弹塑性理论
- 格式:docx
- 大小:39.72 KB
- 文档页数:8
弹性理论与塑性理论,弹性材料与塑性材料浅析经过一学期,弹性与塑性力学这门课程的学习结束了。
学习完弹性与塑性力学以后,我对弹性力学与塑性力学,弹性材料与塑性材料的区别与联系的认识进一步加深了。
首先谈一下有关弹性理论的基本知识。
弹性力学也称弹性理论,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。
在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。
材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。
弹性力学是固体力学的重要分支,它研究弹性物体在外力和其它外界因素作用下产生的变形和内力,也称为弹性理论。
它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。
弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。
绝对弹性体是不存在的。
物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。
弹性力学所依据的基本规律有三个:变形连续规律、应力-应变关系和运动(或平衡)规律,它们有时被称为弹性力学三大基本规律。
弹性力学中许多定理、公式和结论等,都可以从三大基本规律推导出来。
连续变形规律是指弹性力学在考虑物体的变形时,只考虑经过连续变形后仍为连续的物体,如果物体中本来就有裂纹,则只考虑裂纹不扩展的情况。
这里主要使用数学中的几何方程和位移边界条件等方面的知识。
求解一个弹性力学问题,就是设法确定弹性体中各点的位移、应变和应力共15个函数。
从理论上讲,只有15个函数全部确定后,问题才算解决。
但在各种实际问题中,起主要作用的常常只是其中的几个函数,有时甚至只是物体的某些部位的某几个函数。
所以常常用实验和数学相结合的方法,就可求解。
数学弹性力学的典型问题主要有一般性理论、柱体扭转和弯曲、平面问题、变截面轴扭转,回转体轴对称变形等方面。
第五章 弹塑性模型理论5.1 概述弹塑性理论可以分为两种,塑性增量理论和塑性全量理论。
塑性增量理论又称塑性流动理论,塑性全量理论又称塑性形变理论。
在塑性增量理论中,将物体在弹塑性变形阶段的应变ij ε分为两部分:弹性应变e ij ε和塑性应变p ij ε。
塑性应变增量ij d ε的表达式为e p ij ij ij d d d εεε=+ (5.1.1)式中,弹性应变增量d e ij ε可以用广义虎克定律计算,塑性应变增量d p ij ε可以根据塑性增量理论计算。
塑性增量理论主要包括三部分:(1) 屈服面理论;(2) 流动规则理论;(3) 加工硬化(或软化)理论。
在塑性形变理论中是按全量来分析问题的。
它在盈利状态和相应的应变状态之间建立一一对应的关系。
塑性形变理论实质上是把弹塑性变形过程看成是非线性弹性变形过程。
严格说,在弹塑性变形理论的应用是有条件的。
严格讲,只有在等比例加载条件下,应用塑性变形理论可以得到精确解。
所谓等比例加载是指在加载过程中,各应力分量是按同一比例增加的。
严格的等比例加载是很难满足的,在土工问题中可以说是不可能的。
在简单加载条件下应用塑性形变理论分析有时也可以取得较好效果。
近些年来建立的土体弹塑性模型大部分是根据塑性增量理论建立的。
本章主要介绍塑性增量理论,在最后一节简要介绍塑性形变理论。
5.2 屈服面得概念首先讨论理想弹塑性材料。
理想弹塑性材料受力到什么程度才开始发生塑性变形呢?在简单拉伸时,问题是很明显的。
当应力等于屈服应力σs 时,塑性变形开始产生。
σs 值是可以在拉伸试验应力-应变曲线上找到的。
然而在复杂应力状态时,问题就不是这样简单了。
一点的应力状态由六个应力分量确定。
在复杂应力状态下,显然不能任意选取某一个应力分量的数值作为判断材料是否进入塑性状态的标准。
因此需要在应力空间或应变空间来考虑这一问题。
