李雅普诺夫第一法(1/7)
3.2.1 李雅普诺夫第一法
李雅普诺夫第一法又称间接法,它是研究动态系统的一次近似 数学模型(线性化模型)稳定性的方法。它的基本思路是: 首先,对于非线性系统,可先将非线性状态方程在平衡态 附近进行线性化, 即在平衡态求其一次Taylor展开式, 然后利用这一次展开式表示的线性化方程去分析系 统稳定性。 其次,解出线性化状态方程组或线性状态方程组的特征值, 然后根据全部特征值在复平面上的分布情况来判定系统 在零输入情况下的稳定性。
从定义可知,所谓正定函数,即指除零点外恒为正值的标量函 数。由正定函数的定义,我们相应地可定义 负定函数、 非负定(又称半正定或正半定)函数、 非正定函数(又称半负定或负半定)和 不定函数。
实函数的正定性(3/4)—函数定号性定义
定义3-6 设xRn,是Rn中包含原点的一个区域,若实函数V(x) 对任意n维非零向量x,都有V(x)<0;当且仅当x=0时,才有 V(x)=0,则称函数V(x)为区域上的负定函数。
李雅普诺夫第一法(2/7)
下面将讨论李雅普诺夫第一法的结论以及在判定系统的状态稳 定性中的应用。
设所讨论的非线性动态系统的状态方程为 x’=f(x)
其中f(x)为与状态向量x同维的关于x的非线性向量函数,其各元 素对x有连续的偏导数。
参看课本P167
李雅普诺夫第一法(5/7)
李雅普诺夫第一法的基本结论是: 1. 若线性化系统的状态方程的系统矩阵A的所有特征值都 具有负实部,则原非线性系统的平衡态xe渐近稳定,而且系 统的稳定性与高阶项R(x)无关。 2. 若线性化系统的系统矩阵A的特征值中至少有一个具有 正实部,则原非线性系统的平衡态xe不稳定,而且该平衡态 的稳定性与高阶项R(x)无关。 3. 若线性化系统的系统矩阵A除有实部为零的特征值外,其 余特征值都具有负实部,则原非线性系统的平衡态xe的稳 定性由高阶项R(x)决定。