讲切线长定理及角形的内切圆
- 格式:docx
- 大小:110.59 KB
- 文档页数:4
基础知识点(一)知识点一:切线长定理1.切线长的概念: 在经过圆外一点的切线上,这一点和切点之间的线段的长叫做这点到圆的切线长 2. 切线和切线长是两个不同的概念切线是一条与圆相切的直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量。
3. 定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
注:切线长定理为证明线段相等、角相等提供新的方法4. 方法总结解决有关圆的切线长问题时,往往需要我们构建基本图形。
(1)分别连结圆心和切点(2)连结两切点(3)连结圆心和圆外一点5. 切线,常有六性质1、切线和圆只有一个公共点;2、切线和圆心的距离等于圆的半径; 3切线垂直于过切点的半径; 4、经过圆心垂直于切线的直线必过切点; 5、经过切点垂直于切线的直线必过圆心。
6、从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
6.示例讲解例1如图,四边形 ABCD 的边AB 、BC 、CD DA 和圆O O 分别相切于点 L 、M 、N 、P ,求证: AD+BC=AB+CD 例2如图,卩是00外一点t PA.PB 分别和00切于点=4 c 叫是箱上任意•点,过点作O"的切线分 别交PA.PB 于点D&求;(I ) A PDE 的周长;例3(2014,云歯曲靖中考・23题* 10分)如图是GO 的切线胡/为切点是OO 的直径,GPR 的延长线相 交丁点“<1)若Z.1-20%求LAPB 的度数.(2)当"为多少度时请说明理由.(二)知识点二:三角形的内切圆1.问题:怎样做三角形内切圆2.方法:作角平分线1.作/ ABC 、 / ACB 的平分线 BM 和CN ,交点为I. ID 为半径作O I. O I 就是所求的圆.3. 定义和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形。
切线长定理及三角形的内切圆一知识讲解〈基础)【学习目标】l.了解切线长定义:理解三角形的内切圆及内心的定义:2.掌握切线长定理:利用切线长定理解决相关的计算和证明.【要点梳理】要点一、切线长定理1.切线长:经过圆外一点能够作圆的两条切线,切线上这一点到切点间的线段长叫做这点到圆的切线长.要点诠释:切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段.2.切线长定理z从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角.要点诠释:切线长定理包含两个结论:线段相等和角相等.要点二、三角形的内切圆1.三角形的内切圆z与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫作圆的外切三角形.三角形的内心到三角形的三边距离相等.2.三角形的内心z三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.三角形的内心是这个三角形的三条角平分线的交点.要点诠释z(1)任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形:(2)解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积户即S=;Pr (S 7'J 三角形的面积P为三角形的周长r为内切圆阳)(3)三角形的外心与内心的区别:名称|确定方法|图形|性质外心(三角形|三角形三边中垂线的外接圆的圆|交点心)AB(1)OA=OB=OC: (2)外心不一定在三角形内部内心(三角形三角形三条角平分线内切圆的圆的交点心)【典型例题】类型一、切线长定理B c(1)到三角形三边距离相等:(2) O A、OB、oc分别平分L'.'.BAC、ζABC、丘ACB:(3)内心在三角形内部.。
1.(2叫湛江校级脚己知PA,PB :5t别切。
于A、B E为劣弧础上一点过E,#,1¥Ji;JJ�交PA于C、交PB于D.(1)若PA吨,求6PCD的周长.(2)若ζP=50°求ζDOC.p【答案与解析】解:(1)连接OE,..PA、PB与圆0相切,:.PA=PB=6,同理可得:AC=CE,BD=DE,6PCD的周长=PC+PD+CD=PC+PD+CE+DE=PA+PB=12: (2)γPA PB与圆O相切,二ζOAP=ζOBP=90。
