第2课时特殊圆周角
- 格式:doc
- 大小:516.00 KB
- 文档页数:6
第2章对称图形——圆2.4 第2课时特殊的圆周角知识点 1 利用直径所对的圆周角是直角求角度1.如图2-4-15,AB是⊙O的直径,点C在⊙O上.若∠A=40°,则∠B的度数为( ) A.80° B.60° C.50° D.40°图2-4-15图2-4-162.如图2-4-16,在⊙O中,AB为直径,CD为弦,已知∠ACD=40°,则∠BAD的度数为( )A.50° B.40° C.45° D.60°3.如图2-4-17,AB是⊙O的直径,C,D,E是⊙O上的点,则∠1+∠2=________°.图2-4-17图2-4-184.[2017·株洲] 如图2-4-18,已知AM是⊙O的直径,直线BC经过点M,且AB=AC,∠BAM=∠CAM,线段AB和AC分别交⊙O于点D,E.若∠BMD=40°,则∠EOM=________°.5.如图2-4-19,AB是⊙O的直径,弦CD与AB相交于点E,∠ACD=60°,∠ADC=50°.求∠CEB的度数.图2-4-19知识点 2 利用直径所对的圆周角是直角求线段长6.教材练习第1题变式如图2-4-20,把直角三角形的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M,N,量得OM=8 cm,ON=6 cm,则该圆形玻璃镜的半径是( )A.10 cm B.5 cm C.6 cm D图2-4-20图2-4-217.如图2-4-21,AB是⊙O的直径,若BC=5,AC=12,则⊙O的直径AB为________.8.[2017·台州] 如图2-4-22,已知等腰直角三角形ABC,P是斜边BC上一点(不与点B,C重合),PE是△ABP的外接圆⊙O的直径.(1)求证:△APE是等腰直角三角形;(2)若⊙O的直径为2,求PC2+PB2的值.图2-4-229.如图2-4-23,⊙O以等腰三角形ABC的一腰AB为直径,它交另一腰AC于点E,交BC 于点D.求证:BC =2DE.图2-4-23图2-4-2410.如图2-4-24,AB 是半圆的直径,D 是AC ︵的中点,∠ABC =50°,则∠DAB 等于( )A .55°B .60°C .65°D .70°11.[2017·海南] 如图2-4-25,AB 是⊙O 的弦,AB =5,C 是⊙O 上的一个动点,且∠ACB=45°.若M ,N 分别是AB ,AC 的中点,则MN 长的最大值是________.图2-4-25图2-4-2612.如图2-4-26,AB 是⊙O 的直径,C ,D 是⊙O 上的点,且OC∥BD,AD 与BC ,OC 分别相交于点E ,F ,则下列结论:①AD⊥BD;②CB 平分∠ABD;③∠AOC =∠AEC;④AF=DF ;⑤△CEF ≌△BED ;⑥BD=2OF.其中一定成立的是________(请填序号).13.如图2-4-27,AB 是半圆O 的直径,C ,D 是半圆O 上的两点,且OD∥BC,OD 与AC 交于点E.(1)若∠B=70°,求∠CAD 的度数; (2)若AB =4,AC =3,求DE 的长.图2-4-2714.如图2-4-28,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使CD=BC,延长DA与⊙O的另一个交点为E,连接AC,CE.(1)求证:∠B=∠D;(2)若AB=4,BC-AC=2,求CE的长.图2-4-2815.已知:如图2-4-29①,在⊙O中,直径AB=4,弦CD=2,直线AD,BC相交于点E.(1)∠E的度数为________;(2)如图②,直径AB与弦CD交于点F,请补全图形并求∠E的度数;(3)如图③,直径AB与弦CD不相交,求∠AEC的度数.图2-4-291.C [解析] 因为AB 是⊙O 的直径,所以∠C=90°,所以∠A+∠B=90°,则∠B=90°-∠A=90°-40°=50°.故选C .2.A [解析] ∵AB 为⊙O 的直径, ∴∠ADB =90°.