七年级下册第24题压轴题平行线的拐角问题讲课教案
- 格式:doc
- 大小:249.50 KB
- 文档页数:16
初一下学期数学平行线教案5篇初一下学期数学平行线教案篇1教学目标:1、了解证明的必要性,知道推理要有依据;熟悉综合法证明的格式,能说出证明的步骤.2、能用符号语言写出一个命题的题设和结论.3、通过对真命题的分析,加强推理能力的训练,培养学生逻辑思维能力.教学重点:证明的步骤与格式.教学难点:将文字语言转化为几何符号语言.教学过程:一、复习提问1、命题“两直线平行,内错角相等”的题设和结论各是什么2、根据题设,应画出什么样的图形(答:两条平行线a、b被第三条直线c所截)3、结论的内容在图中如何表示(答:在图中标出一对内错角,并用符号表示)二、例题分析例1、证明:两直线平行,内错角相等.已知:a∥b,c是截线.求证:∠1=∠2.分析:要证∠1=∠2,只要证∠3=∠2即可,因为∠3与∠1是对顶角,根据平行线的性质,易得出∠3=∠2.证明:∵a∥b(已知),∴∠3=∠2(两直线平行,同位角相等).∵∠1=∠3(对顶角相等),∴∠1=∠2(等量代换).例2、证明:邻补角的平分线互相垂直.已知:如图,∠AOB+∠BOC=180°,OE平分∠AOB,OF平分∠BOC.求证:OE⊥OF.分析:要证明OE⊥OF,只要证明∠EOF=90°,即∠1+∠2=90°即可.三、课堂练习:1、平行于同一条直线的两条直线平行.2、两条平行线被第三条直线所截,同位角的平分线互相平行.四、归纳小结主要通过学生回忆本节课所学内容,从知识、技能、数学思想方法等方面加以归纳,有利于学生掌握、运用知识.然后见投影仪.五、布置作业课本P143 5、(2),7.六、课后思考:1、垂直于同一条直线的两条直线的位置关系怎样2、两条平行线被第三条直线所截,内错角的平分线位置关系怎样3、两条平行线被第三条直线所截,同旁内角的平分线位置关系怎样初一下学期数学平行线教案篇2教学目的1.理解用一元一次方程解工程问题的本质规律;通过对“工程问题”的分析进一步培养学生用代数方法解决实际问题的能力。
专题一平行线中的拐点问题【学习目标】1.复习巩固平行线的性质和判定,找到解决平行线间拐点问题的基本方法,学会运用平行线转移角,建立分散的角之间的练习,提高几何推理能力。
2.在探究的过程中,体会观察-猜想-实验-证明的探究过程,初步体会添加辅助线的目的。
【学习过程】一、复习填空.平行线的判定:①_____________________________________________.②_____________________________________________.③_____________________________________________.④_____________________________________________.平行线的定理:①_____________________________________________.②_____________________________________________.③_____________________________________________.二、探究新知假设,两根木杆AB与CD平行放置,木杆的两端B、D用一根橡皮筋连接,现在在橡皮筋BD上任取一点P,将点P向里压:例1.如图,在平行线AB,CD内任取一点P,连接DP,BP.(1)若∠ABP=45°,∠CDP=15°则∠BPD=__________.(2)若∠BPD=50°,∠CDP=10°则∠ABP=__________.(3)试猜想∠BPD与∠ABP、∠CDP之间的数量关系,并说明理由.变式练习:1.如图,直线AB∥CD,∠A=40°,∠D=45°,则∠1的度数是__________. 2.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1的度数是_____________.(1)(2)拓展提升:如图1,AB∥CD,EOF是直线AB、CD间的一条折线.(1)如果将折一次改为折二次,如图2,则∠BEO、∠O、∠P、∠PFC之间会满足怎样的数量关系,证明你的结论.(2)如果将折一次改为折三次,如图3,则∠BEO、∠O、∠P、∠Q、∠QFD之间会满足怎样的数量关系(直接写出结果不需证明)假设,现在在橡皮筋BD上任取一点P,将点P水平向外拉:例2.如图,在平行线段AB、CD外取一点P,连接BP,DP,刚才的结论还成立吗?若不成立,你又有新的发现吗?变式练习:1.某小区地下停车场入口门栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=110°,则∠ABC=__________.2.如图,如果a∥b,∠1=55°,∠2=130°,则∠3=___________.