切线长定理和三角形的内切圆切线长定理和三角形的内切圆,这俩玩意儿看上去有点高深莫测,但其实嘛,真没那么复杂,大家来轻松聊聊。
想象一下,你在一个阳光明媚的下午,跟朋友们一起聚会,话题从生活琐事聊到数学,大家哈哈大笑,结果你一不小心提到了这两样东西。
你朋友们肯定会瞪大眼睛,疑惑地问:“这是什么鬼?”别急,让我来给你解解惑。
切线长定理就像是数学界的小秘密。
啥意思呢?就是在一个圆外,如果你画一条切线,这条线跟圆的交点只有一个,那就有点意思了。
这条切线的长度与从圆心到切线的距离有关。
大家可能会想,听起来好像没啥用。
切线长定理就像生活中的一条真理,适用性非常广。
举个例子,如果你想用一根绳子围住一个圆,绳子长短跟你离这个圆的远近有直接关系。
这种简单的道理其实在很多地方都能找到,比如你在超市排队,越靠近收银台,越容易看到商品,哈哈,明白了吗?说到内切圆,它就像是三角形里的小秘密武器。
内切圆的意思就是一个圆,它刚好能碰到三角形的三条边。
听上去是不是很神奇?这就好比你想象一下,一个小朋友在玩捉迷藏,躲在一个房间的正,四周都有墙壁,但它总能找到一个最舒服的位置,这就是内切圆的感觉。
三角形的每一条边都可以算得上是“朋友”,而这个内切圆就像是它们的聚会地点。
更妙的是,内切圆的半径跟三角形的面积和周长有着密不可分的关系。
这就像是你在聚会中,跟朋友们聊得开心的同时,气氛越好,大家就越会聚在一起,形成一种共鸣。
再说切线长定理和内切圆的关系。
这俩玩意儿就像是一对黄金搭档。
在三角形里,如果我们在三角形的每一边画切线,切线的长度与内切圆的半径又有妙不可言的联系。
简而言之,切线的长度告诉你这个圆有多大,而内切圆又是三角形的灵魂。
大家可以想象,内切圆就像是三角形的情感核心,而切线则是把这情感包围起来的纽带。
它们互相依存,缺一不可。
我们可以通过简单的图形来理解这一切。
想象一下,一个大三角形,中间有一个小圆,圆正好包裹住三角形的每一条边。
你站在三角形的某个顶点,伸出手,发现能碰到内切圆的点。
切线长定理及三角形的内切圆—知识讲解(提高)责编:常春芳【学习目标】1.了解切线长定义;理解三角形的内切圆及内心的定义;2.掌握切线长定理;利用切线长定理解决相关的计算和证明.【要点梳理】要点一、切线长定理1.切线长:经过圆外一点能够作圆的两条切线,切线上这一点到切点间的线段长叫做这点到圆的切线长.要点诠释:切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 2.切线长定理:从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角.要点诠释:切线长定理包含两个结论:线段相等和角相等.要点二、三角形的内切圆1.三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫作圆的外切三角形.三角形的内心到三角形的三边距离相等.2.三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 三角形的内心是这个三角形的三条角平分线的交点.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).名称确定方法图形性质外心(三角形外接圆的圆心) 三角形三边中垂线的交点(1)OA=OB=OC;(2)外心不一定在三角形内部内心(三角形内切圆的圆心) 三角形三条角平分线的交点(1)到三角形三边距离相等;(2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB;(3)内心在三角形内部.【典型例题】类型一、切线长定理1.(2015•常德)已知如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为3,∠EAC=60°,求AD的长.【答案与解析】证明:(1)如图1,连接FO,∵F为BC的中点,AO=CO,∴OF∥AB,∵AC是⊙O的直径,∴CE⊥AE,∵OF∥AB,∴OF⊥CE,∴OF所在直线垂直平分CE,∴FC=FE,OE=OC,∴∠FEC=∠FCE,∠0EC=∠0CE,∵∠ACB=90°,即:∠0CE+∠FCE=90°,∴∠0EC+∠FEC=90°,即:∠FEO=90°,∴FE为⊙O的切线;(2)如图2,∵⊙O的半径为3,∴AO=CO=EO=3,∵∠EAC=60°,OA=OE,∴∠EOA=60°,∴∠COD=∠EOA=60°,∵在Rt△OCD中,∠COD=60°,OC=3,∴CD=,∵在Rt△ACD中,∠ACD=90°,CD=,AC=6,∴AD=.