∵∠ABD =∠ACD=40°,∴∠BAD =180°-90°-40°=50°. 3.90 [解析] 连接AC ,则∠ACB=90°. 根据圆周角定理,得∠ACE=∠2, ∴∠1+∠2=∠AC B =90°. 4.805.解:如图,连接BC ,则∠ADC=∠B.∵∠ADC =50°, ∴∠B =50°.∵AB 是⊙O 的直径, ∴∠ACB =90°, ∴∠BAC =40°.∵∠CEB =∠ACD+∠BAC,∠ACD =60°, ∴∠CEB =60°+40°=100°. 6.B 7.138.解:(1)证明:∵△ABC 是等腰直角三角形, ∴∠ABC =45°,∴∠AEP =45°. ∵PE 是⊙O 的直径,∴∠PAE =90°, ∴△APE 是等腰直角三角形.(2)∵△ABC 和△APE 均是等腰直角三角形, ∴AC =AB ,AP =AE ,∠CAB =∠PAE=90°, ∴∠CAP =∠BAE.在△APC 和△AEB 中,⎩⎪⎨⎪⎧AC =AB ,∠CAP =∠BAE,AP =AE ,∴△APC ≌△AEB ,∴PC =EB.∵PE 是⊙O 的直径,∴∠PBE =90°,∴PC 2+PB 2=EB 2+PB 2=PE 2=4. 9.证明:连接AD ,BE.∵AB 是⊙O 的直径,∴∠ADB =90°. 又∵AB=AC ,∴∠ABC =∠C,BD =DC , 即BC =2DC.∵∠DAE =∠DBE,∠ADE =∠ABE,∴∠DEC =∠DAE+∠ADE=∠DBE+∠ABE=∠ABC=∠C, ∴DE =DC ,∴BC =2DE. 10.C [解析] 连接BD. ∵D 是AC ︵的中点,即CD ︵=AD ︵, ∴∠ABD =∠CBD.∵∠ABC =50°,∴∠ABD =12×50°=25°.∵AB 是半圆的直径,∴∠ADB =90°, ∴∠DAB =90°-25°=65°. 11.5 2212.①②④⑥13.解:(1)∵AB 是半圆O 的直径,∴∠ACB =90°,∴∠CAB =90°-∠B =20°. 又∵OD∥BC,∴∠AOD =∠B=70°. ∵OA =OD ,∴∠DAO =∠ADO=12(180°-∠AOD)=55°,∴∠CAD =∠DAO-∠CAB=35°. (2)在Rt △ABC 中,BC =AB 2-AC 2=7. ∵OD ∥BC ,∴∠AEO =∠A CB =90°, 即OE⊥AC,∴AE =EC. 又∵OA=OB ,∴OE =12BC =72.∵OD =12AB =2,∴DE =OD -OE =2-72. 14. (1)证明:∵AB 为⊙O 的直径, ∴∠ACB =90°,即AC⊥BC.又∵CD=BC ,∴AD =AB ,∴∠B =∠D. (2)设BC =x ,则AC =x -2.在Rt △ABC 中,AC 2+BC 2=AB 2,即(x -2)2+x 2=42,解得x 1=1+7,x 2=1-7(舍去), ∴BC =1+7.∵∠B =∠E,∠B =∠D, ∴∠D =∠E, ∴CD =CE. ∵CD =BC ,∴CE =BC =1+7.15. (1)如图①,连接OD ,OC ,BD.∵OD=OC=CD=2,∴△DOC为等边三角形,∴∠DOC=60°,∴∠DBC=30°.∵AB为⊙O的直径,∴∠ADB=90°,∴∠E=90°-30°=60°.(2)如图②,直线AD,CB交于点E,连接OD,OC,AC.∵OD=OC=CD=2,∴△DOC为等边三角形,∴∠DOC=60°,∴∠DAC=30°.∵AB为⊙O的直径,∴∠ACB=90°,∴∠E=90°-∠DAC=90°-30°=60°.(3)如图③,连接OD,OC.∵OD=OC=CD=2,∴△DOC为等边三角形,∴∠DOC=60°,∴∠CBD=30°.∵AB为⊙O的直径,∴∠ADB=90°,∴∠BED=60°,∴∠AEC=∠BED=60°.第2章对称图形——圆图2-Y -11.[2017·徐州] 如图2-Y -1,点A ,B ,C 均在⊙O 上,∠AOB =72°,则∠ACB=( ) A .28° B .54° C .18° D .36°2.