spss之生存分析2张文彤
- 格式:doc
- 大小:309.00 KB
- 文档页数:16
利用spss做生存分析课程设计一、教学目标本课程的目标是使学生掌握生存分析的基本概念、方法和应用,能够熟练使用SPSS软件进行生存分析,并能够对生存数据分析结果进行解释和报告。
具体的学习目标包括:1.理解生存分析的基本概念,包括生存时间、事件发生时间和风险比等。
2.掌握生存分析的基本方法,包括Kaplan-Meier法、Cox比例风险模型等。
3.熟悉SPSS软件中进行生存分析的操作方法和步骤。
4.能够使用SPSS软件进行生存时间的收集和整理。
5.能够使用SPSS软件进行生存分析,包括Kaplan-Meier法和Cox比例风险模型。
6.能够对生存分析结果进行解释和报告,包括生存曲线、风险比、显著性检验等。
情感态度价值观目标:1.培养学生对生存数据分析的兴趣和主动性,提高学生对数据分析的敏感性和判断力。
2.培养学生对数据的尊重和诚实的态度,要求学生在数据分析中严谨、客观、公正。
二、教学内容本课程的教学内容主要包括生存分析的基本概念、方法和SPSS软件的应用。
具体的教学大纲如下:1.生存分析概述:介绍生存分析的基本概念、定义和应用领域。
2.Kaplan-Meier法:介绍Kaplan-Meier生存曲线及其计算方法,包括生存时间和事件发生时间的收集和整理。
3.Cox比例风险模型:介绍Cox比例风险模型的基本原理和计算方法,包括风险比、显著性检验等。
4.SPSS软件操作:介绍SPSS软件中进行生存分析的操作方法和步骤,包括数据输入、生存分析命令和结果输出。
三、教学方法本课程的教学方法采用讲授法、案例分析法和实验法相结合的方式。
具体方法如下:1.讲授法:通过教师的讲解和演示,向学生传授生存分析的基本概念、方法和SPSS软件的操作技巧。
2.案例分析法:通过分析具体的生存分析案例,使学生能够将理论知识与实际应用相结合,提高学生的分析能力和判断力。
3.实验法:通过实验操作,使学生能够亲自动手进行生存分析,培养学生的实践能力和操作技能。
9本SPSS自学书籍教程推荐1、张文彤《SPSS统计分析基础教程》【本书介绍】为同时满足广大读者对统计学入门和统计软件操作入门的需求,本书改变了以往SPSS书籍对统计理论和软件操作“两条主线、各自表述”的编写方式,将这两者完全融合了起来。
全书共分15章,定位为统计软件和统计学入门书籍。
它以SPSS 12.0为准,针对统计初学者和SPSS初级用户的需求,以统计理论为主线,详细介绍了在SPSS中的界面操作、数据管理、统计图表制作、统计描述和常用单因素统计分析方法的原理与实际操作。
其内容完全覆盖目前国内大部分专业本科统计课程的教学范围,并结合SPSS的强大功能作了很好的扩展。
各章后均附有参考文献和思考练习题,涉及到统计理论的章节还提供了本章小结。
全书内容深入浅出,风格简洁明快,是一本难得的统计理论与SPSS操作相结合的统计参考书。
本书可用作各专业本科生和研究生的统计学教材,但同时也是一本SPSS 10~12版的通用入门教材,因此完全可以作为各行业中非统计专业背景,需要使用统计方法的人员,以及希望从头学习SPSS软件使用的人员的参考书使用。
【读者推荐】基础教程部分与其他同类书籍比起来能提出更精细的东西,而且都是十分关键和实用的东西,不是那种白痴不用说都能明白的地方还在那自恋的来回磨叽的书。
比如开始变量标签部分,就提出了“测量”标签的用法和叙述,这在很多书中是一笔带过的,但我觉得这个地方比较模糊,书中给出了对应的解释,这是比较难得的。
本书作为自学教材个人感觉是很合适的。
如果有机会可以先去图书馆借一本来看看。
2、张文彤《SPSS统计分析高级教程》【本书介绍】为满足广大读者学习和掌握高级统计分析方法的需求,本书以SPSS 12.O为准,详细介绍了各种多变量统计模型、多元统计分析模型的方法原理和软件实现技术,其内容涵盖了各种有广泛应用、经典或现代的模型和方法。
