1.第6课时 一次方程(组)及其应用
- 格式:docx
- 大小:158.48 KB
- 文档页数:8
初三数学中考复习讲学案课题一元一次方程、一元二次方程课次第6 次授课教师上课日期和时段教学形式手机号码一元一次方程一、知识点:1.一元一次方程的定义、方程的解;2.一元一次方程的解法;3.一元一次方程的应用。
二、中考知识梳理1.会对方程进行适当的变形解一元一次方程解方程的基本思想就是转化,即对方程进行变形,变形时要注意两点,一时方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程的解可能不同;二是去分母时,不要漏乘没有分母的项,一元一次方程是学习二元一次方程组、一元二次方程、一元一次不等式及函数问题的基本内容。
2.正确理解方程解的定义,并能应用等式性质巧解考题方程的解应理解为,把它代入原方程是适合的,其方法就是把方程的解代入原方程,使问题得到了转化。
3.理解方程ax=b在不同条件下解的各种情况,并能进行简单应用方程ax=b:(1)a≠0时,方程有唯一解x=ba;(2)a=0,b=0时,方程有无数个解;(3)a=0,b≠0时,方程无解。
4.正确列一元一次方程解应用题列方程解应用题,关键是寻找题中的等量关系,可采用图示、列表等方法,根据近几年的考试题目分析,要多关注社会热点,密切联系实际,多收集和处理信息,解应用题时还要注意检查结果是否符合实际意义。
三、中考题型例析题型一方程解的应用例1(2004·芜湖)已知方程3x2x-9x+m=0的一个根是1,则m的值是。
题型二巧解一元一次方程例2(2001·江苏)解方程:341138 43242x x ⎡⎤⎛⎫--=⎪⎢⎥⎝⎭⎣⎦题型三根据方程ax=b解的情况,求待定系数的值1x x题型四 一元一次方程的应用例4(2004·福州)某班学生为希望工程共捐款131元,比每人平均2 元还多35元,设这个班的学生有x 人,根据题意列方程为_________________。
基础达标验收卷一、选择题 1.(2004·安徽)购某种三年期国债x 元,到期后可得本息和y 元,已知y=kx ,则这种国债的年利率为( ) A.k B.3k C.k-1 D.13k -2.(2001·陕西)如果2(x+3)的值与3(1-x )的值互为相反数,那么x 等于( )A.-8B.8C.-9D.93.在公式P=F St ⋅中,已知P 、F 、t 都是正常数,则S 等于( ) A.Pt F B.Ft P C.FP tD.PFt4.(2002·山西)有一种足球是由32块黑白相间的牛皮缝制而成的,如图所示,黑皮可看做正五边形,白皮可看做正六边形,设白皮有x 块, 则黑皮有(32-x )块,每块白皮有六条边,共6x 条边,因每块白皮有三条边和黑皮连在一起, 故黑皮共有3x 条边,要求白皮、黑皮的块数,列出的方程正确的是( ) A.3x=32-x B.3x=5(32-x ) C.5x=3(32-x ) D.6x=32-x 二、填空题1.(2004·玉林)若-m=4,则m=____________。
3.4实际问题与一元一次方程(第1课时)1、卓玛种了一株树苗,开始时树苗高为40厘米,栽种后每周树苗长高15厘米,几周后树苗长高到100厘米?解:设x周后树苗长高到100厘米.根据题意,得 .解方程,得 .答:周后树苗长高到100厘米.2、汽车上共有1500千克苹果,卸下 600千克,还有30箱,每箱苹果重多少?解:设每箱苹果重为X,根据题意,得, .3、某数的3倍加上5等于它的4倍减3,求某数.解:设某数为x,根据题意,得, .4、某数减去14等于它的1,求某数.3解:设某数为x,根据题意,得, .5、用一根长24厘米的铁丝围成一个正方形,正方形的边长是多少?解:设正方形的边长为x厘米,根据题意,得, .6、一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?