塑性变形计算题
- 格式:doc
- 大小:418.00 KB
- 文档页数:3
第8 章晶体的塑性形变题解1. 细铜棒两端固定,从100°C 冷却到0°C,问发生的内应力有多大?铜的热膨胀系数=1.5×10-6/°C,弹性模量E=1.103×1011 Pa)。
解:设棒长为 1 ,热膨胀系数α=1.5×10-6/°C ,从100°C 冷却到0°C 棒收缩量∆L=α∆T=1.5×10-6×100=1.5×10-4,如果棒仍保持弹性范围,根据胡克定律,内应力σ应为:σ=Eε=1 ×11 ××−4 =×7.103 10 1.5 10 Pa 1.65 10 Pa2. 板材轧制时,设弹性变形量从表面到中心是线性的。
(a)压下量不大时,表面仍处在弹性范围,画出加载及卸载时从表面到中心的应力分布;(b)表面发生了塑性形变,但中心仍处于弹性围,画出加载及卸载时从表面到中心的应力分布。
解:(a)当压下量不大表面仍处在弹性范围时,因表面变形量最大,所以整个板处于弹性范围,加载时,应力与应变正比,所以应力从表面到中心亦呈线性分布,如下图(a)所示。
卸载后,弹性应变完全回复,板内无应力存在。
(b)当表面发生了塑性形变但中心仍处于弹性围时,表面层已屈服,它的应力与应变关关系不再符合胡克定律,所以表层应力的增加斜率降低,如下图(b)所示;卸载后,表层的塑性形变不能回复,内部的弹性变形要回复,因此,表层受内部收缩而产生压应力,因表层留下的永久变形不能回复而使内部产生拉伸应力,这些残余应力的分布如下图(c)所示。
3. 体心立方晶体可能的滑移面是{110}、{112}及{123},若滑移方向为[111],具体的滑移系是哪些?解:一个具体的滑移系的滑移方向必在滑移面上,根据晶带定律可知,滑移方向为[111] 时,对于{110}滑移面,可能的滑移面是(110)、(011)和(101 )。
psi是一种压力单位,定义为英镑/平方英寸,145psi=1MpaPSI英文全称为Pounds per square inch。
P是磅pound,S是平方square,I 是英寸inch。
把所有的单位换成公制单位就可以算出:1bar≈14.5psi1 KSI = 1000 lb / in.2 = 1000 x 0.4536 x 9.8 N / (25.4 mm)2 = 6.89 N / mm2材料机械强度性能单位,要用到试验机来检测Density of Slip PlanesThe planar density of the (112) plane in BCC iron is 9.94 atoms/cm2. Calculate the planar density of the (110) plane and the interplanar spacings for both the (112) and the (110) planes. On which type of plane would slip normally occur?(112) planar density:The point of this problem is that slip generally occurs in high density directions and on high density planes. The high density directions are directions in which the Burgers' vector is short, and the high density planes are the "smoothest" for slip.It will help to visualize these two planes as we calculate the atom density.The (110) plane passes through the atom on the lattice point in the center of the unit cell. The plane is rectangular, with a height equal to the lattice parameter a0and a width equal to the diagonal of the cube face, which is 2 a0.Lattice parameter (height):Width:Thus, according to the geometry, the area of