切线长定理与三角形内切圆
- 格式:doc
- 大小:120.50 KB
- 文档页数:7
基础知识点(一)知识点一:切线长定理1.切线长的概念: 在经过圆外一点的切线上,这一点和切点之间的线段的长叫做这点到圆的切线长 2. 切线和切线长是两个不同的概念切线是一条与圆相切的直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量。
3. 定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
注:切线长定理为证明线段相等、角相等提供新的方法4. 方法总结解决有关圆的切线长问题时,往往需要我们构建基本图形。
(1)分别连结圆心和切点(2)连结两切点(3)连结圆心和圆外一点5. 切线,常有六性质1、切线和圆只有一个公共点;2、切线和圆心的距离等于圆的半径; 3切线垂直于过切点的半径; 4、经过圆心垂直于切线的直线必过切点; 5、经过切点垂直于切线的直线必过圆心。
6、从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
6.示例讲解例1如图,四边形 ABCD 的边AB 、BC 、CD DA 和圆O O 分别相切于点 L 、M 、N 、P ,求证: AD+BC=AB+CD 例2如图,卩是00外一点t PA.PB 分别和00切于点=4 c 叫是箱上任意•点,过点作O"的切线分 别交PA.PB 于点D&求;(I ) A PDE 的周长;例3(2014,云歯曲靖中考・23题* 10分)如图是GO 的切线胡/为切点是OO 的直径,GPR 的延长线相 交丁点“<1)若Z.1-20%求LAPB 的度数.(2)当"为多少度时请说明理由.(二)知识点二:三角形的内切圆1.问题:怎样做三角形内切圆2.方法:作角平分线1.作/ ABC 、 / ACB 的平分线 BM 和CN ,交点为I. ID 为半径作O I. O I 就是所求的圆.3. 定义和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形。
切线长定理及三角形的内切圆一知识讲解〈基础)【学习目标】l.了解切线长定义:理解三角形的内切圆及内心的定义:2.掌握切线长定理:利用切线长定理解决相关的计算和证明.【要点梳理】要点一、切线长定理1.切线长:经过圆外一点能够作圆的两条切线,切线上这一点到切点间的线段长叫做这点到圆的切线长.要点诠释:切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段.2.切线长定理z从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角.要点诠释:切线长定理包含两个结论:线段相等和角相等.要点二、三角形的内切圆1.三角形的内切圆z与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫作圆的外切三角形.三角形的内心到三角形的三边距离相等.2.三角形的内心z三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.三角形的内心是这个三角形的三条角平分线的交点.要点诠释z(1)任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形:(2)解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积户即S=;Pr (S 7'J 三角形的面积P为三角形的周长r为内切圆阳)(3)三角形的外心与内心的区别:名称|确定方法|图形|性质外心(三角形|三角形三边中垂线的外接圆的圆|交点心)AB(1)OA=OB=OC: (2)外心不一定在三角形内部内心(三角形三角形三条角平分线内切圆的圆的交点心)【典型例题】类型一、切线长定理B c(1)到三角形三边距离相等:(2) O A、OB、oc分别平分L'.'.BAC、ζABC、丘ACB:(3)内心在三角形内部.。
