 2b 2=1(a >0,b >0)的右焦点与抛物线y 2=2px(p >0)的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D 两点,若|CD|=√2|AB|.则双曲线的离心率为( )A .√2B .√3C .2D .3答案:A分析:设公共焦点为(c,0),进而可得准线为x =−c ,代入双曲线及渐近线方程,结合线段长度比值可得a 2=12c 2,再由双曲线离心率公式即可得解. 设双曲线x 2a 2−y 2b 2=1(a >0,b >0)与抛物线y 2=2px(p >0)的公共焦点为(c,0),则抛物线y 2=2px(p >0)的准线为x =−c ,令x =−c ,则c 2a 2−y 2b 2=1,解得y =±b 2a ,所以|AB|=2b 2a , 又因为双曲线的渐近线方程为y =±b a x ,所以|CD|=2bc a , 所以2bc a =2√2b 2a ,即c =√2b ,所以a 2=c 2−b 2=12c 2,所以双曲线的离心率e =c a =√2.故选:A. 2、已知四棱锥P −ABCD ,底面ABCD 为平行四边形,M ,N 分别为棱BC ,PD 上的点,CM CB =13,PN =ND ,设AB ⃑⃑⃑⃑⃑ =a ,AD ⃑⃑⃑⃑⃑ =b ⃑ ,AP ⃑⃑⃑⃑⃑ =c ,则向量MN ⃑⃑⃑⃑⃑⃑⃑ 用{a ,b ⃑ ,c }为基底表示为( )A .a +13b ⃑ +12cB .−a +16b ⃑ +12c C .a −13b ⃑ +12c D .−a −16b ⃑ +12c 答案:D分析:由图形可得MN ⃑⃑⃑⃑⃑⃑⃑ =MC ⃑⃑⃑⃑⃑⃑ +CD ⃑⃑⃑⃑⃑ +DN ⃑⃑⃑⃑⃑⃑ ,根据比例关系可得MC ⃑⃑⃑⃑⃑⃑ =13AD ⃑⃑⃑⃑⃑ ,DN ⃑⃑⃑⃑⃑⃑ =12DP ⃑⃑⃑⃑⃑ ,再根据向量减法DP ⃑⃑⃑⃑⃑ =AP ⃑⃑⃑⃑⃑ −AD ⃑⃑⃑⃑⃑ ,代入整理并代换为基底向量.MN ⃑⃑⃑⃑⃑⃑⃑ =MC ⃑⃑⃑⃑⃑⃑ +CD ⃑⃑⃑⃑⃑ +DN ⃑⃑⃑⃑⃑⃑ =13AD ⃑⃑⃑⃑⃑ −AB ⃑⃑⃑⃑⃑ +12DP ⃑⃑⃑⃑⃑ =13AD ⃑⃑⃑⃑⃑ −AB ⃑⃑⃑⃑⃑ +12(AP ⃑⃑⃑⃑⃑ −AD ⃑⃑⃑⃑⃑ )=−AB ⃑⃑⃑⃑⃑ −16AD ⃑⃑⃑⃑⃑ +12AP ⃑⃑⃑⃑⃑ 即MN ⃑⃑⃑⃑⃑⃑⃑ =−a −16b ⃑ +12c 故选:D .3、已知直线l 的倾斜角为60∘,且经过点(0,1),则直线l 的方程为( )A .y =√3xB .y =√3x −2C .y =√3x +1D .y =√3x +3答案:C分析:先求出斜率,再由直线的点斜式方程求解即可.由题意知:直线l 的斜率为√3,则直线l 的方程为y =√3x +1.故选:C.4、在矩形ABCD 中,O 为BD 中点且AD =2AB ,将平面ABD 沿对角线BD 翻折至二面角A −BD −C 为90°,则直线AO 与CD 所成角余弦值为( )A .√55B .√54C .3√525D .4√225 答案:C分析:建立空间直角坐标系,利用向量法求得直线AO 与CD 所成角余弦值.在平面ABD 中过A 作AE ⊥BD ,垂足为E ;在平面CBD 中过C 作CF ⊥BD ,垂足为F .由于平面ABD ⊥平面BCD ,且交线为BD ,所以AE ⊥平面BCD ,CF ⊥平面ABD ,设AB =1,AD =2,12×BD ×AE =12×AB ×AD ⇒AE =√5OE =√OA 2−AE 2=2√5, 同理可得CF =√5OF =2√5, 以O 为原点,建立如图所示空间直角坐标系,则A(2√5√5),√52√50),D(−√52,0,0), CD ⃑⃑⃑⃑⃑ =(−√510,2√50),设AO 与CD 所成角为θ,则cosθ=|OA ⃑⃑⃑⃑⃑⃑ ⋅CD ⃑⃑⃑⃑⃑ |OA ⃑⃑⃑⃑⃑⃑ |⋅|CD ⃑⃑⃑⃑⃑ ||=320√52×12=3√525.故选:C5、如果AB >0且BC <0,那么直线Ax +By +C =0不经过( )A .第一象限B .第二象限C .第三象限D .第四象限答案:C分析:通过直线经过的点来判断象限.由AB >0且BC <0,可得A,B 同号,B,C 异号,所以A,C 也是异号;令x =0,得y =−C B >0;令y =0,得x =−C A >0;所以直线Ax +By +C =0不经过第三象限.故选:C.6、在棱长为1的正方体ABCD -A 1B 1C 1D 1中,设AB ⃑⃑⃑⃑⃑ =a ,AD ⃑⃑⃑⃑⃑ =b ⃑ ,AA 1⃑⃑⃑⃑⃑⃑⃑ =c ,则a ⋅(b ⃑ +c )的值为()A .1B .0C .-1D .-2答案:B分析:由正方体的性质可知AB ⃑⃑⃑⃑⃑ ,AD ⃑⃑⃑⃑⃑ ,AA 1⃑⃑⃑⃑⃑⃑⃑ 两两垂直,从而对a ⋅(b ⃑ +c )化简可得答案由题意可得AB ⊥AD,AB ⊥AA 1,所以a ⊥b ⃑ ,a ⊥c ,所以a ⋅b ⃑ =0,a ⋅c =0,所以a ⋅(b ⃑ +c )=a ⋅b ⃑ +a ⋅c =0,故选:B7、动点P 在抛物线x 2=4y 上,则点P 到点C (0,4)的距离的最小值为( )A .√3B .2√3C .12√3D .12答案:B分析:设出点P 坐标,用两点间距离公式表达出点P 到点C (0,4)的距离,配方后求出最小值.设P (x,x 24),则|PC |=√x 2+(x 24−4)2=√116(x 2−8)2+12,当x 2=8时,|PC |取得最小值,最小值为2√3 故选:B8、如图,在直三棱柱ABC −AB 1C 1中,AC =3,BC =4,CC 1=3,∠ACB =90∘ ,则BC 1与A 1C 所成的角的余弦值为( )A . 3√210B . √33C . √24D . √55答案:A分析:建立空间直角坐标系,写出CA 1⃑⃑⃑⃑⃑⃑⃑ ,BC 1⃑⃑⃑⃑⃑⃑⃑ 的坐标,由夹角公式可得结果.如图,以C 为坐标原点,CA ,CB ,CC 1分别为x ,y ,z 轴建立空间直角坐标系,则C (0,0,0),A 1(3,0,3),B (0,4,0),C 1(0,0,3),所以CA 1⃑⃑⃑⃑⃑⃑⃑ =(3,0,3),BC 1⃑⃑⃑⃑⃑⃑⃑ =(0,−4,3),所以cos⟨CA 1⃑⃑⃑⃑⃑⃑⃑ ,BC 1⃑⃑⃑⃑⃑⃑⃑ ⟩=CA 1⃑⃑⃑⃑⃑⃑⃑⃑ ⋅BC 1⃑⃑⃑⃑⃑⃑⃑⃑ |CA 1⃑⃑⃑⃑⃑⃑⃑⃑ |⋅|BC 1⃑⃑⃑⃑⃑⃑⃑⃑ |=3√2×5=3√210, 所以直线BC 1与A 1C 所成角的余弦值为3√210.故选:A.9、如图所示,在空间四边形OABC 中,OA ⃑⃑⃑⃑⃑ =a ,OB ⃑⃑⃑⃑⃑ =b ⃑ ,OC ⃑⃑⃑⃑⃑ =c ,点M 在OA 上,且OM⃑⃑⃑⃑⃑⃑ =2MA ⃑⃑⃑⃑⃑⃑ ,N 为BC 中点,则MN ⃑⃑⃑⃑⃑⃑⃑ ( )A .12a −23b ⃑ +12cB .−23a +12b ⃑ +12c C .12a +12b ⃑ −12c D .−23a +23b ⃑ −12c 答案:B分析:由向量的加法和减法运算法则计算即可.MN ⃑⃑⃑⃑⃑⃑⃑ =ON ⃑⃑⃑⃑⃑⃑ −OM ⃑⃑⃑⃑⃑⃑ =12(OB ⃑⃑⃑⃑⃑ +OC ⃑⃑⃑⃑⃑ )−23OA ⃑⃑⃑⃑⃑ =−23a +12b ⃑ +12c 故选:B10、若圆x 2+y 2=1上总存在两个点到点(a,1)的距离为2,则实数a 的取值范围是( ) A .(−2√2,0)∪(0,2√2)B .(−2√2,2√2)C .(−1,0)∪(0,1)D .