[2017·宿迁] 若将半径为12 cm 的半圆形纸片拼成一个圆锥的侧面,则这个圆锥的底面圆半径是( )A .2 cmB .3 cmC .4 cmD .6 cm3.[2016·南京] 已知正六边形的边长为2,则它的内切圆的半径为( )A .1B . 3C .2D .2 3图2-Y -24.[2017·苏州] 如图2-Y -2,在Rt △ABC 中,∠ACB =90°,∠A =56°.以BC 为直径的⊙O 交AB 于点D ,E 是⊙O 上一点,且CE ︵=CD ︵,连接OE ,过点E 作EF⊥OE,交AC 的延长线于点F ,则∠F 的度数为( )A .92°B .108°C .112°D .124°5.[2017·南京] 过三点A(2,2),B(6,2),C(4,5)的圆的圆心坐标为( )A .(4,176)B .(4,3)C .(5,176) D .(5,3)6.[2017·连云港] 如图2-Y -3所示,一动点从半径为2的⊙O 上的点A 0出发,沿着射线A 0O 方向运动到⊙O 上的点A 1处,再向左沿着与射线A 1O 夹角为60°的方向运动到⊙O 上的点A 2处;接着又从点A 2出发,沿着射线A 2O 方向运动到⊙O 上的点A 3处,再向左沿着与射线A 3O 夹角为60°的方向运动到⊙O 上的点A 4处……按此规律运动到点A 2017处,则点A 2017与点A 0之间的距离是( )A .4B .2 3C .2D .0图2-Y -3图2-Y -47.[2017·扬州] 如图2-Y -4,已知⊙O 是△ABC 的外接圆,连接AO.若∠B=40°,则∠OAC=________°.8.[2016·南京] 如图2-Y -5,扇形OAB 的圆心角为122°,C 是AB 上一点,则∠ACB =________°.图2-Y -5图2-Y -69.[2017·镇江] 如图2-Y -6,AB 是⊙O 的直径,AC 与⊙O 相切,CO 交⊙O 于点D.若∠CAD=30°,则∠BOD=________°.10.[2016·泰州] 如图2-Y -7,⊙O 的半径为2,点A ,C 在⊙O 上,线段BD 经过圆心O ,∠ABD =∠CDB =90°,AB =1,CD =3,则图中阴影部分的面积为________.图2-Y -7图2-Y -811.[2017·盐城] 如图2-Y -8,将⊙O 沿弦AB 折叠,点C 在AMB ︵上,点D 在AB ︵上.若∠ACB=70°,则∠ADB=________°.12. [2016·南通] 已知:如图2-Y -9,AM 为⊙O 的切线,A 为切点,过⊙O 上一点B 作BD⊥AM 于点D ,BD 交⊙O 于点C ,OC 平分∠AOB.(1)求∠AOB 的度数;(2)若⊙O的半径为2 cm,求线段CD的长.图2-Y-913.[2017·淮安] 如图2-Y-10,在△ABC中,∠ACB=90°,O是边AC上一点,以O 为圆心,OA长为半径的圆分别交AB,AC于点E,D,在BC的延长线上取点F,使得EF=BF,EF与AC交于点C.(1)试判断直线EF与⊙O的位置关系,并说明理由;(2)若OA=2,∠A=30°,求图中阴影部分的面积.图2-Y-1014.[2016·宿迁] 如图2-Y-11①,在△ABC中,点D在边BC上,∠ABC∶∠ACB∶∠ADB=1∶2∶3,⊙O是△ABD的外接圆.(1)求证:AC是⊙O的切线;(2)当BD是⊙O的直径时(如图②),求∠CAD的度数.图2-Y-1115.[2017·盐城] 如图2-Y-12,在平面直角坐标系中,Rt△ABC的斜边AB在y轴上,边AC与x轴交于点D,AE平分∠BAC交边BC于点E,经过点A,D,E的圆的圆心F恰好在y 轴上,⊙F与y轴相交于另一点G.(1)求证:BC是⊙F的切线;(2)若点A,D的坐标分别为(0,-1),(2,0),求⊙F的半径;(3)试探究线段AG,AD,CD三者之间满足的等量关系,并证明你的结论.图2-Y-12详解详析1.D [解析] 根据同弧所对的圆周角等于圆心角的一半,得∠ACB =12∠AOB =12×72°=36°.故选D.2.D 3.B4.C [解析] 连接OD .