1.(2叫湛江校级脚己知PA,PB :5t别切。
于A、B E为劣弧础上一点过E,#,1¥Ji;JJ�交PA于C、交PB于D.(1)若PA吨,求6PCD的周长.(2)若ζP=50°求ζDOC.p【答案与解析】解:(1)连接OE,..PA、PB与圆0相切,:.PA=PB=6,同理可得:AC=CE,BD=DE,6PCD的周长=PC+PD+CD=PC+PD+CE+DE=PA+PB=12: (2)γPA PB与圆O相切,二ζOAP=ζOBP=90。
【学习目标】1. 知识技能(1)理解圆的切线的有关性质并能灵活运用.(2)理解切线长及切线长定理.(3)体验并理解三角形内切圆的性质.2. 解决问题通过例题的教学, 培养学生解决实际问题的能力和应用数学的意识.3. 数学思考(1)通过动手操作、合作交流, 经历圆的切线的性质定理的产生过程.(2)体验切线长定理, 并能正确、灵活地运用.(3)通过作图操作, 经历三角形内切圆的产生过程.4. 情感态度通过动手操作, 反复尝试, 合作交流, 培养探索精神和合作意识.【学习重难点】1. 重点: (1)切线的性质定理、切线长定理.(2)三角形的内切圆.2. 难点:切线性质的灵活运用.课前延伸切线的判定方法:(1)和圆________公共点的直线是圆的切线.(2)和圆心距离等于________的直线是圆的切线.(3)经过________且________的直线是圆的切线.课内探究一、课内探究:1. 如图27-2-131, AB为⊙O的直径, C为⊙O上一点, AD和过点C的切线互相垂直,垂足为D.求证: AC平分∠DAB.2.如图27-2-132, △ABC的内切圆⊙O与BC, CA, AB分别相切于点D, E, F, 且AB =9 cm, BC=14 cm, CA=13 cm, 求AF、BD、CE的长.图27-2-131图27-2-132 图27-2-1333. 如图27-2-133所示, △ABC的内心为I, ∠A=50°, O为△ABC的外心, 求∠BOC 和∠BIC的度数.二、课堂反馈训练1. 如图27-2-134, PA切⊙O于点A, 该圆的半径为3, PO=5, 则PA的长等于________.2.如图27-2-135, ⊙O的半径为5, PA切⊙O于点A, ∠APO=30°, 则切线长PA为________.(结果保留根号)图27-2-134图27-2-135 图27-2-1363.如图27-2-136所示, PA, PB, DE分别切⊙O于点A, B, C, 如果PA=8 cm, 求△PDE的周长.。
切线长定理和三角形的内切圆切线长定理和三角形的内切圆,这俩玩意儿看上去有点高深莫测,但其实嘛,真没那么复杂,大家来轻松聊聊。
想象一下,你在一个阳光明媚的下午,跟朋友们一起聚会,话题从生活琐事聊到数学,大家哈哈大笑,结果你一不小心提到了这两样东西。
你朋友们肯定会瞪大眼睛,疑惑地问:“这是什么鬼?”别急,让我来给你解解惑。
切线长定理就像是数学界的小秘密。
啥意思呢?就是在一个圆外,如果你画一条切线,这条线跟圆的交点只有一个,那就有点意思了。
这条切线的长度与从圆心到切线的距离有关。
大家可能会想,听起来好像没啥用。
切线长定理就像生活中的一条真理,适用性非常广。
举个例子,如果你想用一根绳子围住一个圆,绳子长短跟你离这个圆的远近有直接关系。
这种简单的道理其实在很多地方都能找到,比如你在超市排队,越靠近收银台,越容易看到商品,哈哈,明白了吗?说到内切圆,它就像是三角形里的小秘密武器。
内切圆的意思就是一个圆,它刚好能碰到三角形的三条边。
听上去是不是很神奇?这就好比你想象一下,一个小朋友在玩捉迷藏,躲在一个房间的正,四周都有墙壁,但它总能找到一个最舒服的位置,这就是内切圆的感觉。
三角形的每一条边都可以算得上是“朋友”,而这个内切圆就像是它们的聚会地点。
更妙的是,内切圆的半径跟三角形的面积和周长有着密不可分的关系。