(−1,1)答案:A分析:将问题转化为圆(x−a)2+(y−1)2=4与x2+y2=1相交,从而可得2−1<√a2+12<2+1,进而可求出实数a的取值范围.到点(a,1)的距离为2的点在圆(x−a)2+(y−1)2=4上,所以问题等价于圆(x−a)2+(y−1)2=4上总存在两个点也在圆x2+y2=1上,即两圆相交,故2−1<√a2+12<2+1,解得−2√2<a<0或0<a<2√2,所以实数a的取值范围为(−2√2,0)∪(0,2√2),故选:A.填空题11、过圆C:(x−1)2+y2=1外一点P作圆C的两条切线,切点分别为A,B.若△PAB为等边三角形,则过D(2,1)的直线l被P点轨迹所截得的最短弦长为________.答案:2√2分析:先根据∠APC=30°,可得P点轨迹方程为圆,再数形结合可知当l与CD垂直时,l被圆所截得的弦长最短,结合垂径定理计算即可=2,所以P点轨迹的由题意知C(1,0),连接PC,因为△PAB为等边三角形,所以∠APC=30°,所以|CP|=1sin30∘方程为(x−1)2+y2=4.因为(2−1)2+12=2<4,所以点D(2,1)在圆(x-1)2+y2=4的内部.连接CD,结合图形可知,当l与CD垂直时,l被圆(x−1)2+y2=4所截得的弦长最短,最短弦长为2√4−CD2=2√4−2=2√2所以答案是:2√212、已知集合A={(x,y)|2x−(a+1)y−1=0},B={(x,y)|ax−y+1=0},且A∩B=∅,则实数a的值为___________.答案:1分析:利用已知条件可得直线2x−(a+1)y−1=0与直线ax−y+1=0平行,利用线线平行的结论,代入求解即可.∵集合A={(x,y)|2x−(a+1)y−1=0},B={(x,y)|ax−y+1=0},且A∩B=∅,∴直线2x−(a+1)y−1=0与直线ax−y+1=0平行,即−2=−a(a+1),且2≠−a,解得a=1.所以答案是:1.13、点P为直线3x−4y+2=0上任意一个动点,则P到点(3,−1)的距离的最小值为___________.答案:3分析:先判断出当点P和点(3,−1)的连线和直线3x−4y+2=0垂直时距离最小,再由点(3,−1)到直线的距离求解即可.由题意得当点P和点(3,−1)的连线和直线3x−4y+2=0垂直时距离最小,此时距离等于点(3,−1)到直线3x−4y+2=0的=3,故P到点(3,−1)的距离的最小值为3.距离√32+(−4)2所以答案是:3.14、如图,在棱长为4的正方体ABCD−A1B1C1D1中,E为BC的中点,点P在线段D1E上,点Р到直线CC1的距离的最小值为_______.答案:4√55##45√5 分析:建立空间直角坐标系,借助空间向量求出点Р到直线CC 1距离的函数关系,再求其最小值作答. 在正方体ABCD −A 1B 1C 1D 1中,建立如图所示的空间直角坐标系,则C(0,4,0),D 1(0,0,4),E(2,4,0),C 1(0,4,4),CE ⃑⃑⃑⃑⃑ =(2,0,0),CC 1⃑⃑⃑⃑⃑⃑⃑ =(0,0,4),ED 1⃑⃑⃑⃑⃑⃑⃑ =(−2,−4,4),因点P 在线段D 1E 上,则λ∈[0,1],EP ⃑⃑⃑⃑⃑ =λED 1⃑⃑⃑⃑⃑⃑⃑ =(−2λ,−4λ,4λ),CP ⃑⃑⃑⃑⃑ =CE ⃑⃑⃑⃑⃑ +EP ⃑⃑⃑⃑⃑ =(2−2λ,−4λ,4λ),向量CP ⃑⃑⃑⃑⃑ 在向量CC 1⃑⃑⃑⃑⃑⃑⃑ 上投影长为d =|CP ⃑⃑⃑⃑⃑ ⋅CC 1⃑⃑⃑⃑⃑⃑⃑ ||CC 1⃑⃑⃑⃑⃑⃑⃑ |=4λ, 而|CP⃑⃑⃑⃑⃑ |=√(2−2λ)2+(−4λ)2+(4λ)2,则点Р到直线CC 1的距离 ℎ=√|CP ⃑⃑⃑⃑⃑ |2−d 2=2√5λ2−2λ+1=2√5(λ−15)2+45≥4√55,当且仅当λ=15时取“=”, 所以点Р到直线CC 1的距离的最小值为4√55. 所以答案是:4√55 15、在直角坐标系中,若A (2,1)、B (1,2)、C (0,y )(y ∈R ),则|AC |+|BC |的最小值是______.答案:√10分析:作点A 关于y 轴的对称点M (−2,1),由对称性可得|AC |=|MC |,再利用当点C 为线段BM 与y 轴的交点时,|AC |+|BC |取最小值可得结果.由题意可知,点C 在y 轴上,点A 关于y 轴的对称点为M (−2,1),由对称性可得|AC |=|MC |,所以,|AC |+|BC |=|MC |+|BC |≥|MB |=√(1+2)2+(2−1)2=√10,当且仅当点C 为线段BM 与y 轴的交点时,等号成立,故|AC |+|BC |的最小值为√10.所以答案是:√10.解答题16、如图,已知在正方体ABCD -A 1B 1C 1D 1中,M ,N ,P 分别是AD 1,BD ,B 1C 的中点,利用向量法证明:(1)MN ∥平面CC 1D 1D ;(2)平面MNP ∥平面CC 1D 1D .答案:(1)证明见解析;(2)证明见解析.分析:(1)建立空间直角坐标系,设出相关点的坐标,求出直线的方向向量和平面的法向量,利用直线的方向向量和平面的法向量的数量积为0进行证明;(2)证明两个平面有相同的一个法向量即可..(1)证明:以D 为坐标原点,DA ⃑⃑⃑⃑⃑ ,DC ⃑⃑⃑⃑⃑ ,DD 1⃑⃑⃑⃑⃑⃑⃑⃑ 的方向分别为x ,y ,z 轴的正方向,建立空间直角坐标系,设正方体的棱长为2,则A (2,0,0),C (0,2,0),D (0,0,0),M (1,0,1),N (1,1,0),P (1,2,1).由正方体的性质,知AD ⊥平面CC 1D 1D ,所以DA ⃑⃑⃑⃑⃑ =(2,0,0)为平面CC 1D 1D 的一个法向量.由于MN⃑⃑⃑⃑⃑⃑⃑ =(0,1,-1), 则MN →·DA →=0×2+1×0+(-1)×0=0,所以MN⃑⃑⃑⃑⃑⃑⃑ ⊥DA ⃑⃑⃑⃑⃑ . 又MN ⊄平面CC 1D 1D ,所以MN ∥平面CC 1D 1D.(2)证明:因为DA⃑⃑⃑⃑⃑ =(2,0,0)为平面CC 1D 1D 的一个法向量, 由于MP⃑⃑⃑⃑⃑⃑ =(0,2,0),MN ⃑⃑⃑⃑⃑⃑⃑ =(0,1,-1), 则{MP →·DA →=0MN →·DA →=0,即DA⃑⃑⃑⃑⃑ =(2,0,0)也是平面MNP 的一个法向量, 所以平面MNP ∥平面CC 1D 1D.17、已知x 21−k −y 2|k|−3=−1,当k 为何值时:(1)方程表示双曲线;(2)表示焦点在x 轴上的双曲线;(3)表示焦点在y 轴上的双曲线.答案:(1)k <-3或1<k <3;(2)1<k <3;(3)k <-3.分析:利用双曲线标准方程中的分母的正负,即可得出结论.(1)∵x 21−k −y 2|k|−3=−1,即x 2k−1+y 2|k |−3=1,方程表示双曲线,∴(k -1)(|k |-3)<0,可得k <-3或1<k <3;(2)∵x 21−k −y 2|k|−3=−1,即x 2k−1+y 2|k |−3=1,焦点在x 轴上的双曲线,则{k −1>03−|k|>0, ∴1<k <3;(3)∵x 21−k −y 2|k|−3=−1,即x 2k−1+y 2|k |−3=1,焦点在y 轴上的双曲线,则{|k|−3>01−k >0, ∴k <-3.18、已知圆C 过点A (3,1),B (5,3),圆心在直线y =x 上.(1)求圆C 的方程.(2)判断点P (2,4)与圆C 的关系答案:(1)(x −3)2+(y −3)2=4;(2)P 在圆C 内部.