全书共分20章,作者在书中结合了自身多年的统计分析实践和SPSS行业应用经验,既有深入浅出的理论介绍,又有针对实际问题的解决办法,更侧重于对统计新方法、新观点的讲解。
生存分析SPSS生存分析是一种用于研究事件发生时间的统计方法,主要应用于医学研究领域,如生存时间、康复时间、心脏事件等的研究。
SPSS是一种常用的统计分析软件,可以用于进行生存分析。
生存分析的核心概念是生存函数和风险函数。
生存函数描述了一些时刻前存活的个体比例,而风险函数描述了在一些时刻内发生事件的个体比例。
通过生存函数和风险函数,可以得到不同因素对事件发生的影响程度。
生存分析常用的方法包括Kaplan-Meier法、Cox比例风险模型等。
使用SPSS进行生存分析的步骤如下:1.导入数据:在SPSS中,将数据导入到工作区,确保数据格式正确。
2.创建生存时间变量:根据研究需求,将事件发生的时间变量(如存活时间)输入到SPSS中。
3.创建事件变量:根据事件发生的情况,创建对应的事件变量(如生存状态),通常用1表示事件发生,0表示事件未发生。
4.进行生存函数分析:在SPSS的菜单栏中选择“分析”->“生存分析”->“生存函数”,将生存时间变量和事件变量输入到对应的框中,选择相应的统计量。
6.进行风险函数分析:在SPSS的菜单栏中选择“分析”->“生存分析”->“风险函数”,将生存时间变量和事件变量输入到对应的框中,选择相应的统计量。
7. 进行Cox比例风险模型分析:在SPSS的菜单栏中选择“分析”->“生存分析”->“Cox回归”,将生存时间变量和事件变量以及其他影响因素输入到对应的框中,进行模型拟合和参数估计。
8. 结果解读:分析结果会给出生存函数曲线、风险函数曲线以及Cox模型的参数估计和显著性检验结果。
根据研究问题进行合理解读,并绘制相应的图表和报告。
需要注意的是,进行生存分析时要选择适当的方法和模型,并考虑各种假设的合理性。
此外,对数据的质量和可靠性也要进行充分的检查和验证。
总结起来,SPSS是一种功能强大的统计分析软件,可以用于进行生存分析。
在使用SPSS进行生存分析时,需要导入数据、创建变量、选择适当的分析方法和模型,并对结果进行合理解读和报告。
SPSS统计分析⾼级教程第3版张⽂彤课后答案SPSS统计分析⾼级教程张⽂彤董伟课后习题答案本书作者是国内*著旬的SPSS培训师,曾作为SPSS官⽅培训师,⼀⼿协助SPSS中国建⽴其统计培训体系,具有丰富的数据分析/统计软件培训经验;本书是作者多年使⽤SPSS进⾏教学、科研与项⽬实战⼯作的经验结晶;本书基于IBM SPSS Statistics 24中⽂版,从统计分析实战的⾓度详细介绍了SPSS的各种⾼级统计分析功能,和《SPSS统计分析基础教程》(第3扫⼀扫⽂末在⾥⾯回复答案+SPSS统计分析⾼级教程⽴即得到答案版)⼀起构成了对该软件的全⾯介绍。
本书既可作为⾼等学校统计学相关课程教材,也可作为培训类教材。
本书全⾯、系统地介绍了各种多变量统计模型、多元统计分析模型、智能统计分析⽅法的原理和软件实现,是⼀本使⽤SPSS进⾏⾼级统计分析的实⽤性很强的指导书和参考书。
本书共分4个部分,分别是⼀般线性模型、线性混合模型与⼴义线性模型,回归模型,多元统计分析⽅法,以及其他统计分析⽅法。
本书基于IBM SPSS Statistics 24中⽂版,并结合作者多年的统计分析实战经验和SPSS⾏业应⽤经验,侧重对统计新⽅法、新观点的讲解,在保证统计理论严谨权威的同时注重叙述的浅显易懂,使本书更加易学易⽤。
本书可作为⾼等学校本科⽣和研究⽣统计学相关课程教材,也可作为市场营销、⾦融、财务、⼈⼒资源管理等⾏业中需要做数据分析的⼈⼠,或从事咨询、研究、分析等⼯作的⼈⼠的参考书。