解:设经过x个月这台计算机的使用时间达到规定的检修时间2450小时,根据题意,得, .1、某数的34比它的67少1,求某数.解:设某数为x,根据题意,得 .2、扎西家今年底的存款将达到21000元,是去年底的2倍少3000元,求扎西家去年底的存款数.解:设扎西家去年底的存款为x元,根据题意,得 .3、某商店对电脑购买者提供分期付款服务,顾客可以先付3000元,以后每月付1500元.单增叔叔想用分期付款的形式购买价值19500元的电脑,他需要多少个月才能付清全部贷款?解:设他需x个月才能付清全部贷款,根据题意,得 .4、洗衣机厂今年计划生产洗衣机25500台,其中Ⅰ型、Ⅱ型、Ⅲ型三种洗衣机的数量比为1﹕2﹕7,Ⅰ型洗衣机计划生产多少台?解:设Ⅰ型洗衣机计划生产x台,则Ⅱ型洗衣机计划生产台,Ⅲ型洗衣机计划生产台.根据题意,得 .解方程,得 .答:Ⅰ型洗衣机计划生台.5、某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电15万度.这个工厂去年上半年每月平均用电多少度?解:(1)设上半年每月平均用电x度,则下半年每月平均用电度;上半年共用电度,下半年共用电度.(2)根据全年用电15万度,列出方程:.1、在一卷公元前1600年左右遗留下来的古埃及草卷中,记载着一些数学问题.其中一个问题翻译过来是:“啊哈,它的全部,它的1,其和等于19.”你能7求出问题中的“它”吗?解:设问题中的“它”为x,根据题意,列方程得 .2、地球上的海洋面积为陆地面积的2.4倍,地球的表面积为5.1亿平方公里,求地球上的陆地面积.解:设地球上陆地面积为x平方公里,根据题意,列方程得 .3、某中学初一年级,一班人数是全年级人数的1,二班人数50人,两个班级人6数的和是98人.求该校初一年级的人数.解:设该校初一年级的人数为x,根据题意,列方程得 .4、某长方形足球场的周长为310米,长和宽之差为25米,这个足球场的长与宽分别是多少米?(1)解:设这个足球场的长为x米,则宽为米.根据题意,列方程得 .解方程得 .这个足球场的宽==(米)答:这个足球场的长为米,宽为米. (2)解:设这个足球场的宽为x米,则长为米.根据题意,列方程得 .解方程得 .这个足球场的长==(米)答:这个足球场的宽为米,长为米.1、卓玛是4月出生的,卓玛的年龄的2倍加上8,正好是卓玛出生那一月的总天数,求卓玛有多少岁.解:设卓玛有x岁,根据题意,列方程得 .2、蜘蛛有8条腿,蜻蜓有6条腿.现有一些蜘蛛和蜻蜓,它们共有120条腿,并且蜻蜓的只数是蜘蛛的2倍.蜘蛛、蜻蜓各有多少只?解:设蜘蛛有x只,则蜻蜓有只.根据题意,列方程得 .3、某校图书室用172元钱买了两种书,共10本,一种书每本的价格为18元,另一种书每本的价格为10元.每种书各买了多少本?解:设价格为18元的书买了x本,则价格为10元的书买了本.根据题意,列方程得 .4、一家人分一些苹果,每人3个剩3个,每人4个差2个.全家有几口人?共有多少个苹果?(1)解:设全家有x口人.可以用两个式子来表示苹果总数,由此可得方程 .解方程得 .共有苹果个数== .答:全家有口人,共有个苹果.(2)思考题:(供学有余力的同学做)解:设共有x个苹果.可以用两个式子来表示全家的人口数,由此可得方程.解方程得 .全家人口数== .答:共有个苹果,全家有口人.1.一个学生带钱到文具店买笔记本,若买3本就剩下1元,若买4本则差2元.笔记本每本多少元?这个学生共带了多少钱?解:(1)如果设笔记本每本x元,则这个学生所带的钱数可以用两个式子来表示由此可列出方程.解:(2)思考题:如果设这个学生带了x元,则笔记本每本的钱数也可以用两个式子来表示,由此可列出方程.2.卓玛骑自行车从A村到B村,用了0.5小时;扎西走路从A村到B村,用了1.5小时.已知卓玛的速度比扎西的速度每小时快10千米,求扎西走路的速度.(1)设扎西走路的速度为每小时x千米,根据题意,在下面的图中填空:B村A村(2) 解:设扎西走路的速度为每小时x千米,则卓玛骑自行车的速度为每小时千米.