a (110) plane would beThere are two atoms in this area. We can determine that by counting the piece of atoms that lie within the circle (1 for the atom in the middle and 4 times 1/4 for the corners), or using atom coordinates as discussed in Chapter 3. Then the planar density isThe interplanar spacing for the (110) planes isFor the (112) plane, the planar density is not quite so easy to determine. Let us draw a larger array of four unit cells, showing the plane and the atoms it passes through.This plane is also rectangular, with a base width of √2 a0 (the diagonal of a cube face), and a height of √3 a0 (the body diagonal of a cube). It has four atoms at corners, which are counted as 1/4 for the portion inside the rectangle (4 x 1/4) and two atoms on the edges, counted as 1/2 for the portion inside the rectangle (2 x 1/2). This is a total of 2 atoms.Base width:Height:Hence, we can calculate the area and density as for the (110) plane.The planar density and interplanar spacing of the (110) plane are larger than that of the (112) plane, thus the (110) plane would be the preferred slip plane1.有一根长为5 m,直径为3mm的铝线,已知铝的弹性模量为70GPa,求在200N的拉力作用下,此线的总长度。
塑性力学考试题及答案一、选择题(每题2分,共20分)1. 塑性变形与弹性变形的主要区别是()。
A. 塑性变形是可逆的B. 弹性变形是可逆的C. 塑性变形是不可逆的D. 弹性变形是不可逆的2. 材料在塑性变形过程中,其应力-应变曲线上的哪一点标志着材料的屈服点?A. 最大应力点B. 最大应变点C. 应力-应变曲线上的转折点D. 应力-应变曲线的起始点3. 下列哪项不是塑性变形的特征?A. 材料形状的改变B. 材料体积的不变C. 材料内部结构的不可逆变化D. 材料的弹性恢复4. 塑性变形的三个基本假设中,不包括以下哪一项?A. 材料是连续的B. 材料是各向同性的C. 材料是不可压缩的D. 材料是完全弹性的5. 塑性变形的流动法则通常采用哪种形式来描述?A. 线性形式B. 非线性形式C. 指数形式D. 对数形式二、简答题(每题10分,共30分)6. 简述塑性变形的三个基本假设及其物理意义。
7. 解释什么是塑性屈服准则,并举例说明常用的屈服准则。
8. 描述塑性变形过程中的加载和卸载路径,并解释它们的区别。
三、计算题(每题25分,共50分)9. 给定一个材料的应力-应变曲线,如果材料在达到屈服点后继续加载,求出在某一特定应变下的材料应力。
10. 假设一个材料在单轴拉伸条件下发生塑性变形,已知材料的屈服应力和弹性模量,求出在塑性变形阶段的应变率。
答案一、选择题1. 答案:C2. 答案:C3. 答案:D4. 答案:D5. 答案:B二、简答题6. 塑性变形的三个基本假设包括:- 材料是连续的:假设材料没有空隙和裂缝,是连续的均匀介质。
- 材料是各向同性的:假设材料在所有方向上具有相同的物理性质。
- 材料是不可压缩的:假设在塑性变形过程中材料的体积保持不变。
7. 塑性屈服准则是判断材料是否开始发生塑性变形的条件。
