道路模拟试验系统介绍
- 格式:pptx
- 大小:4.89 MB
- 文档页数:34
车辆道路模拟试验系统随着我国汽车工业的迅猛发展,尤其是我国加入WTO后,伴随着新的《汽车产业发展政策》以及《缺陷汽车产品召回管理规定》的出台,汽车工业面临着新的机遇和挑战,努力提高汽车整车质量和加快新车型的研发速度是汽车工业的唯一出路,这不仅对汽车工业提出了更高的要求,同时也对试验设备制造业提出了新的课题,如何更加逼真的模拟道路试验并缩短试验时间以缩短新车型的研发周期成了汽车工业和试验设备制造业的共同追求。
1.道路模拟试验的发展和回顾从1886年世界第一辆真正意义的汽车诞生以来,汽车工业走过了一百多年的发展历程。
汽车的诞生彻底改变了人民的生活,同时对汽车也提出了新的要求:行驶寿命、行驶安全等等,如何更好的提高汽车的行驶寿命,同时又要降低成本成了汽车研发工程师的追求,于是提出了全历程的道路试验——试车场跑道跑车试验,通过试验为汽车研发工程师提供了宝贵的设计更改依据,但随着汽车工业的进一步发展,汽车工业的竞争日趋激烈要求汽车制造商必须更快的推出新一代的车型,才能保证在激烈的市场竞争中立于不败之地,于是到了20世纪60年代出现了室内台架模拟试验。
1.1简单路面模拟道路试验经历了漫长的发展历程,即使到了今天在汽车工业发展相对落后的中国仍在使用这种方法,这种方法存在着先天的缺点:试验结果受天气以及驾乘人员等因素的影响较大,试验结果的精度以及重复性较差,试验周期长。
到了20世纪60年代,汽车的设计和试验随着电液伺服闭环技术的日趋成熟逐渐由静态力学试验模式发展到动态特性的研究,1962年美国通用汽车公司凯迪拉克轿车部提出了委托美国MTS公司设计制造一台汽车道路模拟机的计划,经过双方密切合作于1965年制造完毕并投入使用,这就是世界上第一台汽车道路模拟机。
其输入信号是这样获得的:对安装在车身上的加速度传感器测得的加速度信号进行两次积分获得车身对路面的绝对位移,通过安装在车身两侧的测试轮测量测试轮与汽车车身的相对位移,二者的差就是路面高程在时间历程上的波形,即汽车道路模拟机的输入信号,但这种方法存在其很大的缺点:轮胎的包容性未能被模拟;存在轨迹误差。
交通仿真系统的建立与应用随着城市化水平的不断提高,交通拥堵成为城市发展中的重要问题。
为了解决城市交通问题,交通仿真系统应运而生,成为现代城市交通规划和管理的重要工具。
本文将介绍交通仿真系统的建立与应用。
一、交通仿真系统的概念和意义交通仿真系统是一种基于计算机技术的软件系统,用于模拟交通流在不同条件下的运行情况。
其主要功能是模拟分析路段、交叉口、道路网络等交通环节的交通流量、速度、密度、延误等指标,为交通规划、设计、管理与评价提供科学依据。
交通仿真系统的应用意义主要体现在以下几个方面:1. 优化道路设计:通过交通仿真系统对道路设计方案进行模拟,可预测不同方案下的交通流量和效果,为道路设计的优化提供决策依据。
2. 改善交通流量:交通仿真系统可在不影响实际交通情况的前提下调节交通流量,从而达到改善交通拥堵的目的。
3. 优化交通信号控制:对于城市交通信号控制系统的优化,交通仿真系统可以进行仿真模拟,提供更科学的设备方案。
4. 提高安全性:通过交通仿真系统对城市交通系统逐步进行仿真模拟,可以更加科学地进行安全评估,提前预测出可能出现的交通事故,从而提高城市交通系统的安全性。
二、交通仿真系统的建立1. 数据收集和处理:建立交通仿真系统的第一步是收集和处理相关数据。
主要包括道路信息、车辆流量、人口、气象等。