【总结升华】本题是一道综合性很强的习题,考查了切线的判定和性质,三角形的中位线的性质,勾股定理,线段垂直平分线的性质等,熟练掌握定理是解题的关键.举一反三:【变式】已知:如图,在梯形 ABCD中,AB∥DC,∠B=90°,AD=AB+DC,AD是⊙O的直径.求证:BC和⊙O相切.【答案】作OE⊥BC,垂足为E,∵ AB∥DC,∠B=90°,∴ OE∥AB∥DC,∵ OA=OD,∴ EB=EC,∴ BC是⊙O的切线.2.已知:如图,AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于弦AD,求证:DC是⊙O的切线.【答案与解析】解:连接OD.∵ OA=OD,、∴∠1=∠2.∵ AD∥OC,∴∠1=∠3,∠2=∠4.∴∠3=∠4.又∵ OB=OD,OC=OC,∴△OBC≌△ODC.∴∠OBC=∠ODC.∵BC是⊙O的切线,∴∠OBC=90°,∴∠ODC=90°,∴ DC是⊙O的切线.【总结升华】因为AB是直径,BC切⊙O于B,所以BC⊥AB.要证明DC是⊙O的切线,而DC和⊙O有公共点D,所以可连接OD,只要证明DC⊥OD.也就是只要证明∠ODC=∠OBC.而这两个角分别是△ODC和△OBC的内角,所以只要证△ODC≌△OBC.这是不难证明的.举一反三:【变式】已知:∠MAN=30°,O 为边AN 上一点,以O 为圆心、2为半径作⊙O ,交AN 于D 、E 两点,设AD=x ,⑴如图⑴当x 取何值时,⊙O 与AM 相切;⑵如图⑵当x 为何值时,⊙O 与AM 相交于B 、C 两点,且∠BOC=90°.【答案】解:(1)设AM 与⊙O 相切于点B ,连接OB ,则OB ⊥AB ;在Rt △AOB 中,∠A=30°, 则AO=2OB=4, ∴ AD=AO-OD , 即AD=2.x=AD=2. (2)过O 点作OG⊥AM 于G∵OB=OC=2,∠BOC=90°,∴BC=22 ∵OG⊥BC,2,2,在Rt △OAG 中,∠A=30°∴OA=2OG=22,MNEDO图(1).MANEDBCO图(2)∴x=AD=22-23.(2014•高港区二模)矩形ABCD中,AB=4,AD=3,以AB为直径在矩形内作半圆.DE切⊙O于点E(如图),则tan∠CDF的值为()A.B.C.D.【答案】B;【解析】解:如图,设FC=x,AB的中点为O,连接DO、OE.∵AD、DE都是⊙O的切线,∴DA=DE=3.又∵EF、FB都是⊙O的切线,∴EF=FB=3﹣x.∴在Rt△DCF中,由勾股定理得,(6﹣x)2=x2+42,解得,x=,则tan∠CDF===.故选B.类型二、三角形的内切圆4.(2015•西青区二模)已知四边形ABCD中,AB∥CD,⊙O为内切圆,E为切点.(Ⅰ)如图1,求∠AOD的度数;(Ⅱ)如图1,若AO=8cm,DO=6cm,求AD、OE的长;(Ⅲ)如图2,若F是AD的中点,在(Ⅱ)中条件下,求FO的长.OCBA【答案与解析】解:(Ⅰ)∵⊙O 为四边形ABCD 的内切圆, ∴AD、AB 、CD 为⊙O 的切线, ∴OD 平分∠ADC,OA 平分∠BAD, 即∠O DA=∠ADC,∠OAD=∠BAC, ∵AB∥CD,∴∠ADC+∠BAC=180°, ∴∠ODA+∠OAD=90°, ∴∠AOD=90°;(Ⅱ)在Rt△AOD 中,∵AO=8cm,DO=6cm , ∴AD==10(cm ),∵AD 切⊙O 于E ,∴OE⊥AD, ∴OE•AD=OD•OA, ∴OE==(cm );(Ⅲ)∵F 是AD 的中点, ∴FO=AD=×10=5(cm ).【总结升华】本题考查了三角形的内切圆与内心,也考查了切线长定理. 举一反三:【变式】如图,△ABC 中,∠C=90°,BC=4,AC=3,⊙O 内切与△ABC ,则△ABC 去除⊙O 剩余阴影部分的面积为( )A.12-πB. 12-2πC. 14-4πD. 6-π【答案】D.。