在土塑性力学中,常用的应力空间有三维主应力空间、p 、q (或σm ,σ1-σ3)应力平面、以及132σσ+,132σσ-应力平面等。
第二部分弹塑性问题的有限元法第四章弹塑性体的本构理论第五章弹塑性体的有限元法第四章弹塑性体的本构理论4-1塑性力学的基本内容和地位塑性力学是有三大部分组成的:1) 塑性本构理论,研究弹塑性体的应力和应变之间的关系;2) 极限分析,研究刚塑性体的应力变形场,包括滑移线理论和上下限法;3) 安定分析,研究弹塑性体在低周交变载荷作用下结构的安定性问题。
塑性力学虽然是建立在实验和假设基础之上的,但其理论本身是优美的,甚至能够以公理化的方法来建立整个塑性力学体系。
塑性力学是最简单的材料非线性学科,有很多其它更复杂的学科,如损伤力学、粘塑性力学等,都是借用塑性本构理论体系而发展起来的。
4-2关于材料性质和变形特性的假定材料性质的假定1)材料是连续介质,即材料内部无细观缺陷;2)非粘性的,即在本构关系中,没有时间效应;3)材料具有无限韧性,即具有无限变形的可能,不会出现断裂。
常常根据材料在单向应力状态下的σ-ε曲线,将弹塑性材料作以下分类:硬化弹塑性材料理想弹塑性材料弹塑性本构理论研究的是前三种类型的材料,但要注意对于应变软化材料,经典弹塑性理论尚存在不少问题。
变形行为假定 1)应力空间中存在一初始屈服面,当应力点位于屈服面以内时,应力和应变增量的是线性的;只有当应力点达到屈服面时,材料才可能开始出现屈服,即开始产生塑性变形。
因此初始屈服面界定了首次屈服的应力组合,可表示为()00=σf(1)2) 随着塑性变形的产生和积累,屈服面可能在应力空间中发生变化而产生后继屈服面,也称作加载面。
对于硬化材料加载面随着塑性变形的积累将不断扩张,对于理想弹塑性材料加载面就是初始屈服面,它始终保持不变,对于软化材料随着塑性变形的积累加载面将不断收缩。
因此加载面实际上界定了曾经发生过屈服的物质点的弹性范围,当该点的应力位于加载面之内变化时,不会产生新的塑性变形,应力增量与应变增量的关系是线性的。
只有当应力点再次达到该加载面时,才可能产生新的塑性变形。
《弹塑性理论》课程教学大纲课程代码R1100112课程名称中文名:弹塑性理论英文名:E1asticandP1asticMechanics课程类别专业选修课修读类别任选学分 2.0 学时32(理论)开课学期第6学期开课单位工程力学系应用力学教研室适用专业材料科学与工程先修课程《理论力学》、《材料力学》后续有关专业课无程和教学环节主讲教师/职称郭树起/教授、张存/讲师考核方式及各环期末考试(100%)节所占比例教材及主要参考建议教材:”《弹性力学简明教程》(第4版),徐芝纶编著,高等教育出版社,2013o《塑性力学引论》,王仁、黄文斌著,北京大学出版社,1992。
建议参考书:(1)《弹性力学》(第5版)上册,徐芝纶,高等教育出版社,2016。
(2)《弹塑性力学引论》,杨桂通,清华大学出版社,2004o一、课程性质和目标《弹塑性理论》是材料科学与工程等类专业的一门专业选修课。
课程的基本任务是研究弹性体由于外力载荷或者温度改变,物体内部所产生的位移、变形和应力分布等,为解决工程结构的强度,刚度和稳定性问题做准备,但是并不直接作强度和刚度分析以及材料超过弹性范围后力学行为。
课程的目的和任务是使学生平面、空间问题和材料进入塑性后的力学分析方法,培养学时利用所学知识进行力学分析和设计的能力。
知识目标:课程目标1:确立学习任务和方法,认识弹塑性理论的研究对象、研究方法、基本概念及基本假定。
课程目标2:学习平面问题的基本理论,理解平面应力问题与平面应变问题的判定依据,建立平面问题的平衡微分方程、几何方程、物理方程及应力边界条件,利用微元体受力平衡给出物体内任意一点的应力状态,运用圣维南原理给出小边界上的应力边界条件,理解并应力函数求解弹性力学问题的过程。
课程目标3:运用逆解法、半逆解法给出平面问题的直角坐标解答,运用逆解法及半逆解法计算矩形梁的纯弯曲问题、简支梁受均布荷载问题。
课程目标4:学习空间问题的基本理论,理解并空间问题的平衡微分方程、几何方程物理方程及应力边界条件,利用微元体受力平衡给出物体内任意一点的应力状态。