这就像是你在聚会中,跟朋友们聊得开心的同时,气氛越好,大家就越会聚在一起,形成一种共鸣。
再说切线长定理和内切圆的关系。
这俩玩意儿就像是一对黄金搭档。
在三角形里,如果我们在三角形的每一边画切线,切线的长度与内切圆的半径又有妙不可言的联系。
简而言之,切线的长度告诉你这个圆有多大,而内切圆又是三角形的灵魂。
大家可以想象,内切圆就像是三角形的情感核心,而切线则是把这情感包围起来的纽带。
它们互相依存,缺一不可。
我们可以通过简单的图形来理解这一切。
想象一下,一个大三角形,中间有一个小圆,圆正好包裹住三角形的每一条边。
你站在三角形的某个顶点,伸出手,发现能碰到内切圆的点。
切线长定理及三角形的内切圆—知识讲解(提高)责编:常春芳【学习目标】1.了解切线长定义;理解三角形的内切圆及内心的定义;2.掌握切线长定理;利用切线长定理解决相关的计算和证明.【要点梳理】要点一、切线长定理1.切线长:经过圆外一点能够作圆的两条切线,切线上这一点到切点间的线段长叫做这点到圆的切线长.要点诠释:切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 2.切线长定理:从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角.要点诠释:切线长定理包含两个结论:线段相等和角相等.要点二、三角形的内切圆1.三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫作圆的外切三角形.三角形的内心到三角形的三边距离相等.2.三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 三角形的内心是这个三角形的三条角平分线的交点.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).名称确定方法图形性质外心(三角形外接圆的圆心) 三角形三边中垂线的交点(1)OA=OB=OC;(2)外心不一定在三角形内部内心(三角形内切圆的圆心) 三角形三条角平分线的交点(1)到三角形三边距离相等;(2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB;(3)内心在三角形内部.【典型例题】类型一、切线长定理1.(2015•常德)已知如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为3,∠EAC=60°,求AD的长.【答案与解析】证明:(1)如图1,连接FO,∵F为BC的中点,AO=CO,∴OF∥AB,∵AC是⊙O的直径,∴CE⊥AE,∵OF∥AB,∴OF⊥CE,∴OF所在直线垂直平分CE,∴FC=FE,OE=OC,∴∠FEC=∠FCE,∠0EC=∠0CE,∵∠ACB=90°,即:∠0CE+∠FCE=90°,∴∠0EC+∠FEC=90°,即:∠FEO=90°,∴FE为⊙O的切线;(2)如图2,∵⊙O的半径为3,∴AO=CO=EO=3,∵∠EAC=60°,OA=OE,∴∠EOA=60°,∴∠COD=∠EOA=60°,∵在Rt△OCD中,∠COD=60°,OC=3,∴CD=,∵在Rt△ACD中,∠ACD=90°,CD=,AC=6,∴AD=.【总结升华】本题是一道综合性很强的习题,考查了切线的判定和性质,三角形的中位线的性质,勾股定理,线段垂直平分线的性质等,熟练掌握定理是解题的关键.举一反三:【变式】已知:如图,在梯形 ABCD中,AB∥DC,∠B=90°,AD=AB+DC,AD是⊙O的直径.求证:BC和⊙O相切.【答案】作OE⊥BC,垂足为E,∵ AB∥DC,∠B=90°,∴ OE∥AB∥DC,∵ OA=OD,∴ EB=EC,∴ BC是⊙O的切线.2.已知:如图,AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于弦AD,求证:DC是⊙O的切线.