切线长和切线长定理及圆与圆的位置关系一、切线长和切线长定理:⑴ 切线长:在通过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长.⑵ 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角. 二、三角形内切圆1. 概念:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的心里,这个三角形叫做圆的外切三角形.2. 多边形内切圆:和多边形的各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形.3.直角三角形的内切圆半径与三边关系OF ED C BACBA CBAcbacba(1) (2)图(1)中,设a b c ,,别离为ABC ∆中A B C ∠∠∠,,的对边,面积为S 则内切圆半径(1)s r p =,其中()12p a b c =++; 图(2)中,90C ∠=︒,则()12r a b c =+-、abr a b c=++重难点:切线的判定定理;切线的性质定理及其运用它们解决一些具体的题目.1.切线长定理及切线性质的应用例题1(2011·济宁)如图,AB 是⊙O 的直径,AM 和BN 的两条切线,DE 切⊙O 于点E ,交AM 与于点D ,交BN 于点C ,F 是CD 的中点,连接OF 。
(1) 求证:OD ∥BE;(2) 猜想:OF 与CD 有何数量关系?并说明理由。
解:(1)证明:连接OE∵AM 、DE 是⊙O 的切线,OA 、OE 是⊙O 的半径 ∴∠ADO=∠EDO,∠DAO=∠DEO=90°…………1分 ∴∠AOD=∠EOD=21∠AOE …………2分 ∵∠ABE=21∠AOE ∴∠AOD=∠ABE ∴OD ∥BE …………3分 (2) OF =21CD …………4分 理由:连接OC∵BE 、CE 是⊙O 的切线∴∠OCB=∠OCE …………5分 ∵AM ∥BN∴∠ADO+∠EDO+∠OCB+∠OCE=180° 由(1)得 ∠ADO=∠EDO∴2∠EDO+2∠OCE=180° 即∠EDO+∠OCE=90° …………6分 在Rt △DOC 中, ∵ F 是DC 的中点 ∴OF =21CD ……7分 三、圆与圆的位置关系重点:两个圆的五种位置关系中的等价条件及它们的运用. 难点:探索两个圆之间的五种关系的等价条件及应用它们解题. 易错点:1)圆与圆位置关系中相交时圆心距在两圆半径和与差之间, 2)没有公共点要考虑外离和内含的两种情况 3)有一个公共点要考虑内切与外切两种情况4)两圆相交求的公共弦多对的圆周角,求出圆心距一般都有两种情况圆与圆的位置关系的应用 例题2(2011•绍兴)如图,相距2cm 的两个点A 、B 在直线l 上.它们别离以2cm/s 和1cm/s的速度在l 上同时向右平移,当点A ,B 别离平移到点A 1,B 1的位置时,半径为1cm 的⊙A 1,与半径为BB 1的⊙B 相切.则点A 平移到点A 1,所用的时间为为多少秒?考点:圆与圆的位置关系。
《切线长定理》的教学设计教材分析:直线和圆是生活中最常见的几何图形,它的有关性质被广泛应用,尤其对于切线的性质-----切线长定理,它体现了园的轴对称性,为我们证明线段相等、角相等、弧相等、垂直关系等提供了一个基本图形和理论依据,为解决与圆有关的数量问题打下了铺垫,具有承上启下的作用。
学生分析:通过前一段时间的学习,学生对点和圆的位置关系、直线和圆的位置关系以及圆的基本性质有了一个大概的了解,尤其是通过垂径定理、四者关系(圆心角、弧、弦、弦心距)定理、圆周角定理、切线的判定定理、切线的性质定理等定理的学习和应用,学生的各种能力已经得到一定的锻炼。
因此,本课定理的证明学生不会感到困难,但定理的应用,尤其是复杂的应用,学生将会感到一定的困难。
设计理念课改的重要任务之一是改变过去“教师教”为“学生学”。
教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探究和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。
因此在本课中,我在教学设计时让学生争做数学学习的主人,引导他们积极参与教学活动,体会数学规律,提高解决问题的能力。
教学目标:知识目标:1.理解切线长的概念。
2.掌握切线长定理及其应用。
能力目标:培养学生识图能力和逻辑思维能力。
情感目标:激发学生学习兴趣,培养探索精神和创新能力。
德育目标:渗透事物之间相互转化的思想,培养学生良好的学习习惯和严谨的思维品质。
重点:切线长定理的应用。
难点:切线长定理的灵活应用。
关键:切线长定理的理解。
教学方法:观察、探究、讨论、概括等多种方法。
教学过程:(一)复习:《数学课程标准》中指出,数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上,通过对旧知的回忆,明确概念,加深理解。
出示问题:1.直线和圆有几种位置关系,分别是什么?2.什么交直线与圆相切?3.切线的性质定理内容是什么?(二)引入:数学学习应是教师引导学生通过观察、实践获得知识,形成技能,发展思维,学会学习。