张⽂彤,是国内统计软件教学和统计学⽹络教学,特别是张⽂彤董伟SPSS统计分析⾼级教程课后习题答案SPSS软件教学的开拓者,2001年以来协助SPSS中国公司⼀⼿建⽴了其国内的培训体系,是国内最为知名的SPSS培训师之⼀。
张⽂彤博⼠在复旦⼤学任教期间,同时保持着与统计应⽤相关业界各前沿领域的密切接触,在数据挖掘应⽤、市场研究应⽤等领域经验丰富。
市场研究⽅⾯,曾为知名跨国公司完成了中国城市⼥性市场细分模型、销量预测模型、商圈选址模型等项⽬,数据挖掘⽅⾯则在基因数据分析、医疗费⽤数据分析、公共卫⽣应急预警系统等⽅⾯进⾏了深⼊研究,并协助完成多项IT、电信、税务、银⾏张⽂彤董伟SPSS统计分析⾼级教程课后习题答案等⾏业的数据挖掘项⽬。
第五章:SPSS统计绘图功能详解(医学统计之星:张文彤)上次更新日期:5.1 常用统计图5.1.1 操作界面介绍(条图)5。
1.1。
1 条图的通用界面5。
1。
1。
2 复式条图与分段条图的界面5。
1.2 其他常用统计图5.1.2。
1 散点图5。
1.2。
2 线图5。
1.2。
3 饼图5。
1.2.4 面积图5。
1。
2。
5 直方图5。
1。
2.6 其他5。
1。
3 常用统计图编辑方法详解5。
2 交互式统计图5.3 统计地图在常用的统计软件中,SAS绘制的统计图不太美观;而SPSS绘制的统计图较为美观,可以满足大多数情况下的要求;STATA绘制的统计图形最为精美,但由于它采用命令行方式操作,美观的图形需要添加大量选项,普通人不易掌握;而S-PLUS、MATHLAB等偏数理统计的软件虽然绘图能力也非常强,但由于自身的定位问题,并不为大多数人所熟悉。
因此,在各种统计软件中,以SPSS制作的统计图应用最为广泛。
EXECL的统计绘图功能非常的强,我们还有必要学习SPSS的绘图功能吗?这个问题我的看法是:EXCEL由于它的纯中文界面和简单而强大的绘图功能,使得可以用它来直接绘制各种简单的统计图,但是,EXCEL可以直接绘制的统计图种类有限,象误差条图、自回归图等它就无能为力,即是它支持的线图、条图等,如果过于复杂,如叠式条图、累计条图等也无法作出,而这些图在统计中是经常会碰到的,此时就只有采用统计软件来绘制,SPSS就是其中的佼佼者.§5.1常用统计图在SPSS 10。
0版中,除了生存分析所用的生存曲线图被整合到ANALYZE菜单中外,其他的统计绘图功能均放置在graph菜单中。
该菜单具体分为以下几部分:•Gallery:相当于一个自学向导,将统计绘图功能做了简单的介绍,初学者可以通过它对SPSS的绘图能力有一个大致的了解.•Interactive:交互式统计图,这是SPSS 9。
0版新增的内容。
•Map:统计地图,这是SPSS 10.0版新增的内容.市面上所能见到的SPSS 10。
SPSS 统计分析主讲人:张文彤2
生存分析
一、生存分析概述
SPSS 统计分析主讲人:张文彤4
传统方法用于随访资料的困难
SPSS 统计分析主讲人:张文彤5传统方法用于随访资料的困难SPSS 统计分析主讲人:张文彤6
方法特点与局限
SPSS 统计分析主讲人:张文彤7生存分析的主要研究内容SPSS 统计分析主讲人:张文彤8
常用术语
SPSS 统计分析主讲人:张文彤9常用术语SPSS 统计分析主讲人:张文彤10
常用术语
SPSS 统计分析主讲人:张文彤11常用术语SPSS 统计分析主讲人:张文彤12
方法分类
SPSS 统计分析主讲人:张文彤13方法分类SPSS 统计分析主讲人:张文彤14
方法分类
SPSS 统计分析主讲人:张文彤15SPSS 中的相应模块SPSS 统计分析主讲人:张文彤16
SPSS 中的相应模块
二、单因素生存分析方法
SPSS 统计分析主讲人:张文彤18
Kaplan -Meier 法
SPSS 统计分析主讲人:张文彤19分析实例1:计算寿命表SPSS 统计分析主讲人:张文彤20