【答案与解析】解:连接OD.∵ OA=OD,、∴∠1=∠2.∵ AD∥OC,∴∠1=∠3,∠2=∠4.∴∠3=∠4.又∵ OB=OD,OC=OC,∴△OBC≌△ODC.∴∠OBC=∠ODC.∵BC是⊙O的切线,∴∠OBC=90°,∴∠ODC=90°,∴ DC是⊙O的切线.【总结升华】因为AB是直径,BC切⊙O于B,所以BC⊥AB.要证明DC是⊙O的切线,而DC和⊙O有公共点D,所以可连接OD,只要证明DC⊥OD.也就是只要证明∠ODC=∠OBC.而这两个角分别是△ODC和△OBC的内角,所以只要证△ODC≌△OBC.这是不难证明的.举一反三:【变式】已知:∠MAN=30°,O 为边AN 上一点,以O 为圆心、2为半径作⊙O ,交AN 于D 、E 两点,设AD=x ,⑴如图⑴当x 取何值时,⊙O 与AM 相切;⑵如图⑵当x 为何值时,⊙O 与AM 相交于B 、C 两点,且∠BOC=90°.【答案】解:(1)设AM 与⊙O 相切于点B ,连接OB ,则OB ⊥AB ;在Rt △AOB 中,∠A=30°, 则AO=2OB=4, ∴ AD=AO-OD , 即AD=2.x=AD=2. (2)过O 点作OG⊥AM 于G∵OB=OC=2,∠BOC=90°,∴BC=22 ∵OG⊥BC,2,2,在Rt △OAG 中,∠A=30°∴OA=2OG=22,MNEDO图(1).MANEDBCO图(2)∴x=AD=22-23.(2014•高港区二模)矩形ABCD中,AB=4,AD=3,以AB为直径在矩形内作半圆.DE切⊙O于点E(如图),则tan∠CDF的值为()A.B.C.D.【答案】B;【解析】解:如图,设FC=x,AB的中点为O,连接DO、OE.∵AD、DE都是⊙O的切线,∴DA=DE=3.又∵EF、FB都是⊙O的切线,∴EF=FB=3﹣x.∴在Rt△DCF中,由勾股定理得,(6﹣x)2=x2+42,解得,x=,则tan∠CDF===.故选B.类型二、三角形的内切圆4.(2015•西青区二模)已知四边形ABCD中,AB∥CD,⊙O为内切圆,E为切点.(Ⅰ)如图1,求∠AOD的度数;(Ⅱ)如图1,若AO=8cm,DO=6cm,求AD、OE的长;(Ⅲ)如图2,若F是AD的中点,在(Ⅱ)中条件下,求FO的长.OCBA【答案与解析】解:(Ⅰ)∵⊙O 为四边形ABCD 的内切圆, ∴AD、AB 、CD 为⊙O 的切线, ∴OD 平分∠ADC,OA 平分∠BAD, 即∠O DA=∠ADC,∠OAD=∠BAC, ∵AB∥CD,∴∠ADC+∠BAC=180°, ∴∠ODA+∠OAD=90°, ∴∠AOD=90°;(Ⅱ)在Rt△AOD 中,∵AO=8cm,DO=6cm , ∴AD==10(cm ),∵AD 切⊙O 于E ,∴OE⊥AD, ∴OE•AD=OD•OA, ∴OE==(cm );(Ⅲ)∵F 是AD 的中点, ∴FO=AD=×10=5(cm ).【总结升华】本题考查了三角形的内切圆与内心,也考查了切线长定理. 举一反三:【变式】如图,△ABC 中,∠C=90°,BC=4,AC=3,⊙O 内切与△ABC ,则△ABC 去除⊙O 剩余阴影部分的面积为( )A.12-πB. 12-2πC. 14-4πD. 6-π【答案】D.。
切线长定理与三角形内切圆
【知能点分类训练】
知能点1 切线长定理
1.如图所示,PA切⊙O于A,PB切⊙O于B,OP交⊙O于C,下列结论中错误的是(). A.∠1=∠2 B.PA=PB C.AB⊥OC D.∠PAB=∠APB
(第1题) (第2题) (第3题)
2.如图所示,PA,PB是⊙O的两条切线,A,B为切点,直线OP交⊙O于D,•E,•交AB 于C,图中互相垂直的线段有______.(只需写出一对线段)
3.如图所示,过半径为6cm的⊙O外一点P引圆的切线PA,PB,连接PO交⊙O于F,过F 作⊙O的切线,交PA,PB分不于D,E,假如PO=10cm,∠APB=40°.求:
(1)△PED的周长;(2)∠DOE的度数.