根据卓玛骑自行车的路程与扎西走路的路程相等,列方程得.解方程得 .答:扎西走路的速度为每小时千米.3.(1)墙上钉着用一根彩绳围成的梯形的装饰物,如下图实线所示.德吉将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如右图虚线所示.德吉所钉长方形的长为多少厘米?解:设德吉所钉长方形的长为x,根据梯形周长与长方形周长相等,列方程得s.6 61010 10104、思考题:如下图,汽车匀速行驶,从A 县城开到C 县城用了3小时;从A 县城开到B 县城用了2小时.已知B 县城距C 县城60千米,A 县城到B 县城有多远?解:设A 县城到B 县城有x 千米,则A 县城到C 县城有 千米.根据:汽车从A 县城开到C 县城的速度=汽车从A 县城开到B 县城的速度 列方程得.5、甲种铅笔每枝0.3元,乙种铅笔每枝0.6元,用9元钱买了两种铅笔共20枝,两种铅笔各买了多少枝?解:(1)如果设甲种铅笔买了x 枝,那么乙种铅笔买了 枝,买甲种铅笔用了 元,买乙种铅笔用了 元.(2)把这道题完整解一遍:解:设甲种铅笔买了x 枝,则乙种铅笔买了 枝.根据题意,列方程得 .解方程得 .乙种铅笔买的枝数= = .答:甲种铅笔买了 枝,乙种铅笔买了 枝.6、按下面的设法解探究题:解:设分配x 名工人生产螺母,则有 名工人生产螺钉.根据螺母数量与螺钉数量关系,列方程得 .解方程得 .生产螺钉的人数= = .答:应分配 名工人生产螺母, 名工人生产螺钉. C 县城B 县城A 县城1、如图,用长为10米,宽为8米的长方形铁丝围成一个正方形,此时正方形的边长是多少米?解:设此时正方形的边长是x米,根据长方形与正方形的周长相等,列方程得.2、思考题:将一个底面直径是10厘米、高为36厘米的“瘦长”形圆柱锻压成底面直径为20厘米的“矮胖”形圆柱,高变成了多少?解:设高变成了x厘米,根据锻压前后的体积相等,列方程得 .(提示:圆柱体积=底面积×高)3、甲组有10人,乙组有14人.现在另增调12人加入到甲组或乙组,要使甲组人数是乙组人数的12,甲组和乙组各应增调多少人?.根据题意填表:(2)根据增调后,甲组人数=乙组人数的12,列方程得.(3)通过上面的思考,将本题完整地解一遍.解:设甲组应增调x人,则乙组应增调人.根据题意,得 .解方程得 .乙组应增调的人数== .答:甲组应增调人,乙组应增调人.x米8米10米1.填空:我们已经学习的三个基本相等关系是:(1)总量=的和;(2)表示的两个不同式子相等;(3)一个量=另一个量的或几分之几.2.根据题意,列出方程:小巴桑今年6岁,他的波啦72岁.几年后,小巴桑的?年龄是他波啦的14解:设x年后,小巴桑的年龄是他波啦年龄的1.根据题意,得4.3.探究题:某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天生产的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?请你默读题目,一直读到可以不看题目说出题目的意思.分析:(1)如果设分配x名工人生产螺钉,则有名工人生产螺母,这个车间每天生产螺钉个,每天生产螺母个.(2)一个螺钉要配两个螺母,为了使这个车间每天的产品刚好配套,应使生产的螺母数量恰好是螺钉数量的,根据这一相等关系,列方程得.(3)这道题完整的解答过程是:解:设分配x名工人生产螺钉,则有名工人生产螺母.根据螺母数量与螺钉数量关系,列方程得 .解方程得 .生产螺母的人数== .答:应分配名工人生产螺钉,名工人生产螺母.1.利用“路程=速度×时间”列整式:(1)扎西骑自行车,每分钟骑500米,x 分钟骑了 米;(2)扎西骑自行车,每分钟骑500米,先骑了3分钟,后又骑了x 分钟,他一共骑了 米;(3)扎西骑自行车,每分钟骑500米,边巴骑摩托车,每分钟骑1000米,x 分钟两人一共骑了 米.2.