2. 建立地理信息系统:地理信息系统是交通仿真系统的核心。
通过GIS,构建道路、路段、交叉口、车流量等数据的空间关系模型,可以方便地进行仿真分析。
3. 选择仿真模型:选择与需要满足的问题相符合的交通仿真模型。
目前主要有微观模型和宏观模型两种,根据不同的应用场景,选择合适的模型。
4. 设计仿真实验:设计仿真实验来验证交通仿真系统的准确性。
在实验前需要清晰制定场景、目标和方法。
5. 仿真分析和优化:通过仿真分析找出可能存在的问题点,并进行优化。
三、交通仿真系统的应用1. 道路网络规划:通过交通仿真系统,对道路网络进行模拟,成为道路规划的重要工具,可以更加科学地确定一些政策决策。
24通道模拟路试试验标准通道模拟路试试验标准是指在汽车研发过程中,通过模拟真实道路环境的试验标准,对车辆的性能、安全性以及其他关键指标进行评估和验证的一种方法。
本文将以该主题,详细介绍24通道模拟路试试验标准。
第一步:试验目的与意义24通道模拟路试试验的目的是为了对车辆在真实道路行驶中的各项性能进行全面的评估与验证。
通过模拟道路情况,可以更加真实地还原车辆的实际使用环境,从而更准确地了解车辆在不同道路条件下的行驶情况和性能表现。
这对于汽车制造商来说,有助于提高产品质量和安全性。
第二步:试验环境与设备24通道模拟路试试验通常需要建立一个仿真环境,包括试验台架和模拟道路环境。
试验台架由车辆悬挂系统和模拟道路系统组成,可以模拟开车时的振动和加速度。
而模拟道路环境则由24个通道组成,每个通道都可以通过控制器进行精确控制和调整,以模拟不同的道路情况。
第三步:试验参数与指标在进行24通道模拟路试试验时,需要选取适当的试验参数和指标来评估车辆的性能。
常见的试验参数包括车速、加速度、温度、湿度等,而指标则可以包括车辆的悬挂系统响应、车身的滚动和俯仰角、刹车的平衡性等。
这些参数和指标通常在汽车工程师根据实际需要进行选择和调整。
第四步:试验过程与数据采集在进行24通道模拟路试试验时,首先需要根据试验标准的要求设置试验参数,并将车辆安装在试验台架上。
然后,通过试验控制器,控制模拟道路系统的运行,并记录车辆在不同道路条件下的行驶情况。
试验过程中需要进行多次试验,以获取更准确的数据。
第五步:试验数据分析与评估在试验结束后,需要对采集到的试验数据进行分析和评估。
通过对数据进行处理和统计,可以得到车辆在不同道路条件下的性能指标。
然后,将这些指标与相关的标准进行比较和评估,以确定车辆是否符合设计要求和标准规定。
第六步:试验结果与应用最后,根据试验结果的分析和评估,可以对车辆进行进一步的改进和优化。
如果试验结果符合设计要求和标准规定,则可以将车辆投入到实际生产中。
工业技术科技创新导报 Science and Technology Innovation Herald104通常而言,车辆荷载测试以及载荷谱编制,能够为车辆以及其相关零部件的疲劳性试验提供科学的加载方式。
同时,这一测试过程也为车辆结构的疲劳寿命系统估测提供了一种科学的依据。
因此,该文主要结合我国国产B型轿车前桥为研究测试对象,在标准的E V P车辆模拟试验路上采集相关的运行信号以及编制行车荷载及载荷谱样本。
在此基础上,基于远程参数控制技术,对车辆道路模拟试验过程中的载荷谱进行构建,以此全面系统测试车辆的运行性能,以便对其整车结构和相关零部件进行改进设计与优化。