分析:(1)由给定条件设出圆心C (a,a )、半径r ,进而写出圆的标准方程,再列出关于a ,r 的方程组即可得解(2)求出点P 与点C 的距离,再将它与r 比较即可得解.(1)由题意设圆心为C (a,a ),半径为r ,则圆的标准方程为(x −a)2+(y −a )2=r 2,由题意得{(3−a)2+(1−a )2=r 2(5−a)2+(3−a )2=r2 ,解得{a =3r =2 , 所以圆C 的标准方程为(x −3)2+(y −3)2=4;(2)由(1)知|PC |=√(3−2)2+(3−4)2=√2<rP (2,4)在圆C 内.19、如图,四边形ABCD 中,满足AB //CD ,∠ABC =90°,AB =1,BC =√3,CD =2,将△BAC 沿AC 翻折至△PAC ,使得PD =2.(Ⅰ)求证:平面PAC ⊥平面ACD ;(Ⅱ)求直线CD 与平面PAD 所成角的正弦值.答案:(Ⅰ)证明见解析;(Ⅱ)√155. 分析:(Ⅰ)过B 作BO ⊥AC ,垂足为O ,连PO ,DO ,作DE ⊥AC ,垂足为E ,易得PO ⊥AC ,通过勾股定理可得PO ⊥OD ,即可得PO ⊥平面ACD ,进而可得结果;(Ⅱ)建立如图所示的空间直角坐标系,平面PAD 的法向量,利用向量法即可得结果.(Ⅰ)过B 作BO ⊥AC ,垂足为O ,连PO ,DO ,则PO ⊥AC ,作DE ⊥AC ,垂足为E ,则DE =√3,OE =12,DO =√132所以PO 2+DO 2=PD 2,即PO ⊥OD又AC ∩DO =O ,所以PO ⊥平面ACD ,又PO ⊂平面PAC ,所以平面PAC ⊥平面ACD ;(Ⅱ)以O 为坐标原点,OC ,BO 所在的直线为x ,y 轴建立空间直角坐标系 则A (−12,0,0),C (32,0,0),D (12,√3,0),P (0,0,√32), AD ⃑⃑⃑⃑⃑ =(1,√3,0),AP ⃑⃑⃑⃑⃑ =(12,0,√32) 设平面PAD 的法向量为n ⃑ =(a,b,c),则{AP ⃑⃑⃑⃑⃑ ⋅n ⃑ =12a +√32c =0AD ⃑⃑⃑⃑⃑ ⋅n ⃑ =a +√3b =0 取法向量n ⃑ =(√3,−1,−1),CD⃑⃑⃑⃑⃑ =(−1,√3,0) 设直线CD 与平面PAD 所成角为θ,则sinθ=|cos <CD ⃑⃑⃑⃑⃑ ,n ⃑ >|=√155.。
流程图(简答题:一般)1、执行如图所示的程序框图.(1)若输入的,,求输出的的值;(2)若输入的,输出的,求输入的()的值.2、已知函数,对每输入的一个值,都得到相应的函数值,画出程序框图并写出程序.3、已知数列的递推公式,且,请画出求其前5项的流程图.4、已知某算法的算法框图如图所示.(1)求函数的解析式;(2)求的值.5、的取值范围为[0,10],给出如图所示的程序框图,输入一个数.(1)请写出程序框图所表示的函数表达式;(2)求输出的()的概率;(3)求输出的的概率.6、已知数列的各项均为正数,观察程序框图,当,时,.(1)求数列的通项;(2)令,求的值.7、某药厂生产某种产品的过程如下:(1)备料、前处理、提取、制粒、压片、包衣、颗粒分装包装;(2)提取环节经检验,合格,进入下一工序,否则返回前处理;(3)包衣、颗粒分装两环节分别检验合格进入下一工序,否则为废品,画出生产该产品的工序流程图.8、根据下面的要求,求┅值.(Ⅰ)请将程序框图补充完整;(Ⅱ)求出(I)中输出S的值.9、求满足的最小正整数,写出算法的程序并画出程序框图.10、执行如下程序框图:(1)如果在判断框内填入“”,请写出输出的所有数值;(2)如果在判断框内填入“”,试求出所有输出数字的和。
11、根据下面的程序,画出其对应的程序框图.12、读下列程序,写出此程序表示的函数,并求当输出的时,输入的的值.13、执行如图所示的程序框图.(1)若输入的,,求输出的的值;(2)若输入的,输出的,求输入的()的值.14、某算法的程序框图如图所示,其中输入的变量在1,2,3,…30这30个整数中等可能随机产生. (1)分别求出(按程序框图正确编程运行时)输出的值为的概率;(2)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行次后,统计记录了输出的值为的频数,下面是甲、乙所作频数统计表的部分数据:甲的频数统计表(部分)乙的频数统计表(部分)当时,根据表中的数据,分别写出甲、乙所编程序各自输出的值为的频率(用分数表示),并判断甲、乙中谁所编写的程序符合算法要求的可能性较大.15、(2015秋•宁德期末)阅读如图所示程序框图,根据框图的算法功能回答下列问题:(Ⅰ)当输入的x∈[﹣1,3]时,求输出y的值组成的集合;(Ⅱ)已知输入的x∈[a,b]时,输出y的最大值为8,最小值为3,求实数a,b的值.16、的取值范围为[0,10],给出如图所示程序框图,输入一个数.(1)请写出程序框图所表示的函数表达式;(2)求输出的()的概率;(3)求输出的的概率.17、(本题满分16分)对任意函数f(x),x∈D,可按如图构造一个数列发生器,记由数列发生器产生数列{x n}.(1)若定义函数,且输入,请写出数列{x n}的所有项;(2)若定义函数f(x)=xsinx(0≤x≤2π),且要产生一个无穷的常数列{x n},试求输入的初始数据x0的值及相应数列{x n}的通项公式x n;(3)若定义函数f(x)=2x+3,且输入x0=﹣1,求数列{x n}的通项公式x n.18、在某校趣味运动会的颁奖仪式上,为了活跃气氛,大会组委会决定在颁奖过程中进行抽奖活动,用分层抽样的方法从参加颁奖仪式的高一、高二、高三代表队中抽取20人前排就座,其中高二代表队有6人.(1)把在前排就座的高二代表队6人分别记为a,b,c,d,e,f,现从中随机抽取2人上台抽奖,求a和b至少有一人上台抽奖的概率;(2)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的随机数x,y,并按如图所示的程序框图执行.若电脑显示“中奖",则该代表中奖;若电脑显示“谢谢”,则不中奖.求该代表中奖的概率.19、(本小题满分12分)如图所示程序框图中,有这样一个执行框=f()其中的函数关系式为,程序框图中的D为函数f(x)的定义域.,(1)若输入,请写出输出的所有;(2)若输出的所有xi都相等,试求输入的初始值.20、(本小题满分12分)已知数列的各项均为正数,观察流程图,当时,;当时,,(1)写出时,的表达式(用等来表示);(2)求的通项公式;(3)令,求.21、(本小题满分12分)如下图,给出了一个程序框图,其作用是输入的值,输出相应的的值,(I)请指出该程序框图所使用的逻辑结构;(Ⅱ)若视为自变量,为函数值,试写出函数的解析式;(Ⅲ)若要使输入的的值与输出的的值相等,则输入的值的集合为多少?22、(本小题满分13分)从某企业生产的某种产品中抽取20件,测量这些产品的一项质量指标值,由测量得到如图的频率分布直方图,从左到右各组的频数依次记为,,,,.(1)求图中的值;(2)下图是统计图中各组频数的一个算法流程图,求输出的结果;(3)从质量指标值分布在、的产品中随机抽取2件产品,求所抽取两件产品的质量指标值之差大于10的概率.23、对任意函数,,可按如图构造一个数列发生器,记由数列发生器产生数列{}.(1)若定义函数,且输入,请写出数列{}的所有项;(2)若定义函数(0≤x≤2π),且要产生一个无穷的常数列{},试求输入的初始数据的值及相应数列{}的通项公式;(3)若定义函数,且输入,求数列{}的通项公式.