完成下面的思考和解题过程:扎西家与边巴家相距6000米,扎西要尽快把一件重要的东西交给边巴,扎西先骑自行车从家里出发,3分钟后边巴骑摩托车也从家里出发.扎西每分钟骑500米,边巴每分钟骑1000米.边巴出发几分钟后他们在路上相遇?(1) 如果设边巴出发x 分钟后他们在路上相遇,根据题意,填图.骑了 分钟 骑了 分钟相遇扎西家边巴家(2) 从上图,你发现了什么相等关系,根据这一相等关系,你列出的方程是 .(3)根据上面的审题和分析,请你完成下面的解题过程:解:设边巴出发x 分钟后他们在路上相遇.根据题意,列方程得 .解方程得 .答:边巴出发 分钟后他们在路上相遇.3.某中学发起“献爱心希望工程”捐款活动.该校共有师生2200人,教师每人捐100元,学生每人捐5元,结果学生捐款数只有教师的一半.这个中学师生各有多少人?该校师生共捐了多少钱?1.扎西家与边巴家相距6000米,扎西要尽快把一件重要的东西交给边巴,扎西先骑自行车从家里出发,扎西骑了1500米后边巴骑摩托车也从家出发.扎西每分钟骑500米,边巴每分钟骑1000米.边巴出发几分钟后他们在路上相遇?(1)设边巴出发x 分钟后他们在路上相遇,根据题意填图.骑了 分钟 骑了 分钟相 遇扎西家 边巴 家(2)根据扎西的路程+边巴的路程=全程,你列出的方程是.2.一天早上,扎西以每分钟80米的速度从家里出发上学去,5分钟后,扎西的巴啦发现扎西忘了带藏语书,于是巴啦以每分钟180米的速度去追扎西.巴啦追上扎西用了多长时间?(3) 设巴啦追上扎西用了x 分钟,根据题意填下图.家追上处(2) 解:设巴啦追上扎西用了x 分钟.根据题意,列方程得 .解方程得 .答:巴啦追上扎西用了 分钟.3.思考题:如果扎西家离学校只有700米,巴啦能否在路上追上扎西?为什么?1.填空:(1)加工60个零件,甲单独做20小时完成,甲每小时加工零件个;(2)加工60个零件,甲单独做20小时完成,甲4小时加工零件个;(3)加工60个零件,甲单独做20小时完成,甲x小时加工零件个;(4)一件工作,甲单独做20小时完成,甲每小时完成工作的;(用分数表示)(5) 一件工作,甲单独做20小时完成,甲4小时完成工作的;(6) 一件工作,甲单独做20小时完成,甲x小时完成工作的 .2.完成下面的思考和解题过程:一件工作,甲单独做20小时完成,乙单独做12小时完成.现在先由甲单独做4小时,剩下的部分由甲、乙一起做.剩下的部分需要几小时完成?(1)甲的工作效率=,乙的工作效率= .(2)如果设剩下的部分需要x小时完成,那么乙做了小时,甲共做了小时.(3)根据题意填图:甲工作 小时乙工作 小时(4)根据甲的工作量+乙的工作量=1列出方程 .(5)解:设剩下的部分需要x小时完成.根据题意,列方程得 .解方程得 .答:剩下的部分需要小时完成.1、填空:(1)某厂去年的产值是100万元,今年比去年的产值增长20%,则今年比去年的产值提高万元,今年的产值是万元;(2)某厂去年的产值是200万元,今年比去年的产值增长20%,则今年比去年的产值提高万元,今年的产值是万元;(3)某厂去年的产值是x万元,今年比去年的产值增长20%,则今年比去年的产值提高万元,今年的产值是万元.2、某公司去年的产值是400万元,今年的产值是500万元,则今年比去年增长().(A)20% (B)25% (C)80% (D)125%3、全校学生人数为x,女生占全校学生数的52%,则女生人数是,男生人数是,女生人数比男生人数多;4、一项工作甲独做5天完成,乙独做10天完成,那么甲每天的工作效率是,乙每天的工作效率是,两人合作3天完成的工作量是,此时剩余的工作量是。
沪教版数学六年级下册6.4《一元一次方程的应用》教学设计一. 教材分析《一元一次方程的应用》是沪教版数学六年级下册第六章的内容。
本节课主要让学生掌握一元一次方程的应用,通过解决实际问题,让学生了解一元一次方程在生活中的应用,培养学生解决实际问题的能力。