(1)(2)拓展提升:已知:如图,AB∥CD,试解决下列问题:(1)∠1+∠2=;(2)∠1+∠2+∠3=;(3)∠1+∠2+∠3+∠4=_;(4)试探究∠1+∠2+∠3+∠4+…+∠n=.假设,现在在橡皮筋BD上任取一点P,将点P斜上右上方拉或者斜上左上方拉:例3.如图①②,在平行线AB、CD外取一点P,连接BP,DP,这时∠ABP,∠CDP,∠BPC之间又有怎样的数量关系呢?变式训练:1.如图,BD∥EF,AE与BD交于点C,∠B=30°,∠A=75°,则∠E的度数为__________.2.如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=100°,∠CDE=15°,则∠DEF的度数是___________.3.如图,已知直线a∥b,则∠1、∠2、∠3的关系是______________.(1)(2)(3)三、课后练习1.如图,直线l2∥12,∠A=125°,∠B=85°,则∠1+∠2=.2.如图,如果AB∥CD,则角α、β、γ之间的关系为.3.如图,已知AB∥CD,∠ABE和∠CDE的平分线相交于F,∠E=140°.则∠BFD的度数为____________.(1)(2)(3)4.如图,直线m∥n,AB⊥BC,∠1=35°,∠2=62°,则∠BCD的度数为.5.直线l1∥l2,∠A=125°,∠B=105°,则∠1+∠2=____________.(4)(5)6.如图,已知AB∥CD,BF平分∠ABE,DF平分∠CDE,∠BED=75°.求∠BFD的度数.7.如图,一条公路修到湖边时需绕道,第一次拐角∠B=110°,第二次拐角∠C=150°,为了保持公路AB与DE平行,则第三次拐角∠D的度数为__________.8.如图,AB∥EF,BC⊥CD于C,∠ABC=30°,∠DEF=45°,则∠CDE等于()A.105°B.75°C.135°D.115°9.如图所示,两平面镜α、β的夹角为60°,入射光线AO平行于β入射到α上,经两次反射后的反射光线O′B平行于α,则∠1的度数为()A.60°B.45°C.30°D.75°10.如图,直线a∥b,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为()A.20°B.40°C.30°D.25°(8)(9)(10)11.阅读第(1)题解题过程,解答第(2)题.(1)如图1,AB∥CD,E为AB、CD之间的一点,已知∠B=40°,∠C=30°,求∠BEC的度数.解:过点E作EM∥AB,∴∠B=().∵AB∥CD,AB∥EM,∴EM∥().∴∠2=().∴∠BEC=∠1+∠2=∠B+∠C=40°+30°=70°.(2)如图2,AB∥ED,试探究∠B、∠BCD、∠D之间的数量关系.。
七年级数学下册教案平行线七年级数学下册教案平行线(6篇)作为一名教师,总归要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。
教案要怎么写呢?以下是小编精心整理的七年级数学下册教案平行线,仅供参考,大家一起来看看吧。
七年级数学下册教案平行线1教学过程一、目标展示二、情景导入。
装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹角为多少度时,才能使木条a与木条b平行?要解决这个问题,就要弄清楚平行的判定。
三、直线平行的条件以前我们学过用直尺和三角尺画平行线,如图(课本P13图5、2—5)在三角板移动的过程中,什么没有变?三角板经过点P的边与靠在直尺上的边所成的角没有变。
∠1与∠2是三角板经过点P的边与靠在直尺上的边所成的角移动前后的位置,显然∠1与∠2是同位角并且它们相等,由此我们可以知道什么?两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
简单地说:同位角相等,两条直线平行。
符号语言:∵∠1=∠2∴AB∥CD、如图(课本P145、2—7),你能说出木工用图中这种叫做角尺的工具画平行线的道理吗?用角尺画平行线,实际上是画出了两个直角,根据“同位角相等,两条直线平行。
”,可知这样画出的就是平行线。
学习目标一:了解平行线的概念、平面内两条直线的两种位置关系。
题组一:1、叫做平行线。
如图:a与b互相平行,记作,a。
2、在同一平面内,两条直线的位置关系b只有与两种。
3、下列生活实例中:(1)交通道路上的斑马线;(2)天上的彩虹;(3)阅兵队的纵队;(4)百米跑道线,属于平行线的有。
学习目标二:掌握两个平行公理;会用三角尺和直尺过已知直线外一点画这条直线的平行线。
题组二:4、通过画图和观察,可得两个平行公理:①、经过点,一条直线平行于已知直线;②、如果两条直线都与第三条直线平行,那么这两条直线,符号表达式:若b∥a,c∥a,则。