参考答案1、(1);(2).2、见解析3、见解析4、(1);(2)5、(1)(2)(3)6、(1)(2)7、见解析8、(I);(II).9、程序见解析,程序框图见解析.10、(1)(2)11、程序框图见解析.12、,.13、(1);(2).14、(1),,;(2)乙.15、(Ⅰ)输入x∈[﹣1,3],输出y的值组成的集合为[0,8];(Ⅱ)所求实数a,b的值为或16、(1);(2);(3).17、(1);(2)故当,;当;(3)18、(1);(2)19、(1)(2)或20、(1);(2);(3).21、(I)条件结构和顺序结构(Ⅱ)(Ⅲ)22、(1)0.005;(2)18;(3)23、(1),,;(2)当时,;当时,;(3).【解析】1、试题分析:(1)根据程序框图的循环结构,根据判断框的条件,即可求解;(2)根据第一次运算,第二次运算,即可得出,即可求解的值.试题解析:(1)第一次运算:,,;第二次运算:,,;第三次运算:,,;第四次运算:,,;第五次运算:,,,输出.(2)第一次运算:,,,此时不成立,则.第二次运算:,,,此时成立,则,∴,又,∴.考点:程序框图的运算.2、试题分析:利用条件结构和条件语句可实现分段函数求值的算法,进而可得程序框图并编写相应的程序。
选修1-2数学知识点第一部分 统计案例 知识点:1.线性回归方程①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系③线性回归方程:a bx y +=∧(最小二乘法)1221ni i i nii x y nx y b x nx a y bx==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑ 注意:线性回归直线经过定点),(y x 。
2.相关系数(判定两个变量线性相关性):∑∑∑===----=ni ni i ini i iy y x xy y x xr 11221)()())((注:⑴r >0时,变量y x ,正相关;r <0时,变量y x ,负相关;⑵①||r 越接近于1,两个变量的线性相关性越强;②||r 接近于0时,两个变量之间几乎不存在线性相关关系。
3.回归分析中回归效果的判定: ⑴总偏差平方和:∑=-ni iy y12)(⑵残差:∧∧-=i i i y y e ;⑶残差平方和:21)(∑=∧-ni yi yi ;⑷回归平方和:∑=-ni iy y12)(-21)(∑=∧-ni yi yi ;⑸相关指数∑∑==∧---=ni i ini i iy yy y R 12122)()(1 。
注:①2R 得知越大,说明残差平方和越小,则模型拟合效果越好;②2R 越接近于1,,则回归效果越好。
4.独立性检验(分类变量关系):随机变量2K 越大,说明两个分类变量,关系越强,反之,越弱。
考点:无第二部分 推理与证明 知识点:一.推理:⑴合情推理:归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,我们把它们称为合情推理。
①归纳推理:由某类食物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个别事实概括出一般结论的推理,称为归纳推理,简称归纳。
注:归纳推理是由部分到整体,由个别到一般的推理。
②类比推理:由两类对象具有类似和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理,简称类比。
(名师选题)(精选试题附答案)高中数学选修一知识点归纳超级精简版单选题1、已知直线l 过定点A (2,3,1),且方向向量为s ⃑=(0,1,1),则点P (4,3,2)到l 的距离为( )A .3√22B .√22C .√102D .√2 答案:A分析:本题首先可根据题意得出AP ⃑⃑⃑⃑⃑⃑,然后求出|AP ⃑⃑⃑⃑⃑⃑|与|AP ⃑⃑⃑⃑⃑⃑⋅s ⃑|s ⃑||,最后根据空间点到直线的距离公式即可得出结果. 因为A (2,3,1),P (4,3,2),所以AP⃑⃑⃑⃑⃑⃑=(2,0,1), 则|AP ⃑⃑⃑⃑⃑⃑|=√5,|AP ⃑⃑⃑⃑⃑⃑⋅s ⃑|s ⃑||=√22, 由点到直线的距离公式得d =√|AP ⃑⃑⃑⃑⃑⃑|2−|AP ⃑⃑⃑⃑⃑⃑⋅s ⃑|s ⃑||2=3√22, 故选:A.2、在正方体ABCD −A 1B 1C 1D 1中,P 为B 1D 1的中点,则直线PB 与AD 1所成的角为( )A .π2B .π3C .π4D .π6答案:D分析:平移直线AD 1至BC 1,将直线PB 与AD 1所成的角转化为PB 与BC 1所成的角,解三角形即可.如图,连接BC 1,PC 1,PB ,因为AD 1∥BC 1,所以∠PBC 1或其补角为直线PB 与AD 1所成的角,因为BB 1⊥平面A 1B 1C 1D 1,所以BB 1⊥PC 1,又PC 1⊥B 1D 1,BB 1∩B 1D 1=B 1,所以PC 1⊥平面PBB 1,所以PC 1⊥PB ,设正方体棱长为2,则BC 1=2√2,PC 1=12D 1B 1=√2,sin∠PBC 1=PC 1BC 1=12,所以∠PBC 1=π6.故选:D3、已知F 1,F 2是双曲线C 的两个焦点,P 为C 上一点,且∠F 1PF 2=60°,|PF 1|=3|PF 2|,则C 的离心率为()A .√72B .√132C .√7D .√13答案:A分析:根据双曲线的定义及条件,表示出|PF 1|,|PF 2|,结合余弦定理可得答案.因为|PF 1|=3|PF 2|,由双曲线的定义可得|PF 1|−|PF 2|=2|PF 2|=2a ,所以|PF 2|=a ,|PF 1|=3a ;因为∠F 1PF 2=60°,由余弦定理可得4c 2=9a 2+a 2−2×3a ⋅a ⋅cos60°,整理可得4c 2=7a 2,所以e 2=c 2a 2=74,即e =√72.故选:A小提示:关键点睛:双曲线的定义是入手点,利用余弦定理建立a,c 间的等量关系是求解的关键.4、如图所示,在空间四边形OABC 中,OA ⃑⃑⃑⃑⃑⃑=a ⃑,OB ⃑⃑⃑⃑⃑⃑=b ⃑⃑,OC ⃑⃑⃑⃑⃑⃑=c ⃑,点M 在OA 上,且OM⃑⃑⃑⃑⃑⃑⃑=2MA ⃑⃑⃑⃑⃑⃑⃑,N 为BC 中点,则MN⃑⃑⃑⃑⃑⃑⃑⃑( )A .12a ⃑−23b ⃑⃑+12c ⃑B .−23a ⃑+12b ⃑⃑+12c ⃑ C .12a ⃑+12b ⃑⃑−12c ⃑D .−23a ⃑+23b ⃑⃑−12c ⃑ 答案:B分析:由向量的加法和减法运算法则计算即可.MN ⃑⃑⃑⃑⃑⃑⃑⃑=ON ⃑⃑⃑⃑⃑⃑⃑−OM ⃑⃑⃑⃑⃑⃑⃑=12(OB ⃑⃑⃑⃑⃑⃑+OC ⃑⃑⃑⃑⃑⃑)−23OA ⃑⃑⃑⃑⃑⃑=−23a ⃑+12b ⃑⃑+12c ⃑ 故选:B5、已知椭圆x 2a 2+y 2b 2=1(a >b >0)上存在点P ,使得|PF 1|=3|PF 2|,其中F 1,F 2分别为椭圆的左、右焦点,则该椭圆的离心率的取值范围是( )A .(0,14]B .(14,1)C .(12,1)D .[12,1)答案:D分析:先由椭圆的定义结合已知求得|PF 1|,|PF 2|,再由|PF 1|−|PF 2|≤|F 1F 2|求得a,c 的不等关系,即可求得离心率的取值范围.由椭圆的定义得|PF 1|+|PF 2|=2a ,又∵|PF 1|=3|PF 2|,∴|PF 1|=32a ,|PF 2|=12a ,而|PF 1|−|PF 2|≤|F 1F 2|=2c ,当且仅当点P 在椭圆右顶点时等号成立,即32a −12a ≤2c ,即a ≤2c ,则e =c a ≥12,即12≤e <1.