常用的屈服准则包括:- Von Mises准则:适用于各向同性材料,当材料的等效应力达到某一临界值时,材料开始发生塑性变形。
1试根据下标记号法和求和约定展开下列各式(式中i 、j = x 、y 、z ):① ij ij σε ; ② j i x ';2在物体内某点,确定其应力状态的一组应力分量为:x σ= 0,y σ= 0,z σ=0,xy τ= 0,yz τ=3a ,zx τ=4a ,知0a >。
试求:1 该点应力状态的主应力1σ、2σ和3σ;2 主应力1σ的主方向;3主方向彼此正交;解:由式(2—19)知,各应力不变量为、,代入式(2—18)得:也即 (1)因式分解得:(2)则求得三个主应力分别为。
设主应力与xyz 三坐标轴夹角的方向余弦为、 、 。
将 及已知条件代入式(2—13)得:(3)由式(3)前两式分别得:(4)将式(4)代入式(3)最后一式,可得0=0的恒等式。
再由式(2—15)得:则知;(5)同理可求得主应力的方向余弦、、和主应力的方向余弦、、,并且考虑到同一个主应力方向可表示成两种形式,则得:主方向为:;(6)主方向为:;(7)主方向为:;(8)若取主方向的一组方向余弦为,主方向的一组方向余弦为,则由空间两直线垂直的条件知:(9)由此证得主方向与主方向彼此正交。
同理可证得任意两主应力方向一定彼此正交。
3一矩形横截面柱体,如图所示,在柱体右侧面上作用着均布切向面力q,在柱体顶面作用均布压力p。
试选取:3232ϕ=++++y Ax Bx Cx Dx Ex()做应力函数。
式中A、B、C、D、E为待定常数。
试求:(1)上述ϕ式是否能做应力函数;(2)若ϕ可作为应力函数,确定出系数A、B、C、D、E。
(3)写出应力分量表达式。
(不计柱体的体力)解:据结构的特点和受力情况,可以假定纵向纤维互不挤压,即:;由此可知应力函数可取为:(a)将式(a)代入,可得:(b)故有:; (c)则有:; (d)略去中的一次项和常数项后得:(e)相应的应力分量为:(f)边界条件:①处,,则; (g)②处,,则; (h) ③在y = 0处,,,即由此得:,再代入式(h)得:;由此得:(i)由于在y=0处,,积分得: (j ) ,积分得:(k )由方程(j ) (k)可求得:,投知各应力分量为:(l)据圣文南原理,在距处稍远处这一结果是适用的。
五、计算题(共30分,每小题10分)1. 已知某点的应力状态⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=σ600000200200ij 。
(共18分)2. 1)求该点的主应力和主方向(10分);3. 2)通过计算判断该点是否处于平面应变状态(3分);4. 3)画出该点的应力莫尔圆和应变莫尔圆(5分)。
5. 如图所示,已知两端封闭且足够长的薄壁圆筒的半径为r ,壁厚为t ,屈服应力为s σ。
该圆筒受内压p 的作用而产生塑性变形,设材料各向同性且忽略其弹性变形,求:6. ⑴ 内压p 的大小;7. ⑵ 圆筒切向、轴向及径向应变增量的比值。
(12分)8. 已知半径为r ,壁厚为t 的薄壁圆筒,承受轴向拉伸和扭转联合作用而产生塑性变形,设加载过程中保持σ=τ2,且材料的屈服应力为s σ。
9. 1)求该圆筒屈服时的轴向载荷P 和扭矩M (6分);10. 2)设材料各向同性且忽略其弹性变形,求其切向、轴向及径向应变增量的比值(6分)。
(共12分)11. 已知薄壁管半径为r 壁厚为t ,在扭矩M 和轴向拉力P 的共同作用下产生塑性变形。
设材料的屈服应力为S σ(服从TRESCA 屈服准则),且在数值上P=M ,求:1)拉力P 的大小;2)该薄壁管上任意一点的三个主应力;3)该薄壁管上任意一点径向、轴向及环向应变增量的比值。
12. 已知薄壁球壳半径为r ,壁厚为t ,受内压p 作用。
求使用MISES 屈服准则时的内压p 的值,并求此时经向、纬向及径向应变增量的比值(15分)13. 如图所示,工件横截面尺寸为2a×h ,长度足够长,在上下模具之间进行平面应变镦粗,且工件和模具之间的摩擦满足常摩擦模型mK =τ。
试用主应力法确定工件与模具接触面上压应力的分布情况,以及变形力P 的大小。
14.如图所示,已知顶部被削平的楔体,承受均布载荷q的作用而产生塑性变形,若楔体夹角为a2δ,且,用滑移线法求均布载荷q的大小。
(8分)2=AB15.如下图所示,用滑移线法求光滑冲头压入两边为斜面的半无限体时单位压力q的大小。