5、在同一平面内直线a与b满足下列条件,写出其对应的位置关系:①、a与b没有公共点,则a与b;②、a与b有且只有一个公共点,则a与b;③、 a与b有两个公共点,则a与b;6、过一点画已知直线的平行线有()A、有且只有一条;B、有两条;C、不存在;D、不存在或只有一条教学设计1、落实教学常规,践行学校《教师日常教学行为要求》。
七年级下册第24题压轴题平行线的拐角问题work Information Technology Company.2020YEAR七下平行线,平面直角坐标系压轴题二.解答题(共27小题)14.如图,已知直线AB∥CD,直线EF分别与AB、CD相交于点E、F,FM平分∠EFD,点H是射线EA上一动点(不与点E重合),过点H的直线交EF于点P,HM平分∠BHP交FM于点M.(1)如图1,试说明:∠HMF=(∠BHP+∠DFP);请在下列解答中,填写相应的理由:解:过点M作MQ∥AB(过直线外一点有且只有一条直线与这条直线平行).∵AB∥CD(已知),∴MQ∥CD(如果两条直线都和第三条直线平行,那么这两条直线也互相平行)∴∠1=∠3,∠2=∠4()∴∠1+∠2=∠3+∠4(等式的性质)即∠HMF=∠1+∠2.∵FM平分∠EFD,HM平分∠BHP(已知)∵∠1=∠BHP,∠2=∠DFP()∴∠HMF=∠BHP+∠DFP=(∠BHP+∠DFP)(等量代换).(2)如图2,若HP⊥EF,求∠HMF的度数;(3)如图3,当点P与点F重合时,FN平分∠HFE交AB于点N,过点N作NQ⊥FM于点Q,试说明无论点H在何处都有∠EHF=2∠FNQ.14.如图,已知直线AB∥CD,直线EF分别与AB、CD相交于点E、F,FM平分∠EFD,点H是射线EA上一动点(不与点E重合),过点H的直线交EF于点P,HM平分∠BHP交FM于点M.(1)如图1,试说明:∠HMF=(∠BHP+∠DFP);请在下列解答中,填写相应的理由:解:过点M作MQ∥AB(过直线外一点有且只有一条直线与这条直线平行).∵AB∥CD(已知),∴MQ∥CD(如果两条直线都和第三条直线平行,那么这两条直线也互相平行)∴∠1=∠3,∠2=∠4(两直线平行,内错角相等)∴∠1+∠2=∠3+∠4(等式的性质)即∠HMF=∠1+∠2.∵FM平分∠EFD,HM平分∠BHP(已知)∵∠1=∠BHP,∠2=∠DFP(角平分线定义)∴∠HMF=∠BHP+∠DFP=(∠BHP+∠DFP)(等量代换).(2)如图2,若HP⊥EF,求∠HMF的度数;(3)如图3,当点P与点F重合时,FN平分∠HFE交AB于点N,过点N作NQ⊥FM于点Q,试说明无论点H在何处都有∠EHF=2∠FNQ.【分析】(1)根据两直线平行,内错角相等,以及角平分线定义进行判断即可;(2)先根据HP⊥EF,AB∥CD,得到∠EHP+∠DFP=90°,再根据(1)中结论即可得到∠HMF的度数;(3)先根据题意得到∠NFQ=90°﹣∠FNQ,再根据FN平分∠HFE,FM平分∠EFD,即可得出∠HFD=2∠NFQ,最后根据∠EHF+∠HFD=180°,即可得出∠EHF=2∠FNQ.【解答】解:(1)由MQ∥CD,得到∠1=∠3,∠2=∠4,其依据为:两直线平行,内错角相等;由FM平分∠EFD,HM平分∠BHP,得到∠1=∠BHP,∠2=∠DFP,其依据为:角平分线定义.故答案为:两直线平行,内错角相等;角平分线定义.(2)如图2,∵HP⊥EF,∴∠HPE=90°,∴∠EHP+∠HEP=180°﹣90°=90°(三角形的内角和等于180°)又∵AB∥CD,∴∠HEP=∠DFP.∴∠EHP+∠DFP=90°.由(1)得:∠HMF=(∠EHP+∠DFP)=×90°=45°.(3)如图3,∵NQ⊥FM,∴∠NFQ+∠FNQ=180°﹣90°=90°(三角形的内角和等于180°).∴∠NFQ=90°﹣∠FNQ.∵FN平分∠HFE,FM平分∠EFD,又∵∠NFQ=∠NFE+∠QFE=(∠HFE+∠EFD)=∠HFD,∴∠HFD=2∠NFQ.又∵AB∥CD,∴∠EHF+∠HFD=180°,∴∠EHF=180°﹣∠HFD=180°﹣2∠NFQ=180°﹣2(90°﹣∠FNQ)=2∠FNQ,即无论点H在何处都有∠EHF=2∠FNQ.【点评】本题主要考查了平行线的性质与判定,角平分线的定义以及平行公理的运用,解决问题的关键是掌握:两直线平行,内错角相等;两直线平行,同旁内角互补.15.如图1,直线m∥n,点B、F在直线m上,点E、C在直线n上,连结FE并延长至点A,连结BA和CA,使∠AEC=∠BAC.(1)求证:∠BFA+∠BAC=180°;(2)请在图1中找出与∠CAF相等的角,并加以证明;(3)如图2,连结BC交AF于点D,作∠CBF和∠CEF的角平分线交于点M,若∠ADC=α,请直接写出∠M的度数(用含α的式子表示)【分析】(1)根据平行线的性质即可得到∠AEC=∠AFM,再根据∠AEC=∠BAC,可得∠AFM=∠BAC,根据∠BFA+∠AFM=180°,可得结论;(2)根据三角形内角和定理以及平行线的性质,即可得到与∠CAF相等的角;(3)过D作DH∥BF,过M作MG∥BF,根据平行线的性质,即可得到∠CED=∠HDE,∠FBD=∠HDB,再根据∠CBF和∠CEF的角平分线交于点M,可得∠CEM+∠FBM=(∠CED+∠FBD),进而得到∠M的度数.