教材通过丰富的例题和练习题,帮助学生巩固知识,提高解题技能。
二. 学情分析六年级的学生已经掌握了代数的基础知识,对一元一次方程有一定的理解。
但是,学生在应用一元一次方程解决实际问题时,还存在着一定的困难。
因此,在教学过程中,教师需要引导学生将理论知识与实际问题相结合,提高学生解决问题的能力。
三. 教学目标1.知识与技能:让学生掌握一元一次方程的应用,能够解决实际问题。
2.过程与方法:通过解决实际问题,培养学生运用一元一次方程解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极解决问题的态度。
四. 教学重难点1.重点:让学生掌握一元一次方程的应用。
2.难点:如何引导学生将实际问题转化为一元一次方程,并解决问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过提出问题,引导学生思考,运用案例教学法讲解实际问题,让学生在解决实际问题的过程中掌握一元一次方程的应用。
同时,采用小组合作法,让学生在小组内讨论、交流,提高学生的合作能力和解决问题的能力。
六. 教学准备1.准备相关案例和练习题,用于引导学生解决问题。
2.准备多媒体教学设备,用于展示案例和讲解。
七. 教学过程1.导入(5分钟)教师通过提出一个问题:“小明买了一些苹果,比梨多3倍,如果小明买了45个梨,那么他买了多少个苹果?”引发学生的思考,引导学生进入本节课的主题。
2.呈现(10分钟)教师通过多媒体展示几个实际问题,让学生尝试解决。
例如:“一家商店卖出一件衣服,赚了20元,卖出一双鞋子,赚了15元。
如果商店一天卖出了3件衣服和2双鞋子,那么商店一共赚了多少钱?”学生在解决问题的过程中,教师进行讲解和指导。
第6课实际问题与一次方程(组)【考点典例精析】【知识点一】一元一次方程的应用1.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x人,可列方程为_____.2.一件服装标价200元, 若以6折销售, 仍可获利20%, 则这件服装的进价是多少元?3.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书200元一律打八折.如果王明同学一次性购书付款162元,那么王明所购书的原价为.4.某商店的一种商品的进价降低了8%,而售价保持不变,可使得商店的利润率提10%,原来的利润率为.5.整理一批图书,由一个人做要40小时完成.现在计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作4小时?【知识点二】二元一次方程的应用6.某班级为筹备运动会,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下,有几种购买方案?【知识点三】二元一次方程组的应用7.某班有40名同学去看演出,购买甲、乙两种票共用去370元,其中甲种票每张10元,乙种票每张8元.设购买了甲种票x张,乙种票y张,由此可列出方程组:.8.某公园“6•1”期间举行特优读书游园活动,成人票和儿童票均有较大折扣.张凯、李利都随他们的家人参加了本次活动.王斌也想去,就去打听张凯、李利买门票花了多少钱.张凯说他家去了3个大人和4个小孩,共花了38元钱;李利说他家去了4个大人和2个小孩,共花了44元钱,王斌家计划去3个大人和2个小孩,请你帮他计算一下,需准备________ 元钱买门票.9.小武新家装修,在装修客厅时,购进彩色地砖和单色地砖共100块,共花费5600元.已知彩色地砖的单价是80元/块,单色地砖的单价是40元/块.(1)两种型号的地砖各采购了多少块?(2)如果厨房也要铺设这两种型号的地砖共60块,且采购地砖的费用不超过3200元,那么彩色地砖最多能采购多少块?10.某校运动会需购买A、B两种奖品.