闭环频率特性的基本特点
- 格式:doc
- 大小:61.50 KB
- 文档页数:2
8由开环频率特性分析闭环系统在频率特性分析中,我们可以通过开环频率特性来分析闭环系统的性质和性能。
闭环系统是由开环系统和反馈环路组成的,因此我们首先要了解开环系统的频率特性。
开环系统的频率特性主要有两种表示方法:Bode图和Nyquist图。
其中,Bode图将系统的增益和相位的频率响应以对数坐标的形式展示出来,Nyquist图则将系统的频率响应以复数形式表示。
Bode图是一种常用的分析频率特性的方法。
通过绘制系统的增益曲线和相位曲线,我们可以直观地了解系统在不同频率下的表现。
Bode图的横坐标是以对数形式表示的频率,在高频率时值较大,在低频率时值较小。
纵坐标分别表示增益和相位。
Nyquist图是由实部和虚部构成的复平面中的一个图形。
Nyquist图的横坐标是对应于扫频的频率,在频率趋近无穷大时,图形会逼近一个点。
纵坐标表示对应频率下的增益和相位。
通过分析开环系统的频率特性,我们可以得到以下信息:1. 增益裕度:增益裕度是指系统增益与稳定边界之间的差距。
稳定边界是系统增益曲线与-180°相位曲线交点的位置。
增益裕度越大,系统越稳定。
我们可以通过Bode图或Nyquist图来确定系统的增益裕度。
2. 相位裕度:相位裕度是指系统的相位曲线与-180°相位线之间的差距。
相位裕度越大,系统越稳定。
我们可以通过Bode图或Nyquist图来确定系统的相位裕度。
3. 截止频率:截止频率是指系统增益曲线与零增益线交点的频率。
截止频率决定了系统的带宽,即系统能够承载的最高频率。
通过Bode图可以直观地确定系统的截止频率。
4.相位裕度和增益裕度的关系:相位裕度和增益裕度之间存在一定的关系。
当增益裕度增加时,相位裕度通常会减小。
因此,在频率特性分析中,我们需要权衡增益裕度和相位裕度,以实现系统的稳定性和性能。
在闭环系统中,反馈环路能够通过将部分输出信号重新输入到系统中来调节系统的性能,因此闭环系统的频率特性与开环系统有所不同。
主要内容系统闭环频率特性通过频率特性曲线分析稳态性能指标频域动态性能指标频率域特性指标与时域瞬态指标的关系2)()(1)()()(1s H s G s H s G s H +⋅=4环幅频特性。
闭环幅频特性曲线闭环对数幅频曲线二、由闭环频率特性分析系统的时域响应频率特性分析法比时域性能分析简便,且有成熟的图解法可供使用,但频率特性分析是一种概略性的间接方法,在要求系统性能指标直接而具体时,还需从时域响应面进行讨论。
在已知闭环系统稳定的条件下,可根据系统的闭环幅频特性曲线,对系统的动态过程进行定性分析与定量估算。
51、通常的闭环频域有以下几个指标:V零频幅值:ω=0时闭环幅频特性的数值(反映系统静差(误差))V谐振频率ωr:闭环系统频率特性出现谐振峰值时的频率值V谐振峰值M r:系统闭环频率特性幅值的最大值,反映系统的平稳性,并非所有闭环频率特性的中频段有谐振峰值,若出现了谐振峰值,表明系统的阻尼比较小615M r、σ与ζ的关系曲线当相角裕量γ为30o ~60o 时,对应二阶系统的阻尼比ζ为0.3~0.6在ζ≤0.707时,二阶系统的相角裕量γ与阻尼比ζ之间的关系近似为:ζ=0.01γV谐振频率ωr表征系统瞬态响应的速度。
ωr值越大,响应时间越快。
对于弱阻尼系统(ζ较小),谐振频率ωr与阶跃响应的阻尼振荡频率ωd接近。
V截止频率(带宽频率)ωb当系统闭环幅频特性的幅值M(ω)降到零频率幅值的0.707(或零分贝值以下3dB)时,对应的频率ωb称为截止频率。
0~ωb的频率范围称为带宽它反映系统的快速性和低通滤波特性。
V剪切率ωc幅值=1时的频率ωc,称为剪切率,它既反映系统的相角裕度(相角裕度大,剪切率应较平缓),又表征系统从噪声中辨别信号的能力(剪切率平缓,带宽ωb大,对高频噪声的抑制不利)。
17应注意,剪切频率ωc处斜率平缓(如以-20dB/dec过0dB线)时,系统相角裕量大;而斜率陡峭时,说明具有负相角的环节集图5 剪切率中叠加于此,带来大的负相角,如图5所示,则易造成系统不稳定。
第五章 频域分析法目的:①直观,对高频干扰的抑制能力。
对快(高频)、慢(低频)信号的跟踪能力。
②便于系统的分析与设计。
③易于用实验法定传函。