∵∠ACB =90°,∠A =56°,∴∠B =34°.在⊙O 中,∵CE ︵=CD ︵, ∴∠COE =∠COD =2∠B =68°.又∵OE ⊥EF ,∠OCF =∠ACB =90°,∴∠F =112°.故选C.5.A [解析] 根据题意,可知线段AB 的垂直平分线为直线x =4,所以圆心的横坐标为4,然后设圆的半径为r ,则根据勾股定理可知r 2=22+(5-2-r )2,解得r =136,因此圆心的纵坐标为5-136=176,因此圆心的坐标为(4,176).6.A [解析] 如图所示,当动点运动到点A 6处时,与点A 0重合,2017÷6=336……1,即点A 2017与点A 1重合,点A 2017与点A 0之间的距离即A 0A 1的长度,为⊙O 的直径,故点A 2017与点A 0之间的距离是4,因此选A.7.50 [解析] 根据“同弧所对的圆周角等于它所对圆心角的一半”,连接OC ,便有∠AOC =2∠B =80°,再由OA =OC ,根据“等边对等角”及“三角形内角和定理”可以求得∠OAC =50°.8.1199.120 [解析] ∵AB 是⊙O 的直径,AC 与⊙O 相切,∴AC ⊥AO ,即∠CAO =90°.∵∠CAD =30°,∴∠DAO =60°,∴∠BOD =2∠DAO =120°.故答案为120.10.5π3 [解析] 如图,连接AO ,CO ,则AO =CO =2.∵∠ABD =∠CDB =90°,AB =1,CD=3,∴OD =1,BO =3,∴S △ABO =S △ODC ,∠AOB =30°,∠COD =60°,∴∠AOC =180°-60°+30°=150°,∴S 阴影部分=S 扇形OAC =150π×22360=5π3.故答案为5π3.11.110 [解析] 如图,设点D ′是点D 折叠前的位置,连接AD ′,BD ′,则∠ADB =∠D ′.在圆内接四边形ACBD ′中,∠ACB +∠D ′=180°,所以∠D ′=180°-70°=110°,所以∠ADB =110°.12.解:(1) ∵OC 平分∠AOB , ∴∠AOC =∠COB .∵AM 切⊙O 于点A ,∴OA ⊥AM . 又BD ⊥AM ,∴OA ∥BD ,∴∠AOC =∠OCB . 又∵OC =OB, ∴∠OCB =∠B ,∴∠B =∠OCB =∠COB =60°, ∴∠AOB =120°.(2)过点O 作OE ⊥BC 于点E ,由(1)得△OBC 为等边三角形. ∵⊙O 的半径为2 cm ,∴BC =2 cm ,∴CE =12BC =1 cm.由已知易得四边形AOED 为矩形, ∴ED =OA =2 cm , 则CD =ED -CE =1 cm.13.解:(1)直线EF 与⊙O 相切. 理由:如图所示,连接OE . ∵EF =BF ,∴∠B =∠BEF . ∵OA =OE ,∴∠A =∠AEO .∵∠ACB =90°,∴∠A +∠B =90°. ∴∠AEO +∠BEF =90°, ∴∠OEG =90°,∴OE ⊥EF , ∴直线EF 与⊙O 相切.(2)如图所示,连接ED .∵AD 是⊙O 的直径,∴∠AED =90°. ∵∠A =30°,∴∠ADE =60°.又∵OE =OD ,∴△ODE 是等边三角形. ∴∠DOE =60°.由(1)知∠OEG =90°, ∴∠OGE =30°.在Rt △OEG 中,OG =2OE =2OA =4,∴EG =OG 2-OE 2=2 3,∴S △OEG =12OE ·EG =12×2×2 3=2 3,S 扇形OED =60360×π×22=23π,∴S阴影=S△OEG-S扇形OED=2 3-23π.14.解:(1)证明:如图,连接AO,延长AO交⊙O于点E,则AE为⊙O的直径,连接DE.∵∠ABC∶∠ACB∶∠ADB=1∶2∶3,∠ADB=∠ACB+∠CAD,∴∠ABC=∠CAD.∵AE为⊙O的直径,∴∠ADE=90°,∴∠EAD=90°-∠AED.∵∠AED=∠ABD,∴∠AED=∠ABC=∠CAD,∴∠EAD=90°-∠CAD,即∠EAD+∠CAD=90°,∴EA⊥AC,∴AC是⊙O的切线.