故选:D .6、如图,下列各正方体中,O 为下底面的中心,M ,N 为顶点,P 为所在棱的中点,则满足MN ⊥OP 的是( )A .B .C .D .答案:A 分析:根据给定条件,建立空间直角坐标系,再对每一个选项逐一分析,利用空间位置关系的向量证明推理作答.在正方体中,对各选项建立相应的空间直角坐标系,令正方体棱长为2,点O (1,1,0),对于A ,M (0,0,2),N (2,0,0),P (2,0,1),MN ⃑⃑⃑⃑⃑⃑⃑ =(2,0,-2),OP ⃑⃑⃑⃑⃑ =(1,-1,1),MN ⃑⃑⃑⃑⃑⃑⃑ ⊥OP ⃑⃑⃑⃑⃑ =0,MN ⊥OP ,A 是;对于B ,M (2,0,2),N (0,2,2),P (0,2,1),MN ⃑⃑⃑⃑⃑⃑⃑ =(-2,2,0),OP ⃑⃑⃑⃑⃑ =(-1,1,1),MN ⃑⃑⃑⃑⃑⃑⃑ ⊥OP ⃑⃑⃑⃑⃑ =4≠0,MN 与OP 不垂直,B 不是;对于C ,M (0,2,2),N (0,0,0),P (2,1,2),MN →=(0,-2,-2),OP →=(1,0,2),MN ⃑⃑⃑⃑⃑⃑⃑ ⊥OP ⃑⃑⃑⃑⃑ =-4≠0,MN 与OP 不垂直,C 不是;对于D ,M (2,2,2),N (0,2,0),P (0,0,1),MN⃑⃑⃑⃑⃑⃑⃑ =(-2,0,-2),OP ⃑⃑⃑⃑⃑ =(1,0,1),MN ⃑⃑⃑⃑⃑⃑⃑ ⊥OP ⃑⃑⃑⃑⃑ =-4≠0,MN 与OP 不垂直,D 不是.故选:A7、已知边长为2的等边三角形ABC ,D 是平面ABC 内一点,且满足DB:DC =2:1,则三角形ABD 面积的最小值是( )A .43(√3−1)B .43(√3+1)C .4√33D .√33 答案:A分析:建立直角坐标系,设D(x,y),写出A,B,C 的坐标,利用DB:DC =2:1列式得关于x,y 的等式,可得点D 的轨迹为以(53,0)为圆心,以43为半径的圆,写出直线AB 的方程,计算|AB |和点D 距离直线AB 的最小距离d −r ,代入三角形面积公式计算.以BC 的中点O 为原点,建立如图所示的直角坐标系,则A(0,√3),B (−1,0),C (1,0),设D (x,y ),因为DB:DC =2:1,所以(x +1)2+y 2=4(x −1)2+4y 2,得(x −53)2+y 2=169, 所以点D 的轨迹为以(53,0)为圆心,以43为半径的圆,当点D 距离直线AB 距离最大时,△ABD 面积最大,已知直线AB 的方程为:√3x −y +√3=0,|AB |=2,点D 距离直线AB 的最小距离为:d −r =|5√33+√3|2−43=4√33−43,所以△ABD面积的最小值为S△ABD=12×2×(4√33−43)=43(√3−1).故选:A8、已知抛物线C:y2=8x,点P为抛物线上任意一点,过点P向圆D:x2+y2−4x+3=0作切线,切点分别为A,B,则四边形PADB的面积的最小值为()A.1B.2C.√3D.√5答案:C分析:由题意圆的圆心与抛物线的焦点重合,可得连接PD,则S四边形PADB=2S Rt△PAD=|PA|,而|PA|=√|PD|2−1,所以当|PD|最小时,四边形PADB的面积最小,再抛物线的定义转化为点P到抛物线的准线的距离的最小值,结合抛物线的性质可求得结果如图,连接PD,圆D:(x−2)2+y2=1,该圆的圆心与抛物线的焦点重合,半径为1,则S四边形PADB=2S Rt△PAD=|PA|.又|PA|=√|PD|2−1,所以当四边形PADB的面积最小时,|PD|最小.过点P向抛物线的准线x=−2作垂线,垂足为E,则|PD|=|PE|,当点P与坐标原点重合时,|PE|最小,此时|PE|=2.故(S四边形PADB )min=(√|PD|2−1)min=√3.故选:C9、如果复数z满足|z+1−i|=2,那么|z−2+i|的最大值是()A.√13+2B.2+√3C.√13+√2D.√13+4答案:A分析:复数z满足|z+1−i|=2,表示以C(−1,1)为圆心,2为半径的圆.|z−2+i|表示圆上的点与点M(2,−1)的距离,求出|CM|即可得出.复数z满足|z+1−i|=2,表示以C(−1,1)为圆心,2为半径的圆.|z−2+i|表示圆上的点与点M(2,−1)的距离.∵|CM|=√32+22=√13.∴|z−2+i|的最大值是√13+2.故选:A.小提示:本题考查复数的几何意义、圆的方程,求解时注意方程|z+1−i|=2表示的圆的半径为2,而不是√2.10、动点P,Q分别在抛物线x2=4y和圆x2+y2−8y+13=0上,则|PQ|的最小值为()A.2√3B.√3C.12√3D.32√3答案:B分析:设P(x0,14x02),根据两点间距离公式,先求得P到圆心的最小距离,根据圆的几何性质,即可得答案.设P(x0,14x02),圆化简为x2+(y−4)2=3,即圆心为(0,4),半径为√3,所以点P到圆心的距离d=√(x0−0)2+(14x02−4)2=√116(x02)2−x02+16,令t=x02,则t≥0,令f(t)=116t2−t+16,t≥0,为开口向上,对称轴为t=8的抛物线,所以f(t)的最小值为f(8)=12,所以d min=√12=2√3,所以|PQ|的最小值为d min−√3=2√3−√3=√3.故选:B填空题11、已知圆x2+y2+2x−4y−5=0与x2+y2+2x−1=0相交于A、B两点,则公共弦AB的长是___________. 答案:2分析:两圆方程相减可得公共弦所在直线方程,利用垂径定理即可得解.解:由题意AB所在的直线方程为:(x2+y2+2x−4y−5)−(x2+y2+2x−1)=0,即y=−1,因为圆x2+y2+2x−1=0的圆心O(−1,0),半径为r=√2,所以,圆心O(−1,0)到直线y=−1的距离为1,所以|AB|=2√2−12=2.所以答案是:212、与双曲线x29−y216=1有共同渐近线,且经过点A(−3,2√3)的双曲线的一个焦点到一条渐近线的距离为___________.答案:2分析:由题意首先求得双曲线方程,据此可确定焦点坐标,然后利用点到直线距离公式可得双曲线的一个焦点到一条渐近线的距离.解:根据题意,设双曲线方程为x 29−y216=λ,将点(−3,2√3)代入双曲线方程,解得λ=14.所以,经过点A(−3,2√3)的双曲线方程为:4x 29−y24=1,故4x 29−y24=1的一个焦点坐标为(52,0),一条渐近线方程为y=43x,即4x−3y=0,所以,焦点到一条渐近线的距离是√9+16=2,所以答案是:213、设点M在直线2x+y−1=0上,点(3,0)和(0,1)均在⊙M上,则⊙M的方程为______________.答案:(x−1)2+(y+1)2=5分析:设出点M的坐标,利用(3,0)和(0,1)均在⊙M上,求得圆心及半径,即可得圆的方程.[方法一]:三点共圆∵点M在直线2x+y−1=0上,∴设点M为(a,1−2a),又因为点(3,0)和(0,1)均在⊙M上,∴点M到两点的距离相等且为半径R,∴√(a−3)2+(1−2a)2=√a2+(−2a)2=R,a2−6a+9+4a2−4a+1=5a2,解得a=1,∴M(1,−1),R=√5,⊙M的方程为(x−1)2+(y+1)2=5.