岩土工程中的弹塑性理论与分析技术岩土工程中的弹塑性理论与分析技术是研究岩土材料在受力作用下的弹性和塑性变形特性的理论和方法。
这些理论和技术在岩土工程设计、施工和监测中具有重要的应用价值。
本文将从弹塑性理论的基本概念、应用范围以及分析技术的具体方法等方面进行阐述。
弹塑性理论是研究岩土材料在受力作用下的弹性和塑性变形特性的理论。
弹性是指岩土材料在受力作用下能够恢复原状的能力,而塑性是指岩土材料在受力作用下会发生不可逆的变形。
弹塑性理论的基本假设是岩土材料在受力作用下是具有弹塑性的,并且可以通过一定的数学模型来描述其力学行为。
岩土工程中的弹塑性理论主要包括弹性理论、弹塑性理论和塑性理论。
弹性理论是最基本的弹塑性理论,它假设岩土材料在受力作用下只发生弹性变形,而不发生塑性变形。
弹塑性理论则是在弹性理论的基础上引入了塑性变形的概念,它假设岩土材料在受力作用下既可以发生弹性变形,也可以发生塑性变形。
塑性理论则是假设岩土材料在受力作用下只发生塑性变形,而不发生弹性变形。
在岩土工程中,弹塑性理论的应用范围非常广泛。
首先,弹塑性理论可以用于岩土工程设计中的荷载和变形计算。
通过建立合适的弹塑性模型,可以对岩土体在受力作用下的变形和破坏进行合理预测,从而指导工程设计和施工。
其次,弹塑性理论可以用于岩土体力学性质的试验研究。
通过对岩土体在不同应力状态下的弹塑性行为进行试验研究,可以获取岩土材料的力学参数,为岩土工程的设计和施工提供可靠的依据。
此外,弹塑性理论还可以用于岩土体的动力响应分析、岩土体的稳定性分析等方面。
在岩土工程中,弹塑性分析技术是基于弹塑性理论的具体计算方法。
弹塑性分析技术主要包括弹塑性有限元分析、弹塑性强度折减法、弹塑性反分析等方法。
弹塑性有限元分析是一种基于有限元法的弹塑性分析方法,通过建立合适的有限元模型和弹塑性本构关系,可以对岩土体在受力作用下的变形和破坏进行数值模拟。
弹塑性强度折减法是一种基于强度折减原理的弹塑性分析方法,通过将岩土体的强度参数按照一定的折减系数进行计算,可以对岩土体在受力作用下的变形和破坏进行估计。
岩土工程中的弹塑性理论与分析技术岩土工程是研究土体和岩石力学行为以及相关工程问题的学科。
在岩土工程中,土体和岩石常常会受到外力的作用,从而产生弹性变形和塑性变形。
弹性变形是指在加载或卸载外力后,土体和岩石能够恢复到原始形状的能力。
而塑性变形是指土体和岩石在加载或卸载外力后,无法完全恢复原始形状的能力。
为了研究土体和岩石在弹性和塑性阶段的力学特性,人们提出了弹塑性理论与分析技术。
弹塑性理论与分析技术是将弹性理论与塑性理论相结合,用于描述土体和岩石在受力过程中的力学行为。
弹塑性理论首先研究土体和岩石的弹性行为。
弹性是指土体和岩石在外力作用下,能够恢复到原始形状的能力。
弹性理论利用应力和应变的关系来描述土体和岩石的弹性行为。
常见的弹性理论有胡克定律、泊松比理论等。
这些理论可以用来计算土体和岩石的弹性应力、应变和变形。
然而,在实际的工程中,土体和岩石常常会出现塑性变形。
塑性变形是指土体和岩石在加载或卸载外力后,无法完全恢复原始形状的能力。
塑性行为涉及到土体和岩石内部颗粒的移动和变形,因此塑性变形的研究要比弹性变形复杂得多。
弹塑性理论与分析技术的目的就是要研究土体和岩石的弹塑性行为,并提供相应的分析方法。
弹塑性理论与分析技术的主要内容包括:1. 弹性塑性模型:弹塑性模型是描述土体和岩石在加载或卸载过程中的应力和应变关系的数学模型。
常见的模型有Cam-Clay模型、Mohr-Coulomb模型、Drucker-Prager模型等。
这些模型可以用来计算土体和岩石的应力应变状态,从而得到土体和岩石的强度参数和变形特性。
2.弹塑性本构关系:弹塑性本构关系是描述土体和岩石在受力过程中力学行为的数学方程。
本构关系可以用来计算土体和岩石的应力、应变和变形。
常见的本构关系有弹性本构关系、弹塑性本构关系等。
这些本构关系可以用来计算土体和岩石的弹性和塑性变形。
3.弹塑性分析方法:弹塑性分析方法可以用来计算土体和岩石的应力、应变和变形。