分析实例2:生存率曲线比较
SPSS 统计分析主讲人:张文彤21
分析实例3
三、Cox 比例风险模型入门
SPSS 统计分析主讲人:张文彤23模型简介SPSS 统计分析主讲人:张文彤24
模型简介
SPSS 统计分析主讲人:张文彤25模型简介SPSS 统计分析主讲人:张文彤26
模型简介
SPSS 统计分析主讲人:张文彤27模型简介SPSS 统计分析主讲人:张文彤28
综合分析实例
SPSS 统计分析主讲人:张文彤29
Cox 模型的适用条件。
第二章数据文件的管理(上)(医学统计之星:张文彤)最后一次更新时间:2.1建立与保存数据文件-File菜单2.1.1 新建数据文件2.121 直接打开2.122 使用数据库查询打开2.1.2.3 使用文本导入向导读入文本文件2.1.2 打开其他格式的数据文件2.1.3保存数据文件2.1.4 File菜单中的其他条目2.2 编辑数据文件2.2.1 定义新变量2.2.1.1 直接定义新变量2.2.1.2 从原有变量计算新变量-Transform菜单2.2.2 数据的录入2.2.2.1 直接录入2.2.2.2 数据录入技巧2.3 进一步整理数据文件-Data菜单不言而喻,一切统计分析都是以数据为基础的,因此统计软件的数据管理能力非常重要。
SPSS以其豪华的界面为依托,为用户提供的便捷的数据管理功能,下面我们就来具体看一下。
§2.1建立与保存数据文件和大多数应用软件相同,SPSS中数据文件的管理功能基本上都集中在了File菜单上,该菜单的组织结构和WORD等也极为相似,因此这里我们只介绍比较有特色的几个菜单项。
I SPSS 10.0有三个主要窗口界面:数据管理窗口、程序编辑窗口和结果浏览窗口;另有两个不常用的窗口:结果草稿浏览窗口和VBs脚本语言编辑窗口。
他们共享许多菜单项,如File菜单就大部分相同,这里介绍的许多内容在五个窗口中都是通用的。
2.1.1 新建数据文件如果你正从头开始进行一个新的课题,刚刚把数据收集上来,要做统计分析,自然需要新建一个数据库,然后将所有的数据从纸上请到计算机里。
在SPSS中,新建一个数据库容易的不得了一一已经到了什么都不用做的地步!是这样,当你进入SPSS系统时,系统就已经生成了一个空数据文件,即你看到的空白的数据管理界面。
你只要按自己的需要定义变量,输入数据然后存盘就是了(这些操作马上会讲到)。
2.1.2 打开其他格式的数据文件凡是做过数据输入工作的人都知道:这活又费眼睛又累人,出错太多了还要挨批评,非常影响个人的光辉形象算了,还是在有限的经费里划几百美元出来雇个打字小姐吧(怎么用美元?因为我请了个老外!)。
SPSS Survival(生存分析)菜单SPSS Survival菜单包括Life Tables过程、Kaplan-Meier过程、Cox Regression过程、Cox w/Time-Dep Cov过程。
这里只介绍Life Tables过程和Kaplan-Meier过程。
Life Tables过程Life Tables过程用于:1、估计某生存时间的生存率。
2、绘制各种曲线如生存函数、风险函数曲线等。
3、对某一研究因素不同水平的生存时间分布进行比较,控制另一因素后对研究因素不同水平的生存时间分布进行比较,包括从总体上比较和不同水平之间进行两两比较。
一、建立数据文件定义两个列变量:时间变量:取名“time”,label标上“survival time(week)”。
生存状态变量:取名“status”,并赋值:0=“删失”,1=“死亡”。
二、操作过程从菜单选择1、Analyze==>Survival ==>Life Tables2、Time框:选入time3、Display Time Intervals框:在by前面的框内填入生存时间上限,本例填入20(此区间必须包括生存时间的最大值);在by后面的框内填入生存时间的组距,本例填入5,以保证结果列出“15-”的组段。