【解答】解:(1)如图1,∵直线m∥n,∴∠AEC=∠AFM,∵∠AEC=∠BAC,∴∠AFM=∠BAC,又∵∠BFA+∠AFM=180°,∴∠BFA+∠BAC=180°;(2)与∠CAF相等的角有:∠ANC,∠ABF,∠BNG.证明:∵∠AEC=∠BAC,∠ACE=∠NCA,∴∠CAE=∠ANC=∠BNG,∵m∥n,∴∠ABF=∠ANC,∴与∠CAF相等的角有:∠ANC,∠ABF,∠BNG;(3)如图2,过D作DH∥BF,过M作MG∥BF,∵BF∥CE,∴DH∥BF∥CE,MG∥BF∥CE,∴∠CED=∠HDE,∠FBD=∠HDB,∴∠CED+∠FBD=∠EDB=180°﹣∠ADC=180°﹣α,∵∠CBF和∠CEF的角平分线交于点M,∴∠CEM+∠FBM=(∠CED+∠FBD)=(180°﹣α)=90°﹣α,∵MG∥BF∥CE,∴∠CEM=∠GME,∠FBM=∠GMB,∴∠BME=∠GME+∠GMB=∠CEM+∠FBM=90°﹣α.【点评】本题主要考查了平行线的性质的运用,解决问题的关键是作辅助线构造内错角,解题时注意:两直线平行,内错角相等.16.已知直线AB∥CD,M,N分别是AB,CD上的点.(1)若E是AB,CD内一点.①如图甲所示,请写出∠BME,∠DNE,∠MEN之间的数量关系,并证明.②如图乙所示,若∠1=∠BME,∠2=∠DNE,请利用①的结论探究∠F与∠MEN的数量关系.(2)若E是AB,CD外一点.①如图丙所示,请直接写出∠EMB,∠END,∠E之间的数量关系.②如图丁所示,已知∠BMP=∠EMB,在射线MP上找一点G,使得∠MGN=∠E,请在图中画出点G的大致位置,并求∠ENG:∠GND的值.【分析】(1)①过E作EF∥AB,构造内错角,依据两直线平行,同旁内角互补进行推导,即可得到∠BME+∠DNE+∠MEN=360°.②过F作FG∥AB,构造内错角,依据两直线平行,内错角相等,即可得到∠MFN=∠1+∠2,再结合①的结论,即可得出3∠MFN+∠MEN=360°;(2)①过E作EF∥AB,构造内错角,依据两直线平行,内错角相等进行推导计算,即可得到∠DNE﹣∠BME=∠MEN;②设∠GMB=α,∠G=β,由∠BMP=∠EMB,∠G=∠E,可得∠EMQ=3α,∠E=4β,根据8字形结构得到∠GNQ=3α+3β,根据三角形外角性质以及平行线的性质,得到∠GND=∠1=α+β,据此可得∠ENG:∠GND的值.【解答】解:(1)①∠BME+∠DNE+∠MEN=360°.证明:如图甲,过E作EF∥AB,∵AB∥CD,∴EF∥CD,∴∠BME+∠FEM=180°,∠DNE+∠FEN=180°,∴∠BME+∠FEM+∠DNE+∠FEN=180°+180°=360°,即∠BME+∠DNE+∠MEN=360°.②如图乙,过F作FG∥AB,∵AB∥CD,∴FG∥CD,∴∠1=∠MFG,∠2=∠NFG,∴∠MFN=∠1+∠2,又∵∠1=∠BME,∠2=∠DNE,∴∠BME=3∠1,∠DNE=3∠2,又∵∠BME+∠DNE+∠MEN=360°,∴3∠1+3∠2+∠MEN=360°,即3∠MFN+∠MEN=360°;(2)①∠EMB,∠END,∠E之间的数量关系为:∠DNE﹣∠BME=∠MEN.理由如下:如图丙,过E作EF∥AB,∵AB∥CD,∴EF∥CD,∴∠DNE=∠FEN,∠BME=∠FEM,又∵∠FEN﹣∠FEM=∠MEN,∴∠DNE﹣∠BME=∠MEN;②点G的大致位置如图丁所示:设MG与NE交于点Q,NG与AB交于点F,设∠GMB=α,∠G=β,由∠BMP=∠EMB,∠G=∠E,可得∠EMQ=3α,∠E=4β,∵∠EQM=∠GQN,∴∠E+∠EMQ=∠G+∠GNQ,即∠GNQ=∠E+∠EMQ﹣∠G=4β+3α﹣β=3α+3β,∵∠1是△GFM的外角,∴∠1=∠G+∠GMF=β+α,又∵AB∥CD,∴∠GND=∠1=α+β,∴∠ENG:∠GND=(3α+3β):(α+β)=3.【点评】本题主要考查了平行线的性质以及三角形的一个外角等于与它不相邻的两个内角的和的性质的运用,过拐点作平行线,准确识图,理清图中各角度之间的关系是解决问题的关键.17.已知,AB∥CD,点E为射线FG上一点.(1)如图1,若∠EAF=30°,∠EDG=40°,则∠AED=70°;(2)如图2,当点E在FG延长线上时,此时CD与AE交于点H,则∠AED、∠EAF、∠EDG之间满足怎样的关系,请说明你的结论;(3)如图3,DI平分∠EDC,交AE于点K,交AI于点I,且∠EAI:∠BAI=1:2,∠AED=22°,∠I=20°,求∠EKD的度数.