第一章1-10. 已知一点的应力状态10100015520⨯⎪⎪⎪⎭⎫ ⎝⎛--=ij σMPa ,试求该应力空间中122=+-z y x 的斜截面上的正应力n σ和切应力n τ为多少?解:若平面方程为Ax+By+Cz+D=0,则方向余弦为:222CB A A ++=l ,222CB A B ++=m ,222CB AC n ++=因此:312)(-211222=++=l ,322)(-212-222-=++=m ;322)(-212n 222=++= S x =σx l +τxy m +τxz n=3100325031200=⨯-⨯S y =τxy l +σy m +τzy n = 3350321503150=⨯+⨯S z =τxz l +τyz m +σz n=320032100-=⨯-11191000323200323350313100S S S -=-=⨯-⨯-⨯=++=n m l z y x σ125003200335031002222222=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++=z y x S S S S4.1391000125002=⎪⎭⎫⎝⎛-=τ1-11已知OXYZ 坐标系中,物体内某点的坐标为(4,3,-12),其应力张量为:⎪⎪⎪⎭⎫⎝⎛--=1030205040100 ij σ,求出主应力,应力偏量及球张量,八面体应力。
解:=1J z y x σσσ++=100+50-10=140=2J 222xy xz yz y x z x z y τττσσσσσσ---++=100×50+50×(-10)+100×(-10)-402-(-20)2-302=600=3J 321σσσ=2222xy z xz y yz x xz yz xy z y x τστστστττσσσ---+ =-192000019200060014023=-+-σσσσ1=122.2,σ2=31.7,σ3=49.5 σm=140/3=46.7;7.5630203.3403.53⎪⎪⎪⎭⎫ ⎝⎛--=' ij σ ;7.460007.4607.46m ⎪⎪⎪⎭⎫ ⎝⎛=i σσ8=σm =46.71.39)()()(312132322218=-+-+-±=σσσσσστ 1-12设物体内的应力场为3126x c xy x +-=σ,2223xy c y -=σ,y x c y c xy 2332--=τ,0===zx yz z ττσ,试求系数c 1,c 2,c 3。
《塑性变形与轧制技术》期末试卷姓名:班级:成绩一、填空题(每空1分,共20分)1. 金属压力加工的主要方法有:( )、( )、( )、( )和( )等。
2. 由钢锭或钢坯轧制成具有一定规格和性能的钢材的一系列加工工序的组合,称为( )工艺过程。
3. 由于加热不良可使原料造成( )、( )、( )、( )、( )、( )等缺陷。
4. 轧制制度的主要内容应包括( )、( )和( )等。
5. 按照适用范围,标准分为( )、( )和( )。
6. 生产车间各项设备、原材料、燃料、动力、定员以及资金等利用程度的指标称之为( )。
7. 依靠旋转方向相反的两个轧辊与轧件间的摩擦力,将轧件拖入轧辊辊缝中的现象,称为( )。
二、名词解释(每题3分,共30分)1、最小阻力定律2、简单轧制过程3、变形区概念4、前滑5、剩余摩擦力6、轧制压力7、塑性变形8、塑性加工9、工作应力10、热加工三、判断题(每题2分,共20分)1、咬入角是轧制时轧件与轧辊表面接触弧线所对的圆心角。
()2、其他条件不变,轧件宽度增大,宽展减小。
()3、总延伸系数等于各道次延伸系数之和。
()4、轧制前轧件的断面积与轧制后轧件的断面积之比等于延伸系数。
()5、轧件出口速度大于轧辊该处的线速度叫后滑。
()6、金属塑性加工中的工艺润滑的目的之一为减少二次氧化铁皮的产生。
()7、轧制是轧件由于摩擦力的作用而进入旋转的轧辊之间,被压缩而产生弹性变形的过程。
()8、高精度轧机生产的成品尺寸精度皆可达到±0.15mm。
()9、由于轧制过程有前滑、后滑现象,使轧制过程简单化。
()10、采利柯夫公式应用范围较为广泛,可用于冷轧,也可用于热轧;可用于厚板轧制,也可用于薄板轧制。
()四、计算题(每题15分,共30分)1、轧辊圆周速度v=3m/s,轧件入辊速度v H=2m/s,延伸系数μ=1.6,试求前滑值。
2、已知轧辊直径600mm,轧件轧前断面尺寸H×B=100mm×200mm,Δh=30mm,轧制温度t=1000℃,铸钢轧辊,轧制速度v=4m/s,轧件为低碳钢,用艾克隆得公式计算轧后轧件断面尺寸。