§5.1 频率特性一. 定义)()()()(1n p s p s s s G +⋅⋅⋅+=θ在系统输入端加一个正弦信号:t R t r m ωsin )(⋅=))(()(22ωωωωωj s j s R s R s R m m -+⋅=+⋅=↔ 系统输出:))(()()()()(1ωωωθj s j s R p s p s s s Y m n-+⋅⋅+⋅⋅⋅+=t j t j e A e A t y t y ωω⋅+⋅+=↔-瞬态响应)()(1若系统稳定,即)(s G 的极点全位于s 左半平面,则 0)(l i m 1=∞→t y t稳态响应为:tj tj ss eA eA t y ωω⋅+⋅=-)(而)(21)()(22ωωωωωj G R jj s s R s G A m j s m -⋅-=+⋅+⋅⋅=-=)(21)()(22ωωωωωj G R jj s s R s G A m j s m ⋅=-⋅+⋅⋅== ∴t j m tj m ss e j G R je j G R j t y ωωωω⋅⋅+⋅-⋅-=-)(21)(21)( =])()([21t j t j m e j G e j G R jωωωω-⋅--⋅⋅ 又)(s G 为s 的有理函数,故)()(*ωωj G j G -=,即φωωj e j G j G )()(= φωωj e j G j G -=-)()(∴][)(21)()()(φωφωω+-+--⋅=t j t j mss e e j G R jt y =)sin()(φωω+⋅⋅t j G R m =)sin(φω+⋅t Y m可见:对稳定的线性定常系统,加入一个正弦信号,其稳态响应也是一个同频率的正弦信号。
其幅值是输入正弦信号幅值的)(ωj G 倍,其相移为)(ωφj G ∠=。
·145·第5章 线性系统的频域分析法重点与难点一、基本概念 1. 频率特性的定义设某稳定的线性定常系统,在正弦信号作用下,系统输出的稳态分量为同频率的正弦函数,其振幅与输入正弦信号的振幅之比)(ωA 称为幅频特性,其相位与输入正弦信号的相位之差)(ωϕ称为相频特性。
系统频率特性与传递函数之间有着以下重要关系:ωωj s s G j G ==|)()(2. 频率特性的几何表示用曲线来表示系统的频率特性,常使用以下几种方法:(1)幅相频率特性曲线:又称奈奎斯特(Nyquist )曲线或极坐标图。
它是以ω为参变量,以复平面上的矢量表示)(ωj G 的一种方法。
(2)对数频率特性曲线:又称伯德(Bode )图。
这种方法用两条曲线分别表示幅频特性和相频特性。
横坐标为ω,按常用对数lg ω分度。
对数相频特性的纵坐标表示)(ωϕ,单位为“°”(度)。
而对数幅频特性的纵坐标为)(lg 20)(ωωA L =,单位为dB 。
(3)对数幅相频率特性曲线:又称尼柯尔斯曲线。
该方法以ω为参变量,)(ωϕ为横坐标,)(ωL 为纵坐标。
3. 典型环节的频率特性及最小相位系统 (1)惯性环节:惯性环节的传递函数为11)(+=Ts s G 其频率特性 11)()(+===j T s G j G j s ωωω·146·对数幅频特性 2211lg20)(ωωT L +=(5.1)其渐近线为⎩⎨⎧≥-<=1 )lg(2010)(ωωωωT T T L a (5.2) 在ωT =1处,渐近线与实际幅频特性曲线相差最大,为3dB 。
对数相频特性)(arctg )(ωωϕT -= (5.3)其渐近线为⎪⎩⎪⎨⎧≥︒-<≤+<=10 90101.0 )lg(1.0 0)(ωωωωωϕT T T b a T a (5.4)当ωT =0.1时,有b a b a -=+=1.0lg 0 (5.5)当ωT =10时,有b a b a +=+=︒-10lg 90 (5.6)由式(5.5)、式(5.6)得︒=︒-=45 45b a因此:⎪⎩⎪⎨⎧≥︒-<≤︒-<=10 90101.0 )10lg(451.0 0)(ωωωωωϕT T T T a (5.7)(2)振荡环节:振荡环节的传递函数为10 121)(22<<++=ξξTs S T s G·147·其频率特性)1(21|)()(22ωωξωωT j Ts s G j G j s -+=== 对数幅频特性2222224)1(lg 20)(ωξωωT T L +--= (5.8)其渐近线为⎩⎨⎧≥-<=1)lg(4010)(ωωωωT T T L a (5.9) 当707.0<ξ时,在221ξω-=T 处渐近线与实际幅频特性曲线相差最大,为2121lg20ξξ-。
闭环控制频率随着科技的不断进步,闭环控制系统在许多领域中得到了广泛应用。
闭环控制系统通过不断采集反馈信号,并与参考信号进行比较,调节控制器的输出信号,以实现系统的稳定控制。
频率是一个重要的控制参数,它表示控制系统响应的快慢程度。