4.如图所示,PA,PB是⊙O的两条切线,A,B为切点,连接PO,交⊙O于点D,交AB于点C,依照以上条件,请写出三个你认为正确的结论,并对其中的一个结论给予证明.
知能点2 三角形内切圆
5.如图所示,⊙O内切于Rt△ABC,∠C=90°,D,E,F为切点,若∠BOC=105°,则∠A=________,∠ABC=________.
(第5题) (第6题) (第7题)
6.如图所示,等边△ABC的内切圆面积为9 ,则△ABC的周长为__________.
7.如图所示,△ABC中,内切圆I和边BC,CA,AB分不相切于点D,•E,•F,若∠FDE=70°,求∠A的度数.
8.如图所示,已知△ABC的内心为I,外心为O.
(1)试找出∠A与∠BOC,∠A与∠BIC的数量关系.
(2)由(1)题的结论写出∠BOC与∠BIC的关系.
【综合应用提高】
9.如图所示,⊙O分不切△ABC的三边AB,BC,CA于点D,E,F,若BC=a,AC=•b,AB=c.求:(1)AD,DE,CF的长;(2)当∠C=90°时,内切圆的半径长为多少?
10.如图所示,某市有一块由三条马路围成的三角形绿地现预备在其中建一小亭供人们休息,要求小亭中心到三条马路的距离相等,试确定小亭的中心位置.(不写作法,保留作图痕迹)
11.如图所示,⊙I是Rt△ABC(∠C=90°)的内切圆,⊙I和三边分不切于点D,E,F.(1)求证:四边形IDCE是正方形;(2)设BC=a,AC=b,AB=C,求内切圆I的半径.
12.如图24-103所示,⊙O的外切四边形ABCD是直角梯形,AD∥BC,∠A=∠B=90°.(1)试讲明OC⊥OD;(2)若CD=4cm,∠BCD=60°,求⊙O的半径.
【开放探究创新】
13.如图所示,OA,OB是⊙O的半径,且OA⊥OB.
操作:在OB上任取一点P(P不与点O,B重合),AP的延长线交⊙O于点C,过点C•作⊙O的切线CD,交OB延长线于点D.
探究:在图中找出一组相等的线段(半径除外),并证明你得到的结论.
【中考真题实战】
14.(潍坊)如下左图所示,直线PA,PB是⊙O的两条切线,A,B•分不为切点,∠APB=120°,OP=10cm,则弦AB的长为().
A.53cm B.5cm C.103cm D.53
cm
15.(河北)如上右图所示,一个圆球放置在V形架中,图(2)是它的平面示意图,CA和CB差不多上⊙O的切线,切点分不是A,B.假如⊙O的半径为3,且AB=6cm,求∠ACB的度数.
1.D
2.PD ⊥AB (或OA ⊥AP ,OB ⊥PB )
3.解:如右图所示,(1)连接AO ,则OA ⊥PA .
PA=2222106PO OA -=-=8.
∵PA ,PB 为切线,A ,B 为切点,EF ,EB ,DF ,DA 均与⊙O 相切, ∴PA=PB ,DA=DF ,FE=BE .
∴△PED 的周长=PE+EF+FD+PD=PA+PB=2PA=16(cm ),即△PED 的周长为16cm .
(2)由切线长性质知:∠AOD=∠DOF ,∠EOF=∠EOB ,
∴∠DOE=
12∠AOB=12(180°-∠APB )=1
2
(180°-40°)=70°. 4.如右图所示,结论:①∠3=∠4;或∠7=∠8;或∠1=∠6;或∠2=∠5;
②OP ⊥AB ;•③AC=BC .