弹塑性力学课程作业1 参考答案一.问答题1. 答:请参见教材第一章。
2. 答:弹塑性力学的研究对象比材料力学的研究对象更为广泛,是几何尺寸和形态都不受任何 限制的物体。
导致这一结果的主要原因是两者研究问题的基本方法的不同。
3. 答:弹塑性力学与材料力学、结构力学是否同属固体力学的范畴,它们各自求解的主要问题都是变形问题,求解主要问题的基本思路也是相同的。
这一基本思路的主线是:(1)静 力平衡的受力分析;(2)几何变形协调条件的分析;(3)受力与变形间的物理关系分析; 4. 答:“假设固体材料是连续介质”是固体力学的一条最基本假设,提出这一基本假设得意义是为利用数学中的单值连续函数描述力学量(应力、应变和位移)提供理论依据。
5. 答:请参见本章教材。
6. 答:略(参见本章教材)7. 答:因为物体内一点某微截面上的正应力分量 σ 和剪应力分量τ 同材料的强度分析 问题直接相关,该点微截面上的全应力则不然。
8. 答:参照坐标系围绕一点截取单元体表明一点的应力状态,对单元体的几何形状并不做 特定的限制。
根据单元体所受力系的平衡的原理研究一点的应力状态。
研究它的目的是: 首先是了解一点的应力状态任意斜截面上的应力,进一步了解该点的主应力、主方向、 最大(最小)剪应力及其作用截面的方位,最终目的是为了分析解决材料的强度问题。
9.答:略(请参见教材和本章重难点剖析。
) 10. 答:略(请参见教材和本章重难点剖析。
)11. 答:略(请参见教材和本章重难点剖析。
) 这样分解的力学意义是更有利于研究材料的塑性变形行为。
12. 答:略(请参见教材和本章重难点剖析。
)纳唯叶 (Navier) 平衡微分方程的力学意义是:只有满足该方程的应力解和体力才是客观上可能存在的。
13. 答:弹塑性力学关于应力分量和体力分量、面力分量的符号规则是不一样的。
它们的区别请参见教材。
14、答:弹塑性力学的应力解在物体内部应满足平衡微分方程和相容方程(关于相容方程详见第3、5、6章),在物体的边界上应满足应力边界条件。
中南大学考试试卷2001 —— 2002 学年第二学期时间110 分钟金属塑性加工原理课程64 学时4 学分考试形式:闭卷专业年级材料1999 级总分100 分,占总评成绩70%一、名词解释(本题10分,每小题2分)1.热效应2.塑脆转变现象3.动态再结晶4.冷变形5.附加应力二.填空题(本题10分,每小题2分)1.主变形图取决于______,与_______无关。
2.第二类再结晶图是_____,_______与__________的关系图。
3.第二类硬化曲线是金属变形过程中__________与__________之间的关系曲线。
4.保证液体润滑剂良好润滑性能的条件是_______,__________。
5.出现细晶超塑性的条件是_______,__________,__________。
三、判断题(本题10分,每小题2分)1.金属材料冷变形的变形机构有滑移(),非晶机构(),孪生(),晶间滑动()。
2.塑性变形时,静水压力愈大,则金属的塑性愈高(),变形抗力愈低()。
3.金属的塑性是指金属变形的难易程度()。
4.为了获得平整的板材,冷轧时用凸辊型,热轧时用凹辊型()。
5.从金相照片上观察到的冷变形纤维组织,就是变形织构()。
四、问答题(本题40 分,每小题10 分)1.分别画出挤压、平辊轧制、模锻这三种加工方法的变形力学图,并说明在生产中对于低塑性材料的开坯采用哪种方法为佳?为什么?2.已知材料的真实应变曲线,A 为材料常数,n 为硬化指数。
试问简单拉伸时材料出现细颈时的应变量为多少?3.试比较金属材料在冷,热变形后所产生的纤维组织异同及消除措施?4.以下两轧件在变形时轧件宽度方向哪一个均匀?随着加工的进行会出现什么现象?为什么?(箭头表示轧制方向)五、证明题(本题10 分)证明Mises 塑性条件可表达成:六、综合推导题(本题20 分)试用工程法推导粗糙砧面压缩矩形块(Z 向不变形)的变形力P 表达式,这里接触摩擦中南大学考试试卷2002 —— 2003 学年第二学期时间110 分钟金属塑性加工原理课程64 学时4 学分考试形式:闭卷专业年级材料2000 级总分100 分,占总评成绩70%一、名词解释(本小题10分,每小题2分)1.热变形2.弹塑性共存定律3.动态再结晶4.附加应力5.热效应二、填空题(本题22 分,每小题 2 分)1.金属塑性加工时,工件所受的外力分为_______________ 和_______________2.