若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.⑴求A、B两种奖品单价各是多少元?⑵学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍.设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式,求出自变量m的取值范围,并确定最少费用W的值.【知识点4】分式方程11.小王乘公共汽车从甲地到相距40千米的乙地办事,然后乘出租车返回,出租车的平均速度比公共汽车多20千米/时,回来时路上所花时间比去时节省了14,设公共汽车的平均速度为x千米/时,则下面列出的方程为______________________.12.甲、乙两地间铁路长2400千米, 经技术改造后, 列车实现了提速. 提速后比提速前速度增加20千米/时, 列车从甲地到乙地行驶时间减少4小时. 已知列车在现有条件下安全行驶的速度不超过140千米/时. 请你用学过的数学知识说明这条铁路在现有条件下是否还可以再次提速?。
第二单元 方程(组)与不等式(组)第6课时 一次方程(组)及其应用点对点·课时内考点巩固40分钟1. (2019怀化)一元一次方程x -2=0的解是( ) A. x =2 B. x =-2 C. x =0 D. x =12. (2019杭州)已知九年级某班30位同学种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x 人,则( )A. 2x +3(72-x )=30B. 3x +2(72-x )=30C. 2x +3(30-x )=72D. 3x +2(30-x )=72 3. 下列说法错误的是( ) A. 若a =b ,则ac =bc B. 若b =1,则ab =aC. 若a c =bc,则a =bD. 若(a -1)c =(b -1)c ,则a =b4. (2019毕节模拟)某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A. 亏了10元钱B. 赚了10元钱C. 赚了20元钱D. 亏了20元钱5. (2019兰州)《九章算术》是中国古代数学著作之一.书中有这样一个问题:五只雀、六只燕共重一斤,雀重燕轻,互换其中一只,恰好一样重.问:每只雀、燕的重量各为多少?设一只雀的重量为x 斤,一只燕的重量为y 斤,则可列方程组为( )A. ⎩⎨⎧5x +6y =15x -y =6y -xB. ⎩⎨⎧6x +5y =15x +y =6y +xC. ⎩⎨⎧5x +6y =14x +y =5y +xD. ⎩⎨⎧6x +5y =14x -y =5y -x6. (2019齐齐哈尔)学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元,学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有( )A. 3种B. 4种C. 5种D. 6种 7. (2019台州)一道来自课本的习题:从甲地到乙地有一段上坡与一段平路,如果保持上坡每小时走3 km ,平路每小时走4 km ,下 坡每小时走5 km ,那么从甲地到乙地需54 min ,从乙地到甲地需42 min .甲地到乙地全程是多少?小红将这个实际问题转化为二元一次方程组问题,设未知数x ,y ,已经列出一个方程x 3+y 4=5460,则另一个方程正确的是( )A. x 4+y 3=4260B. x 5+y 4=4260C. x 4+y 5=4260D. x 3+y 4=42608. (2019湘西州)若关于x 的方程3x -kx +2=0的解为2,则k 的值为________.9. (人教七下P 96练习第1题)方程组⎩⎨⎧x +2y =93x -2y =-1的解为________.10. (2019常州)若⎩⎨⎧x =1y =2是关于x 、y 的二元一次方程ax +y =3的解,则a =________.11. (2019临沂)用1块A 型钢板可制成4件甲种产品和1件乙种产品;用1块B 型钢板可制成3件甲种产品和2件乙种产品.