所以答案是:(x−1)2+(y+1)2=5[方法二]:圆的几何性质由题可知,M是以(3,0)和(0,1)为端点的线段垂直平分线y=3x-4与直线2x+y−1=0的交点(1,-1).R=√5, ⊙M的方程为(x−1)2+(y+1)2=5.所以答案是:(x−1)2+(y+1)2=514、已知椭圆C:x24+y23=1的左、右焦点分别为F1,F2,M为椭圆C上任意一点,N为圆E:(x−3)2+(y−2)2=1上任意一点,则|MN|−|MF1|的最小值为___________.答案:2√2−5分析:首先根据椭圆的定义将|MN|−|MF1|的最小值转化为|MN|+|MF2|−4,再根据|MN|≥|ME|−1(当且仅当M、N、E共线时取等号),最后根据|ME|+|MF2|≥|EF2|求得|MN|−|MF1|的最小值.如图,由M为椭圆C上任意一点,则|MF1|+|MF2|=4又N为圆E:(x−3)2+(y−2)2=1上任意一点,则|MN|≥|ME|−1(当且仅当M、N、E共线时取等号),∴|MN|−|MF1|=|MN|−(4−|MF2|)=|MN|+|MF2|−4≥|ME|+|MF2|−5≥|EF2|−5,当且仅当M、N、E、F2共线时等号成立.∵F2(1,0),E(3,2),则|EF2|=√(3−1)2+(2−0)2=2√2,∴|MN|−|MF1|的最小值为2√2−5.所以答案是:2√2−5.小提示:思路点睛;本题主要考查与椭圆与圆上动点相关的最值问题,主要根据椭圆的定义将目标等价转化为能够通过数形结合解题的类型,考查学生的转化与化归思想,属于较难题.15、如图,已知点F为抛物线C:y2=4x的焦点过点F且斜率存在的直线交抛物线C于A,B两点,点D为准线l 与x轴的交点,则△DAB的面积S的取值范围为______.答案:(4,+∞)分析:设A, B 坐标和直线AB 的方程,让直线AB 方程与抛物线进行联立可得x 1+x 2=2+4k 2,x 1x 2=1,接着利用弦长公式求出|AB |,再求出点D 到直线AB 的距离,最后利用三角形的面积公式即可求出答案由抛物线C:y 2=4x 可得焦点F (1,0),准线方程为x =−1,D (−1,0),设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y =k (x −1)(k ≠0),由{y =k (x −1)y 2=4x,可得k 2x 2−(2k 2+4)x +k 2=0,则x 1+x 2=2+4k 2,x 1x 2=1, 所以|AB |=√1+k 2⋅√(x 1+x 2)2−4x 1x 2=√1+k 2⋅√(2+4k 2)2−4=4(1+k 2)k 2, 直线AB 的一般方程为kx −y −k =0,点D (−1,0)到直线AB 的距离d =√k 2+1,所以S =12d ⋅|AB |=√1+k 2⋅4(1+k 2)k 2=4√1k 2+1>4, 所以△DAB 的面积S 的取值范围为(4,+∞),所以答案是:(4,+∞)解答题16、已知△ABC 的三个顶点分别为A(−2,0),B(2,0),C(0,2).(1)若过P(1,2)的直线y =ax +b 将△ABC 分割为面积相等的两部分,求b 的值;(2)一束光线从E(1,0)点出发射到BC 上的D 点,经BC 反射后,再经AC 反射到x 轴上的F 点,最后再经x 轴反射,反射光线所在直线为l ,证明直线l 经过一定点,并求出此定点的坐标.答案:(1)b =2−23√3;(2)证明见解析,(−1,−4). 分析:(1)结合图形分析可得直线y =ax +b 的斜率大于直线PA 的斜率,由此可得直线y =ax +b 只能与BC 、AB 相交,设其与BC 的交点为Q 点,与x 轴的交点为R ,根据题设条件得到比例关系,列方程求b ;(2)设F(m ,0),结合光线反射的性质求出直线ED 的斜率,由此可得直线l 的方程,进而可得定点坐标.(1)直线BC 的方程为:x +y―2=0,直线y =ax +b 只能与BC 、AB 相交,其与BC 的交点为Q 点,由{y =ax +b x +y =2得y Q =b+2a 1+a ,y Q >0, 直线y =ax +b 与x 轴交点为R (−b a ,0),−2<b a <2,由|BR ||BQ ||BA ||CB |=12,即√2|2+b a ||b+2a 1+a |4×2√2=12, 化简得:(b +2a)2=4a (a +1),又b +a =2, ∴3b 2−12b +8=0,解得:b =2±23√3, 而a =2−b >0,∴b =2−23√3.(2)设F(m ,0),直线AC 的方程为:x −y +2=0,直线BC 的方程为:x +y −2=0,设F(m ,0)关于直线AC 的对称点为F 1(x 1,y 1),则{m+x 12−y 12+2=0y 1x 1−m =−1 ,解得F 1(−2,m +2),同理可得F 1关于直线BC 的对称点为F 2(−m ,4),则F 2在直线ED 上,所以直线ED 的斜率为4−m−1,∴l 的斜率为4m+1,l 方程为y =4m+1(x −m ),即m (y +4)=4x −y ,∴l 过定点(−1,−4).17、如图,在直三棱柱ABC −A 1B 1C 1中,AC ⊥BC ,AC =BC =BB 1,D 为AB 的中点.试用向量的方法证明:(1)BC 1⊥AB 1;(2)BC 1//平面A 1CD .答案:(1)证明见解析(2)证明见解析分析:(1)建立空间直角坐标系,利用向量的方法证得结论成立.(2)利用向量的方法证得结论成立.(1)建立如图所示空间直角坐标系,设AC =BC =BB 1=2,则B (0,2,2),C 1(0,0,0),A (2,0,2),B 1(0,2,0),BC 1⃑⃑⃑⃑⃑⃑⃑⃑=(0,−2,−2),AB 1⃑⃑⃑⃑⃑⃑⃑⃑=(−2,2,−2),BC 1⃑⃑⃑⃑⃑⃑⃑⃑⋅AB 1⃑⃑⃑⃑⃑⃑⃑⃑=0,所以BC 1⊥AB 1.(2)BC 1⃑⃑⃑⃑⃑⃑⃑⃑=(0,−2,−2),D (1,1,2),A 1(2,0,0),C (0,0,2),DA 1⃑⃑⃑⃑⃑⃑⃑⃑⃑=(1,−1,−2),A 1C ⃑⃑⃑⃑⃑⃑⃑⃑=(−2,0,2),设平面A 1CD 的法向量为n ⃑⃑=(x,y,z ),则{n ⃑⃑⋅DA 1⃑⃑⃑⃑⃑⃑⃑⃑⃑=x −y −2z =0n ⃑⃑⋅A 1C ⃑⃑⃑⃑⃑⃑⃑⃑=−2x +2z =0,故可令n ⃑⃑=(1,−1,1), BC 1⃑⃑⃑⃑⃑⃑⃑⃑⋅n⃑⃑=0,所以BC 1//平面A 1CD .18、已知抛物线T :y 2=2px (p ∈N +)和椭圆C :x 25+y 2=1,过抛物线T 的焦点F 的直线l 交抛物线于A ,B 两点,线段AB 的中垂线交椭圆C 于M ,N 两点.(1)若F 恰是椭圆C 的焦点,求p 的值;(2)若MN 恰好被AB 平分,求△OAB 面积的最大值答案:(1)4(2)3√22.分析:(1)求出椭圆焦点,得抛物线焦点,从而得p 的值;(2)设直线l 方程为x =my +p 2,代入抛物线方程,结合韦达定理得中点坐标,根据椭圆的弦中点性质得出一个参数值,由中点在椭圆内部得出另一个参数的范围,然后求出三角形面积,得出最大值.