主变形图有_______________ 种,各主应变分量必须满足条件是:_______________3.应变速度是指_________________________________________4.平面应变其应力状态的特点是σz =________________________________________5.材料模型简化为理想刚塑性材料是忽略了材料的_______________ 和______________6.压力加工中热力学条件是指________、_______、_______7.第二类再结晶图是_______、________与_________关系图。
《金属塑性成形原理》习题答案一、填空题1•衡量金属或合金的塑性变形能力的数量指标有伸长率和断面收缩率。
2. 所谓金属的再结晶是指冷变形金属加热到更高的温度后,在原来变形的金属中会重新形成新的无畸变的等轴晶,直至完全取代金属的冷变形组织的过程。
3. 金属热塑性变形机理主要有:晶内滑移、晶内孪生、晶界滑移和扩散蠕变等。
4•请将以下应力张量分解为应力球张量和应力偏张量5.对应变张量L: b ^」,请写出其八面体线变盹与八面体切应变兀的表达式。
旳土£ 厂勺『+ (勺一珀徒一%『十6(总+凡+怎)6.1864年法国工程师屈雷斯加(H.Tresca )根据库伦在土力学中研究成果, 并从他自已所做的金属挤压试验,提出材料的屈服与最大切应力有关,如果T =盂呼-益=C采用数学的方式,屈雷斯加屈服条件可表述为^ 2。
7. 金属塑性成形过程中影响摩擦系数的因素有很多,归结起来主要有金属的种类和化学成分、工具的表面状态、接触面上的单位压力、变形温度、变形速度等几方面的因素。
8. 变形体处于塑性平面应变状态时,在塑性流动平面上滑移线上任一点的切线方向即为该点的最大切应力方向。
对于理想刚塑性材料处于平面应变状态下,塑性区内各点的应力状态不同其实质只是平均应力不同,而各点处9. 在众多的静可容应力场和动可容速度场中,必然有一个应力场和与之对应的速度场,它们满足全部的静可容和动可容条件,此唯一的应力场和速度场,称之为真实应力场和真实速度场,由此导出的载荷,即为真实载荷,它是唯一的。
10. 设平面二角形单兀内部任意点的位移米用如下的线性多项式来表示:良〔工”卩)二位]+<3》工+说劉认&小令+吋+口訝,则单元内任一点外的应变可表示为11、金属塑性成形有如下特点:_____ 、________ 、_____ 、___________12、按照成形的特点,一般将塑性成形分为_______ 和________ 两大类,按照成形时工件的温度还可以分为___________ 、________ 和_________ 三类。
教学检测B 一、填空题(每题 2 分共24 分〕1、金属之所以能够进展压力加工,是有由于金属材料具有〔〕。
2、作用在变形体上的外力有〔〕。
3、塑性变形中〔〕将不利于金属塑性的提高,而〔〕则有利于金属塑性的提高。
4、选定坯料尺于计算轧件轧后长度中依据〔〕来进展计算。
5、弹-塑性共存定律是指金属在发生塑性变形的同时有存在.6、轧制生产中承受的意义有所低工其的磨损、降低变形能耗和冷却工具及改善产品质量。
7、塑性变形后仍旧存留子在变形体内的附加应力叫。
8、改善咬入措施归纳起来有:减小咬入角、〔〕和施加顺扎制方向水平外力9、不均匀变形引起的后果是使金属〔〕、使金属塑性降低、是产品质量下降及使技术操作简单化。
10、影响宽展的因素有很多,归纳起来有〔〕。
11、提高塑性的主要途径有掌握金属的化学成分、掌握金属的组织解构和选择适当的〔〕及选择适宜的变形力学状态。
12、正确计算〔〕,可防止在连续式扎机生产中消灭堆钢和扎件拉断。
二、推断题〔每题 2 分共 24 分〕1.约束反力和反作用力都是在工件上力。
〔〕2.变形体内的应力状态随变形条件的变化是会发生转化的。
〔〕3.只要外力足够大就能扎出无限薄的钢材。
〔〕4.依据体积不变定律可知,金属在压力加工前后其体积保持不变。
〔〕5.随变形速度的增大,摩擦系数下降。
〔〕6.随变形速度的增大,金属的塑性下降。
〔〕7.单相组织的钢塑性较好,而多相组织的塑性较差。
〔〕8.松软性好金属,其塑性也肯定很好。
〔〕9.一般来说,随着变形温度的提高,金属的塑性随之提高。
〔〕10.随着变形温度的提高,金属的变形抗力随之降低。
〔〕11.附加应力的存在会使金属的变形抗力增加,使变形的能耗增加。
〔〕12.在钢辊上进展轧制是的宽展比在铸铁辊上的要大。