4、Status框:选入status;击define events钮,在single value框右边的空格中输入15、单击Option按钮,弹出对话框:●Life Table(s) 输出寿命表,系统默认● Plots: 选Survival(累积生存函数曲线)击Continue6、单击OK钮附:界面说明图1 寿命表主对话框【Time】框选入生存时间变量。
【Display Time Intervals】框欲输出生存时间范围及组距。
在by前面的框内填入生存时间上限,本例填入200(此区间必须包括生存时间的最大值);在by后面的框内填入生存时间的组距,本例填入20,以保证结果列出“100-”的组段。
第十四章活着--Survival菜单详解(下)(医学统计之星:董伟)上次更新日期:13.1 Life Tables过程13.1.1 界面说明13.1.2 结果解释13.2 Kaplan-Meier过程13.2.1 界面说明13.2.2 结果解释13.3 Cox Regression过程13.3.1 界面说明13.3.2 结果解释13.4 Cox w/Time-Dep Cov过程13.4.1 界面说明13.4.2 结果解释§13.3 Cox Regression过程上面给大家介绍的是两种生存分析方法,但它们只能研究一至两个因素对生存时间的影响,当对生存时间的影响因素有多个时,它们就无能为力了,下面我给大家介绍Cox Regression过程,这是一种专门用于生存时间的多变量分析的统计方法。
Cox Regression过程主要用于:1、用以描述多个变量对生存时间的影响。
此时可控制一个或几个因素,考察其他因素对生存时间的影响,及各因素之间的交互作用。
例13.3 40名肺癌患者的生存资料(详见胡克震主编的《医学随访统计方法》生存时间状态生活能力评分年龄诊断到研究时间鳞癌小细胞癌腺癌疗法癌症类别4111706451001 1.001261606391001 1.0011817065111001 1.000,1,0为小细胞癌;0,0,1为腺癌。
表中的最后一个变量是我加上去的癌症类别,1为鳞癌;2为小细胞癌;3为腺癌;4为其它癌。
实践表明结果与用亚变量计算一样。
13.3.1 界面说明图9 Cox回归主对话框【Time】框、【Status】框前文已经介绍过了,这里我就不再废话唠叨的了。
Block 1 of 1右边的Next钮被激活。
这个按钮用于确定不同自变量进入回归方程的方法,详见Method框的内容。
用同一种方法进入回归方程的自变量在同一个Covariates框内。
【Covariates】框选入自/协变量,即选入你认为可能对生存时间有影响的变量。
【Method】框选择自变量进入Cox回归方程的方法,SPSS提供下面几种方法:•Enter: Covariates框内的全部变量均进入回归模型。
•Forward: Conditional: 基于条件参数估计的向前法。
•Forward: LR: 基于偏最大似然估计的向前法。
•Forward: Wald: 基于Wald统计量的向前法。
•Backward: Conditional: 基于条件参数估计的后退法。
•Backward: LR: 基于偏最大似然估计的后退法。
•Backward: Wald: 基于Wald统计量的后退法。
【Strata】框定义分层因素,将生存时间按分层因素分别进行Cox回归。
【Categorical】选项用于告诉系统,Covariates框内的变量中哪些是分类变量或字符型变量。
系统默认字符型变量为分类变量,数字型变量为连续型变量。
选入自变量后,categorical钮被激活。
按categorical钮,进入确定分类变量的对话框。
见图10。