要生产甲种产品37件,乙种产品18件,则恰好需用A ,B 两种型号的钢板共________块.12. (2019日照)解方程组:⎩⎨⎧2x -y =53x +4y =2.13. 党的十九大提出,建设生态文明是中华民族永续发展的千年大计,某同学参加“加强生态环境保护,建设美丽中国”手工大赛,他用一种环保材料制作A、B两种手工艺品,制作1件A种手工艺品和3件B种手工艺品需要环保材料5米,制作4件A种手工艺品和5件B种手工艺品需要环保材料13米,求制作一件A种手工艺品和1件B种手工艺品各需多少米环保材料?14. (2019娄底)某商场用14500元购进甲、乙两种矿泉水共500箱,矿泉水的成本价与销售价如下表所示:求:(1)(2)该商场售完这500箱矿泉水,可获利多少元?15. (2019烟台)亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?点对线·板块内考点衔接20分钟1. (2019荆门)已知实数x ,y 满足方程组⎩⎨⎧3x -2y =1x +y =2.则x 2-2y 2的值为( )A. -1B. 1C. 3D. -32. (2019南充)关于x 的一元一次方程2x a -2+m =4的解为x =1,则a +m 的值为( ) A. 9 B. 8 C. 5 D. 43. (全国视野创新题推荐)以方程组⎩⎨⎧y =x +1y =-x +2的解为坐标的点(x ,y )在第________象限.4. 随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解2辆A 型汽车、3辆B 型汽车的进价共计80万元;3辆A 型汽车、2辆B 型汽车的进价共计95万元.(1)求A 、B 两种型号的汽车每辆进价分别为多少万元?(2)若该公司计划正好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),请你帮助该公司设计购买方案;(3)若该汽车销售公司销售1辆A 型汽车可获利8000元,销售1辆B 型汽车可获利5000元,在(2)中的购买方案中,假如这些新能源汽车全部售出,哪种方案获利最大?最大利润是多少元?参考答案第6课时 一次方程(组)及其应用点对点·课时内考点巩固1. A 【解析】x -2=0,移项,得x =2.2. D 【解析】设男生有x 人,则女生(30-x )人,根据题意可得:3x +2(30-x )=72.3. D 【解析】当c =0时,则a 不一定等于b ,故D 错误.4. A 【解析】设一件衣服的进件为x 元,另一件衣服的进价为y 元,则x (1+25%)=200,y (1-20%)=200,解得,x =160,y =250,∵(200+200)-(160+250)=-10,∴这家商店在这次交易中亏了10元.5. C 【解析】根据题意可列方程为⎩⎨⎧5x +6y =14x +y =5y +x.6. B 【解析】设购买A 品牌足球x 个,购买B 品牌足球y 个,依题意,得:60x +75y =1500,∴y =20-45x ,∵x ,y 均为正整数,∴⎩⎨⎧x 1=5y 1=16,⎩⎨⎧x 2=10y 2=12,⎩⎨⎧x 3=15y 3=8,⎩⎨⎧x 4=20y 4=4,∴该学校共有4种购买方案.7. B 【解析】由题意可知上坡长x km ,平路长y km ,∴从甲地到乙地所用时间为x 3+y 4=5460,∵从乙地到甲地上坡变成下坡,∴从乙地到甲地所用时间为x 5+y 4=4260.8. 4 【解析】∵x =2是方程3x -kx +2=0的解,∴3×2-2k +2=0,解得k =4.9. ⎩⎨⎧x =2y =72【解析】令⎩⎨⎧x +2y =9①3x -2y =-1②,①+②得:4x =8,即x =2,把x =2代入①得:y=72,则方程组的解为⎩⎨⎧x =2y =72. 