(2)∵BD是⊙O的直径,∴∠BAD=90°,∴∠ABC+∠ADB=90°.∵∠ABC∶∠ACB∶∠ADB=1∶2∶3,∴4∠ABC=90°,∴∠ABC=22.5°,由(1)知∠ABC=∠CAD,∴∠CAD=22.5°.15.解:(1)证明:如图,连接EF.∵AE平分∠BAC,∴∠FAE=∠EAC.∵EF=AF,∴∠FAE=∠FEA,∴∠EAC=∠FEA,∴EF∥AC,∴∠BEF=∠C.∵AB是Rt△ABC的斜边,∴∠C=90°,∴∠BEF=90°,即EF⊥BC.又∵EF是⊙F的半径,∴BC是⊙F的切线.(2)如图,连接DF.∵A (0,-1),D (2,0), ∴OA =1,OD =2.设⊙F 的半径是r ,则FD =r ,OF =r -1. ∵OD ⊥OF ,∴OF 2+OD 2=FD 2,即(r -1)2+22=r 2,解得r =2.5, ∴⊙F 的半径是2.5. (3)2CD +AD =AG .证明:如图,过点F 作FH ⊥AC 于点H . ∵F 是圆心,FH ⊥AC , ∴AH =DH =12AD ,∠FHD =90°.∵∠BEF =∠C =90°,∴∠CEF =90°, ∴四边形CEFH 是矩形,∴CH =EF . ∵AG 是⊙F 的直径,∴EF =12AG ,∴CH =12AG .∵AD +CD =AC =AH +CH , ∴AD +CD =12AD +12AG ,∴2CD +AD =AG .。
《圆周角(第2课时)》精品教案课题24.1.4圆周角单元第二十四章学科数学年级九年级上学习目标情感态度和价值观目标在圆周角定理的推论的发现过程中,不断变化图形,树立运动变化和对立统一的辩证证唯物主义观点。
能力目标通过圆周角定理的实际应用,发现圆内接四边形的对角互补的推论,进一步发展合情推理和演绎推理能力,感悟从特殊到一般、化一般为特殊的数学思想。
知识目标 1.了解并证明圆周角定理的推论:圆内接四边形的对角互补。
2.能应用圆周角定理及其推论解决问题。
重点圆内接四边形的对角互补。
难点圆周角定理及其推论的综合运用。
学法自主探究、合作交流;教法引导发现、直观演示教学法;教学过程教学环节教师活动学生活动设计意图导入新课一、复习旧知1、还记得圆周角的定义吗?2、请你说出圆周角定理及推论。
圆周角定理:一条弧所对的圆周角等于它所对圆心角的一半.推论1:同弧或等弧所对的圆周角相等.推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. 教师提出问题,学生回忆上节课知识思考作答。
通过复习,强化学生已学相关的知识,为学生自主探究做奠基。
讲授新课二、探究新知活动1,抢答:1.你能用三角尺画出下面这个圆的圆心吗?学生联系已学知识,独立思考,理清题意,整理思复习圆周角定理及其推论,运用已学2.填空:如图,∠BAC=55°,∠CAD=45°,则∠DBC=_____°,∠BDC=_____°,∠BCD=______°3.如图,BD是⊙O的直径,∠ABC=130°则∠ADC=______°活动2:讨论请看我们做的抢答习题第2、3题,同学们有没有发现什么规律,请大家以小组为单位讨论后发言。
学生小组1回答:这个四边形的四个顶点,点A,点B,点C,点D都在⊙O上。
学生小组2回答:这个四边形的对角和是180°。
学生小组3回答:……学生小组4回答:……教师总结:同学们真是火眼金睛,找到的特点很多。
第2章对称图形——圆
2.4第2课时特殊的圆周角
知识点1利用直径所对的圆周角是直角求角度
1.如图2-4-15,AB是⊙O的直径,点C在⊙O上.若∠A=40°,则∠B的度数为()
A.80°B.60°C.50°D.40°
图2-4-15 图2-4-16 图2-4-17 图2-4-18 2.如图2-4-16,在⊙O中,AB为直径,CD为弦,已知∠ACD=40°,则∠BAD的度数为() A.50°B.40°C.45°D.60°
3.如图2-4-17,AB是⊙O的直径,C,D,E是⊙O上的点,则∠1+∠2=________°.