【分析】(1)延长DE交AB于H,依据平行线的性质,可得∠D=∠AHE=40°,再根据∠AED是△AEH的外角,即可得到∠AED=∠A+∠AHE=30°+40°=70°;(2)依据AB∥CD,可得∠EAF=∠EHC,再根据∠EHC是△DEH的外角,即可得到∠EHG=∠AED+∠EDG,即∠EAF=∠AED+∠EDG;(3)设∠EAI=α,则∠BAE=3α,进而得出∠EDK=α﹣2°,依据∠EHC=∠EAF=∠AED+∠EDG,可得3α=22°+2α﹣4°,求得∠EDK=16°,即可得出∠EKD的度数.【解答】解:(1)如图,延长DE交AB于H,∵AB∥CD,∴∠D=∠AHE=40°,∵∠AED是△AEH的外角,∴∠AED=∠A+∠AHE=30°+40°=70°,故答案为:70;(2)∠EAF=∠AED+∠EDG.理由:∵AB∥CD,∴∠EAF=∠EHC,∵∠EHC是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵∠EAI:∠BAI=1:2,∴设∠EAI=α,则∠BAE=3α,∵∠AED=22°,∠I=20°,∠DKE=∠AKI,又∵∠EDK+∠DKE+∠DEK=180°,∠KAI+∠KIA+∠AKI=180°,∴∠EDK=α﹣2°,∵DI平分∠EDC,∴∠CDE=2∠EDK=2α﹣4°,∵AB∥CD,∴∠EHC=∠EAF=∠AED+∠EDG,即3α=22°+2α﹣4°,解得α=18°,∴∠EDK=16°,∴在△DKE中,∠EKD=180°﹣16°﹣22°=142°.【点评】本题主要考查了平行线的性质,三角形外角性质以及三角形内角和定理的综合应用,解决问题的关键是作辅助线构造内错角,运用三角形外角性质进行计算求解.解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.19.如图1,AC平分∠DAB,∠1=∠2.(1)试说明AB与CD的位置关系,并予以证明;(2)如图2,当∠ADC=120°时,点E、F分别在CD和AC的延长线上运动,试探讨∠E和∠F的数量关系;(3)如图3,AD和BC交于点G,过点D作DH∥BC交AC于点H,若AC⊥BC,问当∠CDH为多少度时,∠GDC=∠ADH.【分析】(1)依据AC平分∠DAB,∠1=∠2,即可得到∠2=∠BAC,进而判定CD∥AB.(2)当∠ADC=120°时,∠1=∠2=30°,依据∠2是△CEF的外角,可得∠E+∠F=∠2=30°.(3)依据DH∥BC,AC⊥BC,可得DH⊥AC,进而得到∠ADH=∠CDH,据此可得当∠GDC=∠ADH时,∠CDG=∠CDH=∠ADH,即可得到∠CDH=×180°=60°.【解答】解:(1)如图,∵AC平分∠DAB,∴∠1=∠BAC,又∵∠1=∠2,∴∠2=∠BAC,∴CD∥AB.(2)当∠ADC=120°时,∠1=∠2=30°,∵点E、F分别在CD和AC的延长线上运动,∴∠2是△CEF的外角,∴∠E+∠F=∠2=30°.(3)∵DH∥BC,AC⊥BC,∴DH⊥AC,又∵∠1=∠2,∴∠ADH=∠CDH,∴当∠GDC=∠ADH时,∠CDG=∠CDH=∠ADH,∴∠CDH=×180°=60°.故当∠CDH为60度时,∠GDC=∠ADH.【点评】本题主要考查了平行线的判定以及三角形外角性质的运用,两条直线被第三条所截,如果内错角相等,那么这两条直线平行.即内错角相等,两直线平行.22.如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.(1)如图①,求证:∠BEC=∠ABE+∠DCE;(2)如图②,求证:∠BE2C=∠BEC;(3)猜想:若∠E n=α度,那∠BEC等于多少度(直接写出结论).【分析】(1)先过E作EF∥AB,根据AB∥CD,得出AB∥EF∥CD,再根据平行线的性质,得出∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE;(2)先根据∠ABE和∠DCE的平分线交点为E1,运用(1)中的结论,得出∠CE1B=∠ABE1+∠DCE1=∠ABE+∠DCE=∠BEC;同理可得∠BE2C=∠ABE2+∠DCE2=∠ABE1+∠DCE1=∠CE1B=∠BEC;(3)根据∠ABE2和∠DCE2的平分线,交点为E3,得出∠BE3C=∠BEC;…据此得到规律∠E n=∠BEC,最后求得∠BEC的度数.【解答】解:(1)如图①,过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2,∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;(2)如图2,∵∠ABE和∠DCE的平分线交点为E1,∴由(1)可得,∠CE1B=∠ABE1+∠DCE1=∠ABE+∠DCE=∠BEC;∵∠ABE1和∠DCE1的平分线交点为E2,∴由(1)可得,∠BE2C=∠ABE2+∠DCE2=∠ABE1+∠DCE1=∠CE1B=∠BEC;(3)如图2,∵∠ABE2和∠DCE2的平分线,交点为E3,∴∠BE3C=∠ABE3+∠DCE3=∠ABE2+∠DCE2=∠CE2B=∠BEC;…以此类推,∠E n=∠BEC,∴当∠E n=α度时,∠BEC等于2nα度.【点评】本题主要考查了角平分线的定义以及平行线性质:两直线平行,内错角相等的运用.解决问题的关键是作平行线构造内错角,解题时注意:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.。