(1)在椭圆中,c =√a 2−b 2=2, 所以p 2=2,p =4; (2)设直线l 方程为x =my +p 2,代入抛物线方程得y 2−2mpy −p 2=0,设A(x 1,y 1),B(x 2,y 2),AB 中点为G(x 0,y 0),则y 1+y 2=2mp ,y 1y 2=−p 2,y 0=y 1+y 22=mp ,x 0=m 2p +p 2,设M(x 3,y 3),N(x 4,y 4),则{x 325+y 32=1x 425+y 42=1 ,两式相减得(x 3+x 4)(x 3−x 4)5+(y 3+y 4)(y 3−y 4)=0, 所以2x 0(x 3−x 4)5+2y 0(y 3−y 4)=0,k MN =y 3−y 4x 3−x 4=−x 05y 0,k MN =−1m , 所以−15×m 2p+p 2mp =−1m ,解得m 2=18,点G 在椭圆内部,所以(m 2p+p 2)25+(mp)2<1,得p 2<6413, 因为p ∈N +,所以p =1或p =2,S △OAB =12×p 2|y 1−y 2|=p 4√(y 1+y 2)2−4y 1y 2=p 4√4m 2p 2+4p 2=3√28p 2, p =1时,S △OAB =3√28,p =2时,S △OAB =3√22, 所以△OAB 面积的最大值为3√22. 小提示:本题考查求抛物线的方程,考查直线民椭圆、抛物线相交问题,考查圆锥曲线中的面积问题.解题方法采用设而不求的思想方法,即设交点坐标,设直线方程,代入曲线方程后应用韦达定理,求得弦中点坐标,弦长等,把这个结论代入其他条件可求得参数关系,参数值,参数范围等.即设参数,利用韦达定理把目标用参数表示,进而求最值,证明一些结论.本题考查学生的逻辑推理能力,运算求解能力,对学生的要求较高,属于难题.19、已知直线l 1与直线l 2:3x +4y −5=0平行,直线l 1与两坐标轴所构成的三角形的面积为12,求直线l 1的方程. 答案:3x +4y ±12√2=0分析:设直线的方程为3x +4y +c =0,求出截距后可求面积,从而可求直线的方程.设直线l 1的方程为3x +4y +c =0.令y =0,得x =−c 3;令x =0,得y =−c 4.由题设得12|−c 3|⋅|−c 4|=12.解得c =±12√2,因此直线l 1的方程为3x +4y ±12√2=0.。
人教版高中数学选修1-2知识点梳理重点题型(常考知识点)巩固练习复数的概念与运算【学习目标】1.理解复数的有关概念:虚数单位i 、虚数、纯虚数、复数、实部、虚部等。
2.理解复数相等的充要条件。
3. 理解复数的几何意义,会用复平面内的点和向量来表示复数。
4. 会进行复数的加、减运算,理解复数加、减运算的几何意义。
5. 会进行复数乘法和除法运算。
【要点梳理】知识点一:复数的基本概念1.虚数单位i数i 叫做虚数单位,它的平方等于1-,即21i =-。
要点诠释:①i 是-1的一个平方根,即方程21x =-的一个根,方程21x =-的另一个根是i -;②i 可与实数进行四则运算,进行四则运算时,原有加、乘运算律仍然成立。
2. 复数的概念形如a bi +(,a b R ∈)的数叫复数,记作:z a bi =+(,a b R ∈);其中:a 叫复数的实部,b 叫复数的虚部,i 是虚数单位。
全体复数所成的集合叫做复数集,用字母C 表示。
要点诠释:复数定义中,,a b R ∈容易忽视,但却是列方程求复数的重要依据.3.复数的分类对于复数z a bi =+(,a b R ∈)若b=0,则a+bi 为实数,若b≠0,则a+bi 为虚数,若a=0且b≠0,则a+bi 为纯虚数。
分类如下:用集合表示如下图:4.复数集与其它数集之间的关系 N Z Q R C (其中N 为自然数集,Z 为整数集,Q 为有理数集,R 为实数集,C 为复数集。
) 知识点二:复数相等的充要条件两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等.即:特别地:00a bi a b +=⇔==.要点诠释:① 一个复数一旦实部、虚部确定,那么这个复数就唯一确定;反之一样.② 根据复数a+bi 与c+di 相等的定义,可知在a=c ,b=d 两式中,只要有一个不成立,那么就有a+bi≠c+di (a ,b ,c ,d ∈R ).③ 一般地,两个复数只能说相等或不相等,而不能比较大小. 如果两个复数都是实数,就可以比较大 小;也只有当两个复数全是实数时才能比较大小.④ 复数相等的充要条件提供了将复数问题化归为实数问题来解决的途径,这也是本章常用的方法, 简称为“复数问题实数化”.知识点三、复数的加减运算1.复数的加法、减法运算法则:设1z a bi =+,2z c di =+(,,,a b c d R ∈),我们规定: 12()()()()z z a bi c di a c b d i +=+++=+++21()()z z c a d b i -=-+-要点诠释:(1)复数加法中的规定是实部与实部相加,虚部与虚部相加,减法同样。
选 修 1-2 知 识 点 总 结第一章:统计案例一.回归分析的基本思想及其初步应用1.正相关:如果点散布在从左下角到右上角的区域,则称这两个变量的关系为正相关。
2.负相关:如果点散布在从左上角到右下角的区域,则称这两个变量的关系为负相关。
3.回归直线方程的斜率和截距公式:⎪⎪⎩⎪⎪⎨⎧-=--=---=∑∑∑∑====xb y a xn x yx n yx x x y y x xb ni i ni iini i i ni i1221121)()()((此公式不要求记忆)。
4.最小二乘法:求回归直线,使得样本数据的点到它的距离的平方最小的方法。
5.随机误差e :我们把线性回归模型e a bx y ++=,其中b a ,为模型的未知参数,e 称为随机误差。
随机误差a bx y e i i i--=6.残差e ˆ:我们用回归方程a x by ˆˆˆ+=中的yˆ估计abx +,随机误差)(a bx y e +-=,所以yy eˆˆ-=是e 的估计量,故a x b y y y e ii i i i ˆˆˆˆ--=-=,eˆ称为相应于点),(i i y x 的残差。
7.解释变量对于预报变量的贡献率2R :∑∑==---=ni ini iy yyyR12122)()ˆ(1,2R 的表达式中21)(∑=-ni iy y 确定,(1)2R 越大,残差平方和21)ˆ(∑=-ni iyy 越小,即模型的拟合效果越好;(2)2R 越小,残差平方和21)ˆ(∑=-ni iyy 越大,即模型的拟合效果越差。
2R 越接近1,表示回归效果越好。
二.独立性检验的基本思想及其初步应用1.分类变量:这种变量的不同“值”表示个体所属的不同类别的变量。
2.列联表:列出两个分类变量的频数表,称为列联表。
3.对于22⨯列联表:2K 的观测值:))()()(()(2d b c a d c b a bc ad n k++++-=。
4.临界值0k 表:如果0k k≥,就推断“YX ,有关系”,这种推断犯错误的概率不超过α;否则,在样本数据中没有发现足够证据支持结论“Y X ,有关系”。
5.反证法与独立性检验原理的比较:1.合情推理包括:归纳推理和类比推理。
归纳推理:由个别事实概括出一般结论的推理;( ) 类比推理:由两类对象具有类似特征和其中一类对象的某些已知特征,推出另一类也具有这些特征的推理。
( )2.演绎推理:从一般性的原理出发,推出某个特殊情况下的结论。
这种推理称为演绎推理。
三段论是演绎推理的一般模式:( )(1)大前提─已知的真命题; (2)小前提─所研究的特殊情况;(3)结论─根据一般原理,对特殊情况做出的判断。
3.直接证明和间接证明(1)综合法:利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导处所要证明的结论成立的证明方法。