4.[2017·株洲]如图2-4-18,已知AM是⊙O的直径,直线BC经过点M,且AB=AC,∠BAM =∠CAM,线段AB和AC分别交⊙O于点D,E.若∠BMD=40°,则∠EOM=________°.
5.如图2-4-19,AB是⊙O的直径,弦CD与AB相交于点E,∠ACD=60°,∠ADC=50°.求∠CEB的度数.
图2-4-19
知识点2利用直径所对的圆周角是直角求线段长
6.教材练习第1题变式如图2-4-20,把直角三角形的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M,N,量得OM=8 cm,ON=6 cm,则该圆形玻璃镜的半径是()
A.10 cm B.5 cm C.6 cm D.10 cm
图2-4-20 图2-4-21
7.如图2-4-21,AB是⊙O的直径,若BC=5,AC=12,则⊙O的直径AB为________.
8.[2017·台州]如图2-4-22,已知等腰直角三角形ABC,P是斜边BC上一点(不
与点B,C重合),PE是△ABP的外接圆⊙O的直径.
(1)求证:△APE是等腰直角三角形;
(2)若⊙O的直径为2,求PC2+PB2的值.
图2-4-22
9.如图2-4-23,⊙O 以等腰三角形ABC 的一腰AB 为直径,它交另一腰AC 于点E ,交BC 于点D.求证:BC =2DE.
图2-4-23
10.如图2-4-24,AB 是半圆的直径,D 是AC ︵
的中点,∠ABC =50°,则∠DAB 等于( ) A .55° B .60° C .65° D .70°
11.[2017·海南] 如图2-4-25,AB 是⊙O 的弦,AB =5,C 是⊙O 上的一个动点,且∠ACB =45°.若M ,N 分别是AB ,AC 的中点,则MN 长的最大值是________.
图2-4-24 图2-4-25 图2-4-26
12.如图2-4-26,AB 是⊙O 的直径,C ,D 是⊙O 上的点,且OC ∥BD ,AD 与BC ,OC 分别相交于点E ,F ,则下列结论:①AD ⊥BD ;②CB 平分∠ABD ;③∠AOC =∠AEC ;④AF =DF ;⑤△CEF ≌△BED ;⑥BD =2OF.其中一定成立的是________(请填序号).
13.如图2-4-27,AB 是半圆O 的直径,C ,D 是半圆O 上的两点,且OD ∥BC ,OD 与AC 交于点E.
(1)若∠B =70°,求∠CAD 的度数; (2)若AB =4,AC =3,求DE 的长.
图2-4-27
14.如图2-4-28,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使CD=BC,延长DA与⊙O的另一个交点为E,连接AC,CE.
(1)求证:∠B=∠D;
(2)若AB=4,BC-AC=2,求CE的长.
图2-4-28
15.已知:如图2-4-29①,在⊙O中,直径AB=4,弦CD=2,直线AD,BC相交于点E.
(1)∠E的度数为________;
(2)如图②,直径AB与弦CD交于点F,请补全图形并求∠E的度数;
(3)如图③,直径AB与弦CD不相交,求∠AEC的度数.
图2-4-29
1.C [解析] 因为AB 是⊙O 的直径,所以∠C =90°,所以∠A +∠B =90°,则∠B =90°-∠A =90°-40°=50°.故选C .
2.A [解析] ∵AB 为⊙O 的直径,
∴∠ADB =90°.
∵∠ABD =∠ACD =40°,
∴∠BAD =180°-90°-40°=50°. 3.90 [解析] 连接AC ,则∠ACB =90°. 根据圆周角定理,得∠ACE =∠2, ∴∠1+∠2=∠ACB =90°. 4.80
5.解:如图,连接BC ,则∠ADC =∠B.