图10 确定分类变量对话框左边的Covariates框中列出了刚刚被选取的自变量,将分类变量选入Categorical Covariates框中。
此时Change Contrast框被激活,请你选择比的方法。
当选入分类变量后,Change Contrast框被较方法,即计算参数OR/βi激活,此时可选择比较方法。
SPSS提供下面几种比较方法。
•Indicator:指示对比。
用于指定某一分类变量的基线,即参照水平。
这样计算出来的参数OR/βi是以该变量的第一个或最后一个水平为基准水平(取决于下面的reference category中你选择的是last还是first)。
在这里SPSS自动创建亚变量,对照水平在对比分类矩阵中用0行代表。
在这里我再多说两句,如本例中的肿瘤类型,若规定鳞癌为1,小细胞癌为2,腺癌为3,其它癌为4。
若选indicator及last,则以其它癌为参照,计算出来的OR及βi是以其它癌为基准,即其它癌的OR为1,其他计算出来的OR值是与其它癌相比的结果。
•Simple:差别对比。
可计算该分类变量的各水平与参照水平相比的OR值。
参照水平自己当然就不用跟自己相比了。
对于本例来说,Simple与Indicator选项是一样的,前提是下面的Reference Category中你所选择的同是last(或first)。
•Difference:差别对比。
分类变量欲比较水平与其前面的各水平平均值进行比较,当然也不包括第一水平。
与Helmert法相反,因此也叫反Helmert 法。
如3水平与1、2水平的平均值相比,下同。
•Helmert:赫尔默特对比。
分类变量欲比较水平与其后面各水平平均值进行比较,当然不包括最后一个水平。
•Repeated:重复对比。
分类变量的各水平与其前面相邻的水平相比较(第一水平除外)。
•Polynomial:多项式对比。
仅用于数字型的分类变量。
无效假设是假设各水平是等距离的(可以是线性的关系,也可以是立方、四次方的关系)。
例如年龄每增加10岁,死亡风险的增加值是一样的,但实际情况常常与此相反,如在20岁与60岁年龄段,年龄都增加10岁,所增加的死亡风险肯定是不一样的,具体情况需根据各人的研究课题,专业而定。
•Deviation:离差对比。
除了所规定的参照水平外,其余每个水平均与总体水平相比。
•Reference category:如果你选择了Deviation, Simple, 或Indicator 三个选项,就必须选择First或Last作为参照水平。
完成上述选择后,击change钮,确认选择。
你若对上面写的一段不感兴趣的话,可跳过去,直接用系统默认的选项。
【Plots】选项图11 Cox回归统计图对话框Survival:累积生存函数曲线。
Hazard:累积风险函数曲线。
Log minus log:对数累积生存函数乘以-1后再取对数。
One minus survival:生存函数被1减后的曲线。
•Change Value:系统默认用各变量的均数进行作图,但对字符型变量如癌症类型取均值则没有实际意义。
若用分类变量的其它水平进行作图,则选定该变量,此时Change Value钮被激活,按Value钮,在其右边的框内输入你所想要用于作图的值。
击Change。
•Separate Line for:输入分类变量的名称,此时可以用分类变量的不同水平进行作图,对于本例则可作出不同癌症的曲线。
此分类变量必须包括在前面的自变量框中。
【Save】存为新变量图12 Cox回归存为新变量对话框Survival:生存函数。
Function:累积生存函数估计值。
Standard error:累积生存函数估计值的标准误。
Log minus log:对数累积生存函数乘以-1后再取对数。
Diagnostics:回归诊断。