证明②:∵PA 、PB 是⊙O 的切线,
∴OA ⊥PA ,OB ⊥PB ,∴∠OAP=∠OBP .又OA=OB ,OP=OP . ∴△OAP ≌△OBP ,
∴PA=PB ,∠3=∠4,∴OP ⊥AB . 5.30° 60° 6.3
7.解:连接IE ,IF ,则∠A=180°-∠FIE=180°-2∠FDE=40°. 8.解:(1)如本题图,∠A 为⊙O 中BC 所对的圆周角,由圆周角定理得∠A=1
2
∠BOC . ∵I 是△ABC 的内心, ∴∠IBC=
12∠ABC ,∠ICB=1
2
∠ACB . ∵∠ABC+∠ACB=180°-∠A ,
∠IBC+∠ICB+∠BIC=180°,
∴∠BIC=180°-(∠IBC+∠ICB )=180°
-(
12∠ABC+1
2
∠ACB ) =180°-
12(180°-∠A )=90°+1
2
∠A . (2)由(1)得∠BIC=90°+12∠A=90°+12×12∠BOC=90°+1
4
∠BOC .
9.解:(1)设AD=x ,BE=y ,CF=z ,由切线长性质可知:
AD=AF ,BD=BE ,CE=CF .
则有,,,,,2b c a x z x y c a c b y z a y z z x b a b c z +-⎧=⎪+=⎧⎪
+-⎪⎪
+==⎨⎨⎪⎪
+=⎩+-⎪
=⎪⎩
解得
即AD=
,22b c a a c b BE +-+-=
,CF=2
a b c
+-. (2)如右图所示,设⊙O 内切于Rt △ABC ,切点分不为D ,E ,F ,
连接OD ,OE ,OF ,则OD ⊥AC ,OF ⊥AB ,OE ⊥BC .
∵∠C=90°,∴四边形ODCE 为正方形,则CD=CE=r ,AD=AF=b-r ,BF=BE=a-r , 而AF+BF=c ,∴b-r+a-r=c ,∴r=
2
a b c
+-. 10.作三角形绿地的内心即可.(作图略) 提示:三角形的内心到各边的距离相等. 11.证明:(1)∵BC ,AC 与⊙I 相切于D ,E , ∴∠IDC=∠IEC=∠C=90°, ∴四边形IDCE 为矩形.
又IE=ID ,∴矩形IDCE 是正方形. (2)由(1)得CD=CE=r .
∴a+b=BD+AE+2r=BF+AF+2r=c+2r , ∴r=
1
2
(a+b-c ). 12.解:(1)∵AD ∥BC , ∴∠BCD+∠ADC=180°,
∵∠ODC=
12∠ADC ,∠OCD=1
2
∠BCD , ∴∠ODC+∠OCD=12∠ADC+1
2
∠BCD=90°,
∴OC ⊥OD .
(2)作DE ⊥BC ,则ABED 是矩形,DE 等于⊙O 的直径, 在Rt △DEC 中,∠DEC=90•°,•∠ECD=60°,CD=4cm , ∴CE=
1
2
CD=2cm ,22CD CE -3cm . ∴⊙O 3.
13.解:PD=CD .
理由:连接OC ,∵CD 切⊙O 于C , ∴OC ⊥CD .又OA=OC , ∴∠OCA=∠A ,
∴∠CPD=∠APO=90°-∠A , ∴∠PCD=∠CPD , ∴PD=CD .
14.A 提示:连OA ,OB ,则△AOB 为等边三角形,
由直角三角形中30•°角所对的直角边等于斜边的一半可得PA=5,
再由勾股定理22OP PA -33cm ).
15.解:如右图所示,连接OC ,交AB 于点D .
∵CA ,CB 是⊙O 的切线,∴CA=CB , OC 平分∠ACB ,
∴OC ⊥AB ,∵AB=6,∴BD=3,
∴2222
(23)3OB BD -=-3
∴OD=
1
2
OB , ∴∠OBD=30°,∠BOD=60°.
∵B 是切点,∴OB ⊥BC ,∴∠OCB=30°,∴∠ACB=60°.
提示:在直角三角形中,假如一条直角边等于斜边的一半,那么这条直角边所对的角等于30.。