七年级压轴题24题,平行线的探索拐角问题拐角问题——基本图形及辅助线方法技巧方法技巧1.过折线的拐点作平行线,用平行公理推论得到多条平行线,再转化角.2.涉及到角平分线问题,往往设未知数导角或列方程求解.题型一平行线+单拐点(+角平分线等)模型【例1】如图1,点A,C,B不在同一条直线上,AD∥BE.(1)求证:∠B+∠ACB-∠A=180°;(2)如图2,HQ,BQ分别为∠DAC,∠EBC的平分线所在的直线,试探究∠C与∠AQB 的数量关系;题型二平行线+双拐点(+角平分线等)模型【例2】如图1,AB∥CD,∠B=20°,∠D=110°.(1)若∠E=50°,求∠F的度数;【解答】分别过点E,F作EM∥AB,FN∥AB.∴EM∥AB∥FN.∴∠B=∠BEM=20°,∠MEF=∠EFN.又∵AB∥CD,AB∥FN.∴CD∥FN.∴∠D+∠DFN=180°,又∵∠D=110°,∴∠DFN ==70°,易得∠EFN=∠MEF=∠BEF-∠BEM =50°-20°=30°.∴∠EFD=∠EFN+∠NIFD=30°+70°=100°.(2)如图2,探索∠E与∠F之间满足的数量关系,并说明理由;.【解答】分别过点E,F作EM∥AB,FN∥A B.∴EM∥AB∥FN.∴∠B=∠BEM=20°,∠MEF=∠EFN,又∵AB∥CD,AB∥FN,∴CD∥FN.∴∠D+∠DFN=180°,又∵∠D=110°,∴∠DFN=70°,∴∠BEF=∠MEF+20°,∠EFD=∠EFN+70°,∴∠EFD=∠MEF+70°,∴∠EFD=∠BEF+50°.(3)如图3,EP平分∠BEF,FG平分∠EFD,FG的反向延长线交EP于点P,求∠P的度数.【分析】过点F作FH∥EP,结合(2)中结论,运用模型求解.【解答】过点F作FH∥EP,由(2)知,∠EFD=∠BEF+50°,设∠BEF=2x°,则∠EFD=(2x+50)°,∵EP平分∠BEF,GF平分∠EFD,∴∠PEF =21∠BEF =x °,∠EFG =21∠EFD =(x +25)°,∵FH ∥EP ,∴∠PEF =∠EFH =x °,∠P =∠HFG ,∵∠HFG =∠EFG -∠EFH =25°,∴∠P =25°.针对练习51.如图,CD ∥BE ,则∠2+∠3-∠1的度数等于()A .90°B .120°C .150°D .180°2.如图,AB ∥DE ,∠C :∠D :∠B =2:3:4,则∠B =.3.如图,直线l 3,l 4与l 1,l 2分别相交于点A ,B ,C ,D ,且∠1+∠2=180°.(1)直线l 1与l 2平行吗?为什么?(2)点E 在线段AD 上,若∠ABE =30°,∠BEC =62°,求∠DCE 的度数.【解答】(1)直线l 1与l 2平行.理由如下:∵∠1+∠BAE =180°,∠1+∠2=180°,∴∠2=∠BAE .∴l 1∥l 2.(2)过点E作EF∥AB交BC于点F,可得∠BEF=∠ABE=30°.∴∠FEC=62°-30°=32°.∵l1∥l2,∴EF∥CD,∴∠DCE=∠FEC=32°.5.将北斗七星分别标为A,B,C,D,E,F,G,如图,将A,B,C,D,E,F顺次首尾连结,若AF恰好经过点G,且AF∥DE,∠B =∠BCD+10°,∠CDE=∠E=105°.(1)求∠F的度数;(2)计算∠B-∠CGF的度数是;(直接写出结果)(3)连接AD,∠ADE与∠CGF满足怎样数量关系时,BC∥AD?并说明理由.【解答】(1)∵AF∥DE,∴∠F+∠E=180°.∴∠F=180°-105°=75°.(2)作MC∥AF.∵AF∥DE,∴AF∥CM∥DE,∴∠BCM=∠FGC,∠MCD=∠CDE,∴∠BCD=∠BCM+∠MCD=∠CGF+∠CDE,∠B-∠CGF=∠BCD+10°-∠CGF=∠CGF+∠CDE+10°-∠CGF=∠CDE+10°=115°.(3)当∠ADE+∠CGF=180°时,BC∥A D.理由如下:∵AF∥DE,∴∠GAD+∠ADE=180°,∠ADE+∠CGF=180".∴∠GAD=∠CGF.∴BC∥A D.整体思想求角题型一设单个未知数求定角方法技巧巧设题目未知数,用该未知数表示其它未知角,然后运用角的和或差计算出定角【例1】如图1,直线MN 与直线AB ,CD 分别交于点E ,F ,AB ∥CD ,∠BEF 与∠EFD 的角平分线交于点P ,EP 的延长线与CD 交于点G ,点H 是MN 上一点,且CH ⊥EC .(1)求证:PF ∥GH ;(2)如图2,连接PH ,K 是GH 上一点,∠PHK =∠HPK ,作PQ 平分∠EPK ,问∠HPQ 的大小是否发生变化?若不变,请求出其值;若变化,请说明理由图1图2【分析】(1)过点P 作AB 的平行线交MN 于点T ,运用平行线+拐点模型求∠EPF ,再根据∠ECH 的大小关系求解;(2)设∠PHK =∠HPK =x ,用x 表示未知角,运用整体思想求解。