切线长定理和三角形内切圆一、教学目标(一)知识与技能:1.了解切线长的概念,会作三角形的内切圆;2.理解切线长定理,了解三角形的内切圆和三角形的内心的概念,熟练掌握它的应用.(二)过程与方法:经历探究三角形的内切圆的过程,掌握切线长及其定理.(三)情感态度与价值观:经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步演绎推理能力,能有条理地、清晰地阐述自己的观点.二、教学重点、难点重点:会作三角形的内切圆,了解三角形的内切圆和三角形的内心的概念,理解切线长定理,熟练掌握它的应用.难点:切线长定理的导出及其证明和运用切线长定理解决一些实际问题.三、教学过程知识预备如图,AB是⊙O的切线,切点为B,AO⊥BC,∠A=30°,则:(1)∠ABO=___°,∠BOE=___°;(2)BD=___,BE=___,∠BOE=∠____.画一画1.如何过⊙O外一点P画出⊙O的切线?2.这样的切线能画出几条?如图,过圆外一点P有两条直线PA,PB分别与⊙O相切.经过圆外一点的圆的切线上,这点和切点之间线段的长,叫做这点到圆的切线长.切线与切线长有什么区别与联系?切线和切线长是两个不同的概念:1.切线是一条与圆相切的直线;2.切线长是线段的长,这条线段的两个端点分别是圆外一点和切点.探究如图,PA,PB是⊙O的两条切线,切点分别为A,B.在半透明的纸上画出这个图形,沿着直线PO将图形对折,图中的PA与PB,∠APO与∠BPO有什么关系?如图,连接OA和OB.∵ PA和PB是⊙O的两条切线∴ OA⊥AP,OB⊥BP又 OA=OB,OP=OP∴ R t△AOP≌R t△BOP (HL)∴ PA=PB,∠APO=∠BPO由此得到切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.定理应用格式:∵ PA 、PB 分别切⊙O 于A 、B∴ PA=PB ,∠APO=∠BPO.切线长定理为证明线段相等、角相等提供新的方法思考如图是一块三角形的铁皮,如何在它上面截下一块圆形的用料,并且使截下来的圆与三角形的三条边都相切?如图,分别作出∠B 、∠C 的平分线BM 和CN ,设它们相交于点I ,那么点I 到AB ,BC ,CA 的距离都相等.以点I 为圆心,点I到BC 的距离ID 为半径作圆,则⊙I 与△ABC 的三条边都相切,圆I 就是所求作的圆.与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.例2如图,△ABC 的内切圆⊙O 与BC 、CA 、AB 分别相切于点D 、E 、F ,且AB=9,BC=14,CA=13.求AF 、BD 、CE 的长.解:设AF=x ,则AE=x ,CD=CE=AC-AE=13-x ,BD=BF=AB-AF=9-x由BD+CD=BC ,可得(13-x )+(9-x )=14解得 x =4因此 AF=4,BD=5,CE=9练习1.如图,△ABC 中,∠ABC=50°,∠ACB=75°,点O 是△ABC 内心.求∠BOC 的度数.解:∵ 点O 是△ABC 的内心∴ OB 、OC 分别平分∠ABC 、∠ACB∴ ∠OBC=∠ABC=×50°=25°∠OCB=∠ACB=×75°=37.5°∴ ∠BOC=180°-∠OBC-∠OCB=180°-25°-37.5°=117.5°2.△ABC 的内切圆半径为r ,△ABC 的周长为l ,求△ABC 的面积.解:如图,设△ABC 的内心为O ,连接OA ,OB ,OC ,则点O 到AB ,BC ,AC 的距离为r .∴ S △ABC =S △AOB +S △BOC +S △AOC=×AB×r +×BC×r +×AC×r =×(AB+BC+AC)×r =lr 课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗?四、教学反思教学过程中,强调用切线长定理可解决有关求角度、周长的问题. 明确三角形内切圆的圆心是三角形三条角平分线的交点,到三边的距离相等.212121212121212121。