(2)分析法:从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)的证明方法。
4.用反证法证明命题的步骤:(1)假设 的结论不成立,即假设 成立; (2)从 出发,经过 ,得出矛盾; (3)由 判断假设不正确,从而肯定命题的结论正确。
典 型 题1.用反证法证明命题:“ab N b a ,∈、可被5整除,那么b a ,中至少有一个能被5整除”时,假设的内容是.A ba ,都能被5整除.B ba ,都不能被5整除.C ba ,不都能被5整除.D ba ,不能被5整除(B )2.设115114113112log1log1log1log1+++=P,则( B ) .A 10<<P .B 21<<P.C 32<<P.D 43<<P3.关于x 的方程0349|2||2|=-⋅-----a x x 有实根的充要条件是( D ).A 4-≥a .B 04<≤-a.C 0<a.D 03<≤-a4.在数列}{n a 中,)2)(1(21,1111≥+==--n a a a a n n n ,猜想这个数列的通项公式为=n a 1 。
5.已知数列}{n a 的前n项和为nS ,321-=a ,满足)2(21≥=++n a S S n nn ,猜想nS 的表达式为21++-n n 。
6.若数列}{n a 中,12341,35,7911,13151719,...a a a a ==+=++=+++则=10a 。
10007.)(131211)(+∈+⋅⋅⋅+++=N n nn f ,经计算的27)32(,3)16(,25)8(,2)4(,23)2(>>>>=f f f f f ,推测当2≥n 时,有 2(2)2n n f +> 。
8.若数列{}n a 的通项公式)()1(12+∈+=N n n a n,记)1()1)(1()(21n a a a n f -⋅⋅⋅--=,试通过计算)3(),2(),1(f f f的值,推测出=)(n f2()22n f n n +=+ 。
9.在等差数列}{n a 中,若010=a ,则有),19(*192121N n n a a a a a a n n ∈<+++=+++- 成立,类比上述性质,在等比数列}{n a 中,若19=b ,则有。
=⋅⋅⋅⋅n b b b b 321n b b b b -⋅⋅⋅⋅17321 ),17(*N n n ∈<10.在数列{}n a 中,)()1(1,2,1*221N n a a a a nn n ∈-+=-==+,则=10S 。
3511.在ABC Rt ∆中,090=∠C,c b a ,,为三边的长,则由勾股定理得222ba c +=;类似地,在四面体DEF P -中,090=∠=∠=∠EDF PDE PDF,设S S S S ,,,321分别表示PEFEDF PDE PDF∆∆∆∆,,,的面积,则我们猜想成立的一个等式为 。
12.观察由以下两式成立,推广到一般结论,写出你的推论 。
(1)000000tan 10tan 20tan 20tan 60tan 60tan 101;++=(2)0tan 5tan 10tan 10tan 75tan 75tan 51++=,13.求证:52276+>+14.若R c b a ∈,,且222π+-=y x a ,322π+-=z y b ,622π+-=x z c ,求证:c b a ,,至少有一个大于零。
15.ABC ∆的三个内角C B A ,,成等差数列,求证:cb a cb ba ++=+++31116.已知cb a >> 求证:ca cb ba -≥-+-411。
第三章 复 数一.复数的概念1.复数的代数形式:形如 的数叫做复数,其中 叫做虚数单位。
复数的实部为 ,虚部为 。
2.虚数和纯虚数:对于),(R b a bi a z ∈+=,当 时,它是实数; 当 时,它是虚数;当 时,它是纯虚数。
3.复数集、实数集、虚数集、纯虚数集之间关系如右图所示:4.复数的相等:dic bia +=+的充要条件为 。
5.共轭复数:当两个复数的 相等,虚部互为 时,这两个复数叫做共轭复数,虚部 的两个共轭复数叫做共轭虚数。
6.复数的几何意义:复数集C 和复平面内所有点所成的集合是 对应的,即 二.复数代数形式的四则运算1.复数的加减法:=+±+)()(di c bi a 。
2.复数的乘法:=++))((di c bi a 。
3.复数的除法:dic bi a di c bi a ++=+÷+)()(=)0(≠+di c 。
4.常见的结论:(1)i i 2)1(2±=±;i ii =-+11;iii -=+-11;22))((b a bi a bi a +=-+。
(2)设i 2321+-=ω,则i 2321--=ω;i23212--=ω;1-=+ωω;1=⋅ωω;012=++ωω;13=nω;ωω=+13n ;)(23Z n n ∈=+ωω。
典 型 题1.下列四个命题中,真命题是( D ) ①1-的平方根只有一个i ; ②i 是方程012=+x 的一个根;③i2是一个无理数;④)(1R a ai ∈-是一个复数。
.A ①②.B ②③.C ①④.D ②④2.下面四个命题:①比i -大;②两个复数互为共轭复数,当且仅当其和为实数;③i yi x +=+1的充要条件为1==y x ;④如果让实数a与ai 对应,那么实数集与纯虚数集一一对应,其中正确的命题个数是( B ).A 0.B 1 .C 2 .D 33.对于下列判断,其中正确的个数是( D ) ①若C z ∈,则02≥z ;②若Cz z ∈21,,且021>-z z ,则21z z >;③若ba>,则i b i a +>+。
.A 1.B 2.C 3.D 04.若复数)()1|(|)2(2R a i a a a ∈-+--不是纯虚数,则( D ).A 1-=a.B 1-≠a 或2≠a .C 1-≠a.D 2≠a5.i 是虚数单位,若),(271R b a bi a ii ∈+=-+,则乘积ab 的值是( )B 。
.A 15-.B 3-.C 3.D 156.使复数为实数的充分而不必要条件是由 ( B ).A z z =.B zz =||.C 2z为实数.D z z +为实数7.已知),1()(2N n i ii n f nn ∈-=-=-集合)}({n f 的元素个数是(B ).A 2.B 3 .C 4 .D 无数个8.已知1||||||2121=-==z z z z ,则||21z z +等于(C ).A 1.B 2.C 3.D 329.若i 2321+-ω,则等于124++ωω= (B ).A 1.B 0.C i 33+.D i31+-10.给出下列命题:①实数的共轭复数一定是实数;②满足2||||=++-i z i z 的复数z 的轨迹是椭圆;③若1,2-=∈i Z m ,则0321=++++++m m m miiii;其中正确命题的序号是(C ).A ①.B ②③ .C ①③.D ①②③11.若复数i z i z 96,29421+=+=其中i是虚数单位,则复数i z z )(21-的实部为 。
-2012.设))(3(log )33(log 222R m m i m m z∈-+--=若z 对应的点在直线012=+-y x 上,则m = 。
1513.实数m 取什么值时,复数0)3()65(22=-++-i m m m m 是(1)实数?(2)虚数?(3)纯虚数? (4)复平面内表示复数的点,位于第三、四象限.14.已知i z i z 43,2121+=-=,求满足21111z z z +=的复数z 。