Hazard function Cox-Snell:残差。
Partial residual:偏残差。
Dfbeta(s):剔除某一观察单位后的回归系数变化量。
X*Beta:线性预测得分。
【Options】选项击Options按钮,弹出选项对话框。
图13 Cox回归选项对话框Model Statistics:模型统计量。
CI for exp(ß) 95%:相对危险度的可信区间。
系统默认95%可信区间。
Correlation of estimates:回归系数的相关阵。
Display model:输出模型方式。
At each step:输出每一步的模型。
系统默认。
At last step:输出最后一步的模型。
Probability for Stepwise:模型保留变量的显著性水平。
Entry:系统默认选入变量为P≤0.05。
Removal:系统默认剔除变量为P>0.10。
Maximum Iterations:最大迭代次数,系统默认20次。
Display baseline function:输出风险基准函数以及基于各协变量均值的生存函数与风险函数。
操作如下:1.Analyze==>Survival ==>Cox regression2. Time框:选入survival time3. Status框:选入status;击define events钮,在single value框右边的空格中输入1;4.Covariate框:选入x1,x2,x3,x7,x8;5. Categorical列表框:选入x8;6. Plots 列表框:Plot Type:选survival;Separate Line for:选入x8;7. Option列表框:Model Statistics:选CI for exp(ß):输出回归系数ß的95%可信区间。
选Correlation of estimate:输出自变量的相关矩阵。
单击OK钮13.3.2 结果解释:Cox Regression上表输出总例数、删失例数、失访例数。
输出各种癌症的频数及系统所赋的亚变量x81、x82、x83值,当癌症类型是鳞癌时,x81取值为1,其它亚变量取值为0,依此类推。
Block 0: Beginning Block模型拟合迭代过程,可不管它。
Block1: Method = Enter描述模型参数(常数项除外)是否全为0,本例,χ2=30.120,自由度υ=7,P=0.000。
说明β不全为0。
I对回归方程各参数的估计,B即ß值;SE,标准误;Wald,Wald卡方;df,自由度;sig,自由度;exp(B),OR值;95%Ci for EXP(B),OR值的95%可信区间。
自变量的相关矩阵。
本例,X1与X2的相关系数是0.072,其它依此类推。
输出自变量的均数及其在不同模式下的取值,因X1,X2,X3,X7四个变量没有生成亚变量,故在此输出它们的均数。
输出在各自变量的均值水平时的累积生存函数曲线。
输出各种癌症的累积生存函数曲线。
§13.4 Cox w/Time-Dep Cov过程Cox w/Time-Dep Cov过程应用于:1.在建立Cox回归方程时,风险比例可能会随时间变化而变化,即有些危险因素作用的强度随时间而变化,这样的资料是不适合前面所讲的一般的Cox回归模型的。
此时,就应改为时间依存协变量模型,也称为非比例风险模型。
你可把所怀疑的那个协变量及时间变量T_定义成时间依存协变量(多个协变量时就必须用编程来做了),常用的方法是把它们简单地进行相乘,然后通过对时间依存协变量系数的显著性检验来判断比例风险是否合理。
2.用到Cox w/Time-Dep Cov过程的另一种情况是:有些变量虽然在不同的时间点取不同的值但与时间并非系统地相关,在这种情况下,需用逻辑表达式定义一个分段时间依存协变量,逻辑表达式取值1时为真,取0时为假。