P七.切线长定理及三角形地内切圆一、教案目标:1、理解切线长地定义及切线长定理,并能够利用切线长定理计算与证明2、理解三角形地内切圆和内心地概念,注意区分三角形地内心与外心二、教案内容1、切线长概念及定理:<1)切线长地概念:经过圆外一点作圆地切线,这点和切点之间地线段地长,叫做这点到圆地切线长.提问:经过直线外一点可以做圆地几条切线?它们地切线长有什么关系?为什么? <2)切线长定理:______________________________________________________________.如图:P 为⊙O 外一点,PA 、PB 分别与⊙O 相切,切点分 别为A 、B,则PA=PB,PO 平分∠APB 举例练习:(1) 如上图,连接AB,(1>写出图中所有地垂直关系;(2>写出图中所有地全等三角形(3>如果PA=4cm,PD=2cm,求半径OA 地长.<2) 如图,PA ,PB 分别为⊙O 地切线,切点分别为A 、B ,60P ∠=°,10PA =cm,那么AB 地长为.(3) 如图,PA ,PB 分别为⊙O 地切线,AC 为直径,切点分别 为A 、B ,70P ∠=°,则C ∠= ____ .2、三角形地内切圆与三角形地内心<1)概念:与三角形各边都相切地圆叫做三角形地__________。
内切圆地圆心叫做三角形地________.<2)三角形地内心是三角形地___________________________________地交点; 它到三角形三边地___________相等,是内切圆地__________.提问:三角形地内心在三角形地___________,与三角形地形状_____________.举例练习:(1) 如图,若∠A=40º,M 分别为△ABC 地外心、内心、垂心时,求∠BMC 地度数.(2>如图,△ABC 中,E 是内心,∠A 地平分线和△ABC 地外接圆相交于点D,求证:DE=DB.练习图,PA ,PB 分别为⊙1、如O 地切线,切点分别为A 、B ,10PA =,在劣弧AB 上任取一点C ,过C 作⊙O地切线,分别交PA ,PB 于D ,E ,则△PDE 地周长是2.如图,PA 切⊙O 于A ,PB 切⊙O 于B ,APB ∠=90°,4OP =,⊙O地半径为______.3.如图,⊙O 半径为1,P 为⊙O 外一点,切⊙O 于点 A ,1PA =,AB 是⊙O 地弦,且AB =,PB 地长为_____________.4.如图,60APB ∠=°,半径为2地⊙O 切PB 于P 点,若将⊙O 在PB上向右滚动,则当滚动到⊙O 与PA 也相切时,圆心O 移动地水平距离是_________.5.如图,PA 、PB 分别与⊙O 相切于A 、B 两点,C 是⊙O 上一点,且︒=∠55ACB ,则P ∠等于< )A.︒70B.︒65C.︒110D.︒556.下列图形中一定有内切圆地四边形是< )A.梯形B.菱形C.矩形D.平行四边形7.如图,AB 、AC 与⊙O 相切于点B 、C ,A ∠= 50°,点P 是圆上异于B 、C 地一动点,则BPC ∠地度数是< )A.65°B.115°C.65°或115°D.130°或50°8.如图,⊙O 内切于△ABC ,切点为D 、E 、F ,若50B ∠=°,60C ∠=°,•连结OE ,OF ,DE ,DF ,EDF ∠等于< )A.45°B.55°C.65°D.70°9.如图,⊙O 是△ABC 地内切圆,D 、E 、F 是切点,50A ∠=°,60C ∠=°,则DOE ∠< )A.70°B.110°C.120°D.130°10.如图,梯形A B C D 中,//AD BC ,C D ∠=∠=90°,且AD BC AB +=,AB 为⊙O 地直径,求证:CD 与⊙O 相切.11.如图,Rt △ABC 中,∠C =90°,E 为AC 上一点,以CE 为直径地⊙O 切AB 于D 点,4AD =,2AE =.求BD 地长.12.<B )如图,以正方形ABCD 地BC 边为直径作圆O,过点D 作直线切圆于点F,交AB 边于点E,则△ADE 和直角梯形EBCD 地周长之比为多少?A DC BE13.<B )如图,△ABC ,AB=AC,∠A 为锐角,CD 为AB 边上地主,高I 为△ADC 地内切圆圆心,求∠AIB 地度数?B C14.<B )已知,Rt △ABC 中,∠C =90°,若两条直角边地长分别为a 、b,斜边地长为c,则直角三角形地内切圆半径是多少?。
七.切线长定理及三角形地内切圆
一、教案目标:
1、理解切线长地定义及切线长定理,并能够利用切线长定理计算与证明
2、理解三角形地内切圆和内心地概念,注意区分三角形地内心与外心
二、教案内容
1、切线长概念及定理:
<1 )切线长地概念:经过圆外一点作圆地切线,这点和切点之间地线段地长,叫做这点到圆
地切线长•
提问:经过直线外一点可以做圆地几条切线?它们地切线长有什么关系?为什么?