〔〕三、选择题〔每题 2 分共 24 分〕1.沿工具和工件接触面而切线方向阻碍金属流淌的力是〔〕。
A.主动力B.正压力C.摩擦力2.要扎出 2mm 厚的板带钢,你设定的辊缝尺寸 S 值应是〔〕。
塑性成形原理试题及答案一、选择题1. 塑性成形是指材料在外力作用下发生永久变形而不破坏的过程,以下哪种材料不适合进行塑性成形?A. 低碳钢B. 铝合金C. 陶瓷D. 钛合金答案:C2. 在塑性成形过程中,材料的塑性变形主要发生在哪个区域?A. 弹性变形区B. 塑性变形区C. 断裂区D. 疲劳区答案:B3. 以下哪种塑性成形方法不需要模具?A. 锻造B. 挤压C. 拉拔D. 冲压答案:A二、填空题4. 塑性成形的基本原理是材料在_________作用下发生塑性变形。
答案:外力5. 塑性成形过程中,材料的塑性变形能力通常用_________来衡量。
答案:塑性指数6. 塑性成形过程中,材料的变形程度通常用_________来表示。
答案:应变三、简答题7. 简述塑性成形的三个基本条件。
答案:塑性成形的三个基本条件包括:(1)材料必须具有足够的塑性;(2)外力必须足够大,以克服材料的内部阻力;(3)材料必须在适当的温度和速度下进行变形。
8. 描述塑性成形过程中的应力-应变曲线,并解释其各阶段的含义。
答案:塑性成形过程中的应力-应变曲线通常包括三个阶段:弹性阶段、屈服阶段和塑性流动阶段。
在弹性阶段,材料仅发生弹性变形,应力和应变成正比;屈服阶段是材料开始发生塑性变形的起点,此时应力达到屈服强度;在塑性流动阶段,材料继续发生塑性变形,但应力保持相对稳定。
四、计算题9. 假设一块材料经过塑性成形后,其长度从L1变为L2,求其应变ε。
答案:应变ε可以通过公式ε = (L2 - L1) / L1计算得出。
10. 如果已知材料的屈服强度σy和塑性变形前的应力σ1,求材料在塑性变形前的应变ε1。
答案:材料在塑性变形前的应变ε1可以通过公式ε1 = σ1 / E 计算得出,其中E是材料的弹性模量。
五、论述题11. 论述塑性成形在工业生产中的应用及其重要性。
答案:塑性成形在工业生产中应用广泛,如汽车制造、航空航天、建筑行业等。
1 / 218弹塑性力学2008级试题一 简述题(60分) 1)弹性与塑性弹性:物体在引起形变的外力被除去以后能恢复原形的这一性质。
塑性:物体在引起形变的外力被除去以后有部分变形不能恢复残留下来的这一性质。
2)应力和应力状态应力:受力物体某一截面上一点处的内力集度。
应力状态:某点处的9个应力分量组成的新的二阶张量∑。
3)球张量和偏量球张量:球形应力张量,即σ=000000m m m σσσ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,其中()13m x y z σσσσ=++ 偏量:偏斜应力张量,即x m xy xz ij yx y m yz zx zy z m S σστττσστττσσ⎡⎤-⎢⎥=-⎢⎥⎢⎥-⎣⎦,其中2 / 218()13m x y z σσσσ=++5)转动张量:表示刚体位移部分,即110221102211022u v u w y x z x v u v w ij x y z y w u w v x z y z W ⎡⎤⎛⎫⎛⎫∂∂∂∂--⎢⎥ ⎪ ⎪ ⎪∂∂∂∂⎢⎥⎝⎭⎝⎭⎢⎥⎛⎫⎛⎫∂∂∂∂⎢⎥=-- ⎪⎪⎢⎥ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎢⎥⎢⎥⎛⎫⎛⎫∂∂∂∂⎢⎥-- ⎪ ⎪ ⎪⎢⎥∂∂∂∂⎝⎭⎝⎭⎣⎦6)应变张量:表示纯变形部分,即112211221122uu v u w x y x z x v u vv w ij x y yz y w u w v wx z y z zε⎡⎤⎛⎫⎛⎫∂∂∂∂∂++⎢⎥ ⎪ ⎪ ⎪∂∂∂∂∂⎢⎥⎝⎭⎝⎭⎢⎥⎛⎫⎛⎫∂∂∂∂∂⎢⎥=++ ⎪⎪⎢⎥ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭⎢⎥⎢⎥⎛⎫⎛⎫∂∂∂∂∂⎢⎥++ ⎪ ⎪ ⎪⎢⎥∂∂∂∂∂⎝⎭⎝⎭⎣⎦7)应变协调条件:物体变形后必须仍保持其整体性和连续性,因此各应变分量之间,必须要有一定得关3 / 218系,即应变协调条件。
22222y xyx y x x yεγε∂∂∂+=∂∂∂∂。
8)圣维南原理:如作用在弹性体表面上某一不大的局部面积上的力系,为作用在同一局部面积上的另一静力等效力所代替,则荷载的这种重新分布,只造离荷载作用处很近的地方,才使应力的分布发生显著变化,在离荷载较远处只有极小的影响。