平行线中的拐角问题
《平行线中的“拐角“问题》教学反思
平行线中的“拐角”问题一直不仅是教学上的一个难点,而又是考试的热点,并且学生在该问题上失分率较高,他们的难点主要是在不知道如何添加辅助线以及寻找数量关系的方法,本节课主要利用超级画板和学生一起探究,让学生掌握对待“拐角”问题的方法与技能。
数学教学活动必须建立在学生认知发展水平和已有的知识经验基础之上,因此,在学习平行线“拐角”问题之前,从学生很熟悉的例子进行引入,符合学生的认知发展规律,为下面活动的开展做好了准备。
在整个教学过程中,通过探究给学生提供充分参与数学活动的机会,激发学生的学习积极性,通过动手操作、猜想等环节,使学生掌握知识的同时,培养了学生的动手能力以及表达能力。
关于本节微课,个人认为有以下建议与不足:如果有条件,本节课应该让学生去数学实验室自主去探讨完成,充分发挥小组合作,自行利用超级画板去进行研究,可以写成实验报告,让学生与学生的交流在探究过程中进行,而教师只做一个引导,充分将课堂还给学生,在学习中,不断获得数学活动的体验,提高探究、发现和创新的能力。
初中数学教案:平行线与转角的性质平行线与转角的性质一、引言初中数学中的平行线与转角是非常重要的概念,对于学生来说,掌握这些内容不仅能够帮助他们更好地理解几何形体的性质,还有助于培养他们的逻辑思维和问题解决能力。
本文将介绍平行线和转角的基本定义和性质,并提供一些教案指导,以帮助教师在初中数学教学中更好地引导学生理解和应用这些知识。
二、平行线与转角的定义1. 平行线的定义平行线是在同一个平面内永不相交且在任意两点之间的距离始终相等的两条直线。
平行线具有以下特点:- 不论延长多远,两条平行线都永不相交。
- 两条平行线之间存在且相等举例段。
- 平行关系可以通过符号“||”表示。
2. 转角的定义转角是由两条射线共同顶点划出来的角度。
其中一条射线称为起始射线,另一条射线称为终止射线。
根据度量值可将转角分为以下几个类型:- 零度角:两条射线重合,角度为0°。
- 直角:两条垂直的射线所形成的角度为90°。
- 直角的补角又称为平分微领导者- 整周角:由一周的全部360°组成。
- 小于90°的角称为锐角,大于90°且小于180°的角称为钝角。
三、平行线与转角的性质1. 平行线与转角之间的关系在任何平面中,如果一条直线与另外两条平行线相交,则相交处所成的内部转角和是统一抽屉列―(180o) oA和AB||CD,则∠DAC=∠CBA。
2. 转角之间的关系- 互补性:如果两个锐角或者一个锐角一个钝数当它们其度数之和等于90°。
例如35°和55°是互补数因为它们加起来等于90°。
- 补等性:如果两个锐能复级别它们加起来等于180°。
如c 哟e时45o和135o。
AOB与BOC互为补等运算通知在相同掌上训练定律手和腹部并存在麻痹那意味着这些模式到右侧腹股沟开始存活也目标速度是92及神汉回程国航驭则mnoe有bc补充促进或ok等也相同。
平行线【平行】同一平面内,存在一条直线a与直线b不相交的位置,这时直线a与b互相平行.换言之,同一平面内,不相交的两条直线叫做平行线。
直线a与b是平行线,记作“∥”,这里“∥”是平行符号.【平行公理】经过直线外一点,有且只有一条直线与这条直线平行.【平行公理的推论】如果两条直线都与第三条直线平行,那么这条直线也互相平行.【平行线的判定】1、两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.2、两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.3、两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.【平行线的性质】性质1:两条平行线被第三条直线所截,同位角相等,简称为两直线平行,同位角相等.性质2:两条平行线被第三条直线所截,内错角相等,简称为两直线平行,内错相等.性质3:两条直线按被第三条线所截,同旁内角互补,简称为两直线平行,同旁内角互补.平行线中的拐点问题典例题型一内凹型1.(2020•福州三模)如图,已知AB∥DE,∠A=40°,∠ACD=100°,则∠D的度数是()A.40°B.50°C.60°D.80°2.