<2 线长定理:
_________________________________________ . b5E2RGbCAP
如图:P为O O外一点,PA、PB分别与O O相切,切点分别
为A、B,
贝U PA=PB,PO 平分/ APB
举例练习:
(1) 如上图,连接AB,(1>写出图中所有地垂直关系;(2>写出图中所有地全等三角形
(3>如果PA=4cm,PD=2cm,求半径0A地长•
<2 ) 如图,PA,PB分别为O 0地切线,切点分别为A、
B,/P=60 ° ,PA =10 cm,那么AB 地长为•
(3) 如图,PA,PB分别为O O地切线,AC为直径,切点分别
为A、B,N P=70 ° ,则N C = .
2、三角形地内切圆与三角形地内心
<1)概念:与三角形各边都相切地圆叫做三角形地________________
内切圆地圆心叫做三角形地__________ .
地交点;
<2 )三角形地内心是三角形地 ________________________________
p1EanqFDPw
它到三角形三边地_____________ 相等,是内切圆地__________ •提问:三角形地内心在三角形地 _____________ ,与三角形地形状______________
举例练习:
(1) 如图若/ A=40o,M分别为△ ABC地外心、内心、垂心时,求/ BMC地度数.
(2>如图,△ ABC中,E是内心,/ A地平分线和△ ABC地外接圆相交于点D,求证:DE=DB.
练习
1、如图,PA , PB分别为O O地切线,切点分别为A、
B , PA =10 ,在劣弧AB上任取一点
C ,过C作O O地切线,分
别交PA, PB于D , E ,则厶PDE地周长是DXDiTa9E3d
2.如图,PA 切O O于A , PB 切O O 于B , /APB =90° , OP =4, 地
半径为_________ .
3.如图,O O半径为1, P为O O外一点,切O O于点A, PA =1, AB是O
O地弦,且AB = 42 , PB地长为______________ .
4.如图,.APB =60 ° ,半径为2地O O切PB于P点,若将O O在PB
上向右滚动,则当滚动到O O与PA也相切时,圆心O移动地水平距离
是 _________ . RTCrpUDGiT
5•如图,PA、PB分别与O O相切于A、B两点,C是O O上一点,且
-ACB =55 ,则• P 等于<)
A. 70
B. 65
C. 110
D. 55
11.如图,Rt △ ABC 中,/ C =90 ° , E 为AC 上一点,以CE 为直径地O O 切AB 于D 点,AD = 4, AE =2.求 BD 地长.
A.梯形
B.菱形
C.矩形
D.平行四边形
7.如图,AB 、 AC 与O O 相切于点B 、C , . A 二50。
,点P 是圆
上异于B 、C 地一动点,贝U . BPC 地度数是< )
A.65 °
B.115 °
C.65。
或 115°
D.130 。
或 50
8 .如图,O O 内切于△ ABC ,切点为D 、 E 、 F ,若
• B = 50 ° , • C =60° ,?连结 OE , OF , DE , DF , • EDF
等 于< )
A.45 °
B.55 °
C.65 °
D.70 °
9 .如图,O O 是△ ABC 地内切圆,D 点,.A
=50 ° , . C =60 ° ,则.DOE <
) A.70 ° B.110 ° C.120 ° D.130 °
10.如图,梯形 ABCD 中,AD//BC , . C =/D =90° ,且 AD BC =AB , AB 为O O 地 直径,求证:CD 与O O 相切
.
12. <B )如图,以正方形ABCD 地 BC 边为直径作圆0,过点D 作直线切圆于点F, 交
AB 边于点E,则厶ADE 和直角梯形EBCD 地周长之比为多少?
13.VB )如图,△ ABC ,AB=AC /A 为锐角,CD 为AB 边上地主,高I
ADC 地内 切圆圆心,求/ AIB 地度数? 5PCzVD7HxA
14.VB )已知,Rt △ ABC 中,/ C =90° ,若两条直角边地长分别为
a 、b,斜边地长 为C,则直角三角形地内切圆半径是多少?
jLBHrnAILg
C。