1 车辆道路模拟试验行车荷载分析通常车辆行驶中,车辆加减速、转向和制动等以及驾驶员习惯等因素会使行车产生外部动态荷载,此时的信号频率属于0.65 H z的低频信号;另一方面,道路技术等级以及材料铺装程度和使用周期、维护管理情况等也会使对行车施加外部动态荷载,此时的信号频率属于大于0.65 Hz的高频信号。
因此,行车在实际运行中,外部动态荷载会随着时间的不断变化而变化,其中大多荷载为随机外部动态荷载。
因此,会使汽车在行驶过程中的相关零部件产生不规则荷载,从而引发疲劳损伤[1]。
2 收集与获取车辆道路模拟试验的载荷谱及信号2.1 采集车辆道路模拟试验的载荷谱该次模拟试验全程在E V P 标准试验道路中进行,主要收集车辆在行驶中路面的实际状况信号,并按照一定比例将信号放大,相当于汽车在标准测试道路中进行运行,缩短测试周期。
为了防止车辆驾驶员不良驾驶习惯对行车荷载测试造成影响,因此安排3名专业驾驶员在此标准测试道路中随机进行15次循环测试,从而科学收集相关测试信号。
2.2 确定迭代控制点参数对于B级FF型前轮驱动以及发动机前置的轿车而言,车辆传动系以及悬架和转向系、发动机中的相关动力荷载全部需要由车辆的前桥来承担。
因此,道路对车辆前桥造成的动态激励是构成车辆行车过程中疲劳性损伤的主要因素之一。
重型车整车道路模拟试验中国重汽技术中心柴春正王政于林涛李文英任松茂赵洁绪辉[摘要] 道路模拟试验是在试验室模拟路面振动最先进的试验方法之一。
本文在以重型车为试验对象,完成了从道路谱采集到获取满足精度要求的最终驱动信号的整个道路模拟试验过程。
采用轮耦合连接,可以有效地防止车轮跳离托盘平面,消除由此而产生的非线性环节。
详细介绍了数据编辑处理的方法,采用数字滤波消除趋势项、毛刺和偏移等。
通过设置合适的红白噪声参数获取精确的系统模型,总结出了频响函数FRF、紧固件松动或脱落、作动器的伺服阀性能三大影响迭代质量的因素及其解决措施。
主题词:整车道路模拟,作动器,轮耦合连接,系统识别,迭代引言普通公路试验虽能真实反映汽车的实际使用状况,但需要消耗大量的人力和物力,而且试验周期长,试验条件很难控制。
为此,人们修建了集中各种苛刻路面的汽车试验场。
汽车试验场虽能在一定程度上节约了时间,加速了试验的进程,但仍不能满足日益发展的汽车工业的需要。
随着液压伺服设备和数字式程序控制器的产生,人们逐步建立了汽车室内道路模拟试验的方法。
汽车室内道路模拟试验运用的是RPC (Remote Parameter Control) 远程参数控制技术,其原理是将汽车近似看作一个控制系统,将车辆在室外道路行驶时的原始响应信号作为室内模拟试验所需要的期望信号,然后计算系统的频率响应函数,由此求得模拟试验的初始驱动信号;由于试验系统是非线性的,而上述频响函数矩阵的测定是基于系统为线性的,需要通过迭代逐渐修正初始驱动信号,从而得到模拟路面行驶所需的最终驱动信号。
本文在国内首次以重型车为试验对象,在安徽定远国家汽车试验场进行信号采集,对信号进行编辑、识别和迭代,尝试将前人在轿车、轻型车上的经验和方法移植到重型车上,全面分析重型车在道路模拟方面的特点。
具体工作涉及载荷谱的采集、轮胎耦合连接、道路谱的加速处理、系统识别和目标仿真。
1载荷谱的采集我们去安徽定远国家汽车试验场进行载荷谱的采集,试验车辆为6×4牵引头重型载货车,该试验车辆经过2000公里磨合,试验状况良好,满载工况。
corsim仿真原理CORSIM(Corridor Simulation)是一种用于城市交通仿真的软件,可以模拟车辆在城市道路网络中的移动和交通流量。
它是由美国联邦公路管理局(FHWA)开发的,旨在帮助城市交通规划师和工程师研究和分析不同交通管理和交通控制方案的效果。