∵∠ADC =50°, ∴∠B =50°.
∵AB 是⊙O 的直径, ∴∠ACB =90°,
∴∠BAC =40°.
∵∠CEB =∠ACD +∠BAC ,∠ACD =60°, ∴∠CEB =60°+40°=100°. 6.B 7.13
8.解:(1)证明:∵△ABC 是等腰直角三角形, ∴∠ABC =45°,∴∠AEP =45°. ∵PE 是⊙O 的直径,∴∠PAE =90°,
∴△APE 是等腰直角三角形.
(2)∵△ABC 和△APE 均是等腰直角三角形, ∴AC =AB ,AP =AE ,∠CAB =∠PAE =90°, ∴∠CAP =∠BAE.
在△APC 和△AEB 中,⎩⎨⎧AC =AB ,
∠CAP =∠BAE ,AP =AE ,
∴△APC ≌△AEB ,∴PC =EB.
∵PE 是⊙O 的直径,∴∠PBE =90°, ∴PC 2+PB 2=EB 2+PB 2=PE 2=4. 9.证明:连接AD ,BE.
∵AB 是⊙O 的直径,∴∠ADB =90°.
又∵AB =AC ,∴∠ABC =∠C ,BD =DC ,
即BC =2DC.
∵∠DAE =∠DBE ,∠ADE =∠ABE ,
∴∠DEC =∠DAE +∠ADE =∠DBE +∠ABE =∠ABC =∠C ,
∴DE =DC ,∴BC =2DE. 10.C [解析] 连接BD. ∵D 是AC ︵的中点,即CD ︵=AD ︵
, ∴∠ABD =∠CBD.
∵∠ABC =50°,∴∠ABD =1
2×50°=25°.
∵AB 是半圆的直径,∴∠ADB =90°, ∴∠DAB =90°-25°=65°. 11.5 22
12.①②④⑥
13.解:(1)∵AB 是半圆O 的直径,
∴∠ACB =90°,∴∠CAB =90°-∠B =20°. 又∵OD ∥BC ,∴∠AOD =∠B =70°. ∵OA =OD ,
∴∠DAO =∠ADO =1
2(180°-∠AOD)=55°,
∴∠CAD =∠DAO -∠CAB =35°. (2)在Rt △ABC 中,BC =AB 2-AC 2=7. ∵OD ∥BC ,∴∠AEO =∠ACB =90°, 即OE ⊥AC ,∴AE =EC. 又∵OA =OB ,∴OE =12BC =7
2.
∵OD =1
2AB =2,
∴DE =OD -OE =2-
72
. 14. (1)证明:∵AB 为⊙O 的直径, ∴∠ACB =90°,即AC ⊥BC.
又∵CD =BC ,∴AD =AB ,∴∠B =∠D. (2)设BC =x ,则AC =x -2.
在Rt △ABC 中,AC 2+BC 2=AB 2, 即(x -2)2+x 2=42,
解得x 1=1+7,x 2=1-7(舍去), ∴BC =1+7.
∵∠B =∠E ,∠B =∠D , ∴∠D =∠E , ∴CD =CE. ∵CD =BC ,
∴CE =BC =1+7.
15. (1)如图①,连接OD ,OC ,BD.
∵OD=OC=CD=2,
∴△DOC为等边三角形,
∴∠DOC=60°,
∴∠DBC=30°.
∵AB为⊙O的直径,
∴∠ADB=90°,
∴∠E=90°-30°=60°.
(2)如图②,直线AD,CB交于点E,连接OD,OC,AC. ∵OD=OC=CD=2,
∴△DOC为等边三角形,
∴∠DOC=60°,
∴∠DAC=30°.
∵AB为⊙O的直径,
∴∠ACB=90°,
∴∠E=90°-∠DAC=90°-30°=60°.
(3)如图③,连接OD,OC.
∵OD=OC=CD=2,
∴△DOC为等边三角形,
∴∠DOC=60°,
∴∠CBD=30°.
∵AB为⊙O的直径,
∴∠ADB=90°,
∴∠BED=60°,
∴∠AEC=∠BED=60°.。