一、名词解释1. 主应力:只有正应力没有切应力的平面为主平面,其面上的应力为主应力。
2. 主切应力:切应力最大的平面为主切平面,其上的切应力为主主切应力。
3. 对数应变 答:变形后的尺寸与变形前尺寸之比取对数4. 滑移线 答:最大切应力的方向轨迹。
5. 八面体应力:与主平面成等倾面上的应力6. 金属的塑性:在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力。
7. 等效应力:又称应力强度,表示一点应力状态中应力偏张量的综合大小。
8. 何谓冷变形、热变形和温变形:答度以下,通常是指室温的变形。
热变形:在再结晶温度以上的变形。
温变形,高于室温的变形。
9. 何谓最小阻力定律:答,物体质点将向着阻力最小的方向移动,即做最少的功,走最短的路。
10.金属的再结晶 答:冷变形金属加热到一定的温度后,在原来变形的金属中会重新形成新的无畸变的等轴晶,直至完全取代金属的冷变形组织的过程。
11. π平面 答:是指通过坐标原点并垂于等倾线的平面。
12.塑性失稳 答:在塑性加工中,当材料所受的载荷达到某一临界后,即使载荷下降,塑性变形还会继续,这种想象称为塑性失稳。
13.理想刚塑性材料:在研究塑性变形时,既不考虑弹性变形,又不考虑变形过程中的加工硬化的材料。
P13914.应力偏张量:应力偏张量就是应力张量减去静水压力,即:σij ′ =σ-δij σm二、填空题1. 冷塑性变形的主要机理:滑移和孪生2. 金属塑性变形的特点:不同时性、相互协调性和不均匀性。
3. 由于塑性变形而使晶粒具有择优取向的组织称为:变形织构 。
4. 随着变形程度的增加,金属的强度 硬度增加,而塑性韧性降低,这种现象称为:加工硬化。
5. 超塑性的特点:大延伸率、低流动应力、无缩颈、易成形、无加工硬化 。
6. 细晶超塑性变形力学特征方程式中的m 为:应变速率敏感性指数。
7. 塑性是指金属在外力作用下,能稳定地发生永久变形而不破坏其完整性的能力 。
五、计算题(共30分,每小题10分)
1. 已知某点的应力状态⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡-=σ600000200200ij 。
(共18分)
1)求该点的主应力和主方向(10分);ﻫ2)通过计算判断该点是否处于平面应变状态(3分);ﻫ3)画出该点的应力莫尔圆和应变莫尔圆(5分)。
2. 如图所示,已知两端封闭且足够长的薄壁圆筒的半径为r ,壁厚为t,屈服应力为s σ。
该圆筒受内压p的作用而产生塑性变形,设材料各向同性且忽略其弹性变形,求:⑴ 内压p 的大小;⑵ 圆筒切向、轴向及径向应变增量的比值。
(12分
)
3. 已知半径为r ,壁厚为t 的薄壁圆筒,承受轴向拉伸和扭转联合作用而产生塑性变形,
设加载过程中保持σ=τ2,且材料的屈服应力为s σ。
1)求该圆筒屈服时的轴向载荷P 和扭矩M(6分);ﻫ2)设材料各向同性且忽略其弹性变形,求其切向、轴向及径向应变增量的比值(6分)。
(共12分)
4. 已知薄壁管半径为r 壁厚为t,在扭矩M和轴向拉力P 的共同作用下产生塑性变形。
设材料的屈服应力为S σ(服从TRE SCA 屈服准则),且在数值上P=M,求:
1)拉力P 的大小;
2)该薄壁管上任意一点的三个主应力;
3)该薄壁管上任意一点径向、轴向及环向应变增量的比值。
5. 已知薄壁球壳半径为r,壁厚为t ,受内压p 作用。
求使用MISES 屈服准则时的内
压p的值,并求此时经向、纬向及径向应变增量的比值(15分)
6. 如图所示,工件横截面尺寸为2a×h,长度足够长,在上下模具之间进行平面应变镦粗,
且工件和模具之间的摩擦满足常摩擦模型mK =τ。
试用主应力法确定工件与模具接触面上压应力的分布情况,以及变形力P 的大小。
7.如图所示,已知顶部被削平的楔体,承受均布载荷q的作用而产生塑性变形,若楔
体夹角为a2
δ,且,用滑移线法求均布载荷q的大小。
(8分)
2=
AB
8.如下图所示,用滑移线法求光滑冲头压入两边为斜面的半无限体时单位压力q的大
小。
9.如图所示,用上限法计算平冲头压入半无限体时所需的压力P。
假设冲头表面光滑,
无摩擦,冲头宽度为2b,长度(垂直于纸面方向的尺寸)足够长,图中的三个刚性块均为等边三角形。
10.下图为平面正挤压的刚性块变形模式,假设模壁光滑,试用上限法计算其上限载荷P。
(注:由于对称性,图中只画出了一半。
O区为死区,不流动。
)(8分)。