(2020•覃塘区期末)如图,直线12∥12,∠A=125°,∠B=85°,则∠1+∠2=.3.(2020•濉溪期末)如图所示,已知AB∥CD,BF平分∠ABE,DF平分∠CDE,∠BED=115°,那么∠BFD的度数是()A.62°B.64°C.57.5°D.60°典例题型二外凹型4.(2020•沙坪坝区校级月考)如图,a∥b,∠1=55°,∠2=130°,则∠3=()A.100°B.105°C.110°D.115°5.(2020•黄冈期末)某小区地下停车场入口了栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=150°,则∠ABC=°.6.(2020•梁子湖区期末)如图,如果AB∥CD,那么角α,β,γ之间的关系式为()A.α+β+γ=360°B.α﹣β+γ=180°C.α+β+γ=180°D.α+β﹣γ=180°典例题型三外错型7.(2020•凉山州)如图,BD∥EF,AE与BD交于点C,∠B=30°,∠A=75°,则∠E的度数为()A.135°B.125°C.115°D.105°8.(2020•襄汾期末)如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=100°,∠CDE =15°,则∠DEF的度数是()A.110°B.115°C.120°D.125°9.(2020•鸡东期末)如图,已知直线a∥b,则∠1、∠2、∠3的关系是()A.∠1+∠2+∠3=360°B.∠1+∠2﹣∠3=180°C.∠1﹣∠2+∠3=180°D.∠1+∠2+∠3=180°典例题型四综合型10.(2020•文登区期末)如图,直线m∥n,AB⊥BC,∠1=35°,∠2=62°,则∠BCD的度数为()A.97°B.117°C.125°D.152°11.(2020•北碚区期末)如图,一条公路修到湖边时需绕道,第一次拐角∠B=120°,第二次拐角∠C=140°,为了保持公路AB与DE平行,则第三次拐角∠D的度数应为()A.130°B.140°C.150°D.160°12.(2020•潜江期末)如图,AB∥CD,∠BED=60°,∠ABE的平分线与∠CDE的平分线交于点F,则∠DFB的度数是.翻折、直尺、三角板中的平行问题典例题型五翻折与平行线1.(2020•西湖区校级月考)一次教学活动中,检验两条纸带①、②的边线是否平行(如图),小明和小华采用两种不同的方法:小明对纸带①沿AB折叠,量得∠1=∠2=50°;小华对纸带②沿GH折叠,发现GD与GC重合,HF与HE重合.则纸带①的边线__________;纸带②的边线________.(横线上填“平行”或“不平行”)2.(2020•鄂州期中)把一张对边互相平行的纸条折成如图那样,EF是折痕,若∠EFB=32°,则∠D′FD的度数为__________.3.(2020•覃塘区期末)如图,把长方形ABCD沿EF按图那样折叠后,点A,B分别落在G,H点处,若∠1=50°,则∠AEF的度数是____________.典例题型六直尺、三角板与平行线4.(2020•莒南期末)如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是__________.5.(2020•孟津期末)如图,将三角板与直尺贴在一起,使三角板的直角顶点C(∠ACB=90°)在直尺的一边上,若∠2=65°,则∠1的度数是()A.15°B.25°C.35°D.65°6.(2020•牡丹区期中)如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上,如果∠2=50°,那么∠1的度数为__________.典例题型七三角板与平行线7.(2020•长春模拟)将一副三角尺按如图的方式摆放,则∠α的度数是()A.45°B.60°C.75°D.105°8.(2020•丰城市期末)将一副三角板按如图放置,小明得到下列结论:①如果∠2=30°,则有AC∥DE;②∠BAE+∠CAD=180°;③如果BC∥AD,则有∠2=30°;④如果∠CAD=150°,则∠4=∠C;那么其中正确的结论有__________.9.(2020•岱岳区期末)将一副三角尺按如图所示的方式摆放(两条直角边在同条直线上,且两锐角顶点重合),连接另外两条锐角顶点,并测得∠1=47°,则∠2的度数为__________.巩固练习1.(2020•新乡二模)如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为()A.80°B.90°C.100°D.102°2.(2020•高明区期末)如图,已知AB∥CD,直线AB,CD被BC所截,E点在BC上,若∠1=45°,∠2=35°,则∠3=()A.65°B.70°C.75°D.80°3.(2020•宿豫区期中)如图,把一个长方形纸片沿EF折叠后,点C、D分别落在M、N的位置.若∠EFB=65