10. 1 【解析】把x =1,y =2代入方程ax +y =3中可得,a +2=3,解得a =1.11. 11 【解析】设恰好需用A 型钢板x 块,B 型钢板y 块,由题意得⎩⎨⎧4x +3y =37x +2y =18,两式相加得5x +5y =55,即x +y =11,则恰好需用AB 两种型号的钢板共11块.12. 解:令⎩⎨⎧2x -y =5①3x +4y =2②,①×4,得8x -4y =20③, ②+③得,11x =22,即x =2, 将x =2代入①得4-y =5, 解得y =-1.∴方程组的解为⎩⎨⎧x =2y =-1.13. 解:设制作一件A 种手工艺品需x 米环保材料,制作1件B 种手工艺品需y 米环保材料.根据题意,得⎩⎨⎧x +3y =54x +5y =13,解得⎩⎨⎧x =2y =1.答:制作一件A 种手工艺品需2米环保材料,制作1件B 种手工艺品需1米环保材料. 14. 解:(1)设购进甲种矿泉水x 箱,则购进乙种矿泉水(500-x )箱. 可列方程为25x +35(500-x )=14500,解得x =300, ∴购进乙种矿泉水500-x =500-300=200(箱). 答:购进甲种矿泉水300箱,购进乙种矿泉水200箱; (2)该商场售完这500箱矿泉水,可获利为: (35-25) ×300+(48-35) ×200=5600(元). 答:该商场售完这500箱矿泉水,可获利5600元.15. 解:(1)设计划调配36座新能源客车x 辆,则该大学志愿者共有(36x +2)名,根据题意,得36x +2=22 (x +4)-2,解得 x =6. ∴36x +2=218.答:计划调配36座新能源客车6辆,该大学共有218名志愿者; (2)设租用36座新能源客车m 辆,22座新能源客车n 辆,依题意得, 36m +22n =218,即18m +11n =109, 其正整数解为m =3, n =5.答:租用36座新能源客车3辆,22座新能源客车5辆,既保证每人有座,又保证每车不空座.点对线·板块内考点衔接1. A 【解析】解方程组⎩⎨⎧3x -2y =1x +y =2得⎩⎨⎧x =1y =1.∴x 2-2y 2=1-2=-1.2. C 【解析】∵方程是一元一次方程,∴a -2=1.∴a =3.把x =1代入方程,得2+m =4.∴m =2.∴a +m =5.故选C .3. 一 【解析】⎩⎨⎧y =x +1①y =-x +2②,①+②得,2y =3,所以y =32,把y =32代入①得,32=x +1,∴x =12,∵12>0,32>0,根据各象限内点的坐标特点可知,∴点(x ,y )在平面直角坐标系中的第一象限.4. 解:(1)设A 型汽车每辆的进价为x 万元,B 型汽车每辆的进价为y 万元,依题意,得:⎩⎨⎧2x +3y =803x +2y =95,解得:⎩⎨⎧x =25y =10.答:A 型汽车每辆的进价为25万元,B 型汽车每辆的进价为10万元; (2)设购进A 型汽车m 辆,购进B 型汽车n 辆, 依题意,得:25m +10n =200, 解得:m =8-25n ,∵m ,n 均为正整数,∴⎩⎨⎧m 1=6n 1=5,⎩⎨⎧m 2=4n 2=10,⎩⎨⎧m 3=2n 3=15.∴共有3种购买方案.方案一:购进A 型汽车6辆,B 型汽车5辆; 方案二:购进A 型汽车4辆,B 型汽车10辆; 方案三:购进A 型汽车2辆,B 型汽车15辆;(3)方案一获得利润:8000×6+5000×5=73000(元); 方案二获得利润:8000×4+5000×10=82000(元); 方案三获得利润:8000×2+5000×15=91000(元). ∵73000<82000<91000,∴购进A 型汽车2辆,B 型汽车15辆获利最大,最大利润是91000元.。