CORSIM的仿真原理主要基于微观交通模型,即对每辆车辆进行详细的建模和仿真。
下面是CORSIM的仿真原理的详细说明。
1.道路网络建模:首先,道路网络被建模成一个有向图,其中道路段被表示为边,交叉口被表示为节点。
每条道路段都有特定的属性,例如长度、车道数目、限速等。
这些属性对车辆的移动和交通流有重要影响。
2.交通流生成:在仿真开始时,根据交通需求生成初始的车辆流量,并将车辆随机分配到不同的起点和目的地。
车辆的生成和分配可以基于历史数据、交通调查、人口统计数据等信息进行。
3.车辆移动模型:每辆车的移动都通过微观交通模型来模拟。
该模型考虑了车辆的加速度、减速度、速度限制、车间距等因素,根据车辆的行为决策模拟车辆的移动。
例如,车辆会根据红绿灯状态来判断是否停车,根据前车的速度和位置来调整自己的速度等。
4.交通信号控制:CORSIM还可以模拟交通信号控制的效果。
用户可以设定不同的信号控制策略(如配时方案、相位规划等),仿真可以根据这些策略模拟交通信号的运行和交通流量的调度。
5.数据收集与分析:仿真运行过程中,CORSIM会收集各种交通数据,例如车辆的行程时间、交通延误、停车时间等。
这些数据可用于评估交通管理和控制方案的效果,并帮助规划师和工程师做出改进和决策。
总的来说,CORSIM的仿真原理是基于微观交通模型,通过对道路网络、车辆行为和交通控制的建模和仿真,模拟车辆在城市道路网络中的移动和交通流量。
它可以帮助交通规划师和工程师研究不同交通管理和交通控制方案的效果,并做出相应的改进和决策。
公路运输模拟试验台说明书一、产品简介公路运输模拟试验台是一款用于模拟公路运输过程的试验设备,主要用于研究公路运输的效率、安全性和经济性。
该设备可模拟多种交通场景,包括车辆行驶、交通信号、道路状况等,为研究人员提供了一个真实、全面的模拟环境。
二、产品结构公路运输模拟试验台主要由以下几个部分组成:1.试验台主体:包括道路、交通信号、护栏等基础设施。
2.车辆模型:包括各种类型的货车、客车等,可模拟不同车型的行驶过程。
3.控制系统:用于控制试验台的运作,包括交通信号的切换、道路状况的模拟等。
4.数据采集系统:用于收集试验过程中的数据,包括车辆行驶速度、油耗、刹车距离等。
三、使用方法使用公路运输模拟试验台前,请仔细阅读以下步骤:1.连接电源:将试验台电源线接入电源插座,并确保电源开关处于关闭状态。
2.安装车辆模型:根据需要安装不同类型的车辆模型到试验台上。
3.连接数据采集设备:将数据采集设备连接到试验台上的相应接口,确保连接稳定。
4.启动试验台:打开电源开关,启动试验台控制系统和数据采集系统。
5.设置模拟场景:根据研究需求,通过控制系统设置相应的交通信号、道路状况等模拟场景。
6.进行试验:在确保安全的前提下,开始进行试验,记录相关数据。
7.关闭试验台:试验结束后,关闭试验台电源,断开数据采集设备连接。
注意事项:1.使用前请确认设备工作正常,如有异常请及时联系售后。
2.在进行试验时,请确保操作安全,避免设备损坏和人员受伤。
3.试验过程中产生的数据需妥善保存,以便后续分析。
四、操作界面公路运输模拟试验台配备操作界面,用于控制试验台的运作。
操作界面包括以下功能:1.启动/关闭按钮:用于启动或关闭整个试验台。
2.场景设置按钮:用于切换不同的模拟场景,如交通信号、道路状况等。
3.数据采集设备设置按钮:用于调整数据采集设备的参数,确保数据采集的准确性。
4.故障模拟按钮:用于模拟车辆故障或其他突发情况,以便研究应对策略。