本文将以闭环控制频率为主题,探讨闭环控制频率的意义、影响因素以及如何优化闭环控制频率。
闭环控制频率对系统的稳定性和响应速度有着重要影响。
频率高的闭环控制系统能够更快地响应参考信号的变化,实现更精确的控制目标。
而频率低的闭环控制系统反应迟缓,可能导致系统无法及时调整,造成系统不稳定。
闭环控制频率受多种因素的影响。
首先是控制器的响应速度。
控制器的响应速度越快,闭环控制系统的频率就越高。
因此,在设计闭环控制系统时,需要选择合适的控制器,以确保系统具有足够的频率响应。
其次是反馈信号的采样速率。
采样速率指的是控制系统对反馈信号进行采样的频率。
如果采样速率过低,闭环控制系统可能无法准确地捕捉到反馈信号的变化,从而影响系统的频率响应。
因此,在设计闭环控制系统时,需要合理选择采样速率,以确保系统具有足够的频率响应。
信号传输的延迟也会影响闭环控制系统的频率响应。
信号传输的延迟指的是信号从被采集到被处理再到被输出的时间。
如果信号传输的延迟过大,闭环控制系统可能无法及时响应参考信号的变化,从而影响系统的频率响应。
因此,在设计闭环控制系统时,需要减小信号传输的延迟,以提高系统的频率响应。
为了优化闭环控制频率,可以采取一些措施。
首先是选择合适的控制器。
不同的控制器具有不同的频率响应特性,需要根据具体的应用需求选择合适的控制器。
其次是合理调整采样速率。
采样速率过低会影响系统的频率响应,而采样速率过高则会增加系统的计算负担。
因此,需要在满足系统需求的前提下,选择合理的采样速率。
最后是优化信号传输的延迟。
通过优化信号传输的路径和算法,可以减小信号传输的延迟,提高系统的频率响应。
闭环控制频率是一个重要的控制参数,它影响着闭环控制系统的稳定性和响应速度。
闭环频率特性的基本特点
1.在低频段Φ(jω)≈1(或Φ(jω)≈1/H(jω))
通常在低频段其幅值A(ω)>>1 。
于是对于单位反馈系统,由式(5.28) 可得在低频段其闭环频率特性为
上式表明:在闭环频率特性的低频段,由于这时开环幅值远大于1,故单位反馈系统的闭环频率特性Φ(jω)≈1。
一般来说:一个系统的开环频率特性保持高增益的频率范围越宽,其(闭环)输出复现输入信号就越好。
这就是所谓的“高增益原则”。
对于非单位反馈系统,由式(5.26)可得在低频段其闭环频率特性为
这说明: 在低频段由于 A(ω)=|G(jω)H(jω)|>>1,故非单位反馈系统的闭环频率特性近似等于反馈通道频率特性的倒数。
2. 在高频段Φ(jω) ≈G(jω)
系统的开环频率特性在高频段 |G k (jω)|<< 1 ,于是有
上式表明:在高频段,由于开环频率特性的幅值很小,故反馈控制系统的闭环频率特性与前向通道的频率特性几乎重合。
3. 在中频段
闭环频率特性中频段的形状对系统暂态特性的影响很大,通常用两组特征量:带宽频率ωb 和谐振峰值M r 、谐振频率ωr ,来加以刻画。
(1) 带宽频率与带宽
闭环幅频特性的幅值下降到零频幅值的 0.707( 即 0.707M(0))、或闭环对数幅频特性的增益下降到零频增益值以下 3 分贝时,其对应的频率ωb 称为带宽频率 ( 或系统的截止角频率 );闭环对数幅频特性的增益不低于 -3 分贝时所对应的频率范围,即 0 ≤ω≤ωb ,称为系统的带宽 ( 或通频带 ) 。
带宽与系统暂态响应速度之间的关系控制系统的带宽与暂态响应的速度具有密切的关系。
一般来说:系统的带宽越大,暂态响应的速度就越快;而且对于低价系统,它们之间还具有确定的函数关系。
对于一阶系统,带宽越大,即带宽频率ωb越高( 系统极点p=-1/T=- ωb离虚轴越远) ,相应的时间常数T 便越小,系统响应的速度就越快。
对于二阶规范系统,在一定的阻尼比下,二阶规范系统的带宽频率ωb越高,t r和t s便越小,系统响应的速度也就越快。
对于高阶系统,系统的频率特性展宽几倍、单位阶跃响应的速度就加快几倍。
因此带宽可作为系统暂态响应速度的度量。
系统的带宽越大,即ω
b越高,暂态响应的速度就越快,闭环系统对输入信号的复现也越好。
(2) 谐振峰值与谐振频率
对于二阶规范系统,其谐振峰值M r和谐振频率ωr与阻尼比ζ的关系
σp一样,都是ζ的单值函数。
而系统的单位阶跃响应的超调量,即。
可见,M
r与
M r越大,ζ便越小,σp就越大;反之亦然。
σp的上述关系仍然成立。
对于高阶系统,虽然难以导出准确的关系式,但是M
r与
因此谐振峰值M r与超调量σp一样,可用来表征系统暂态响应的相对稳定性。
M r越大,暂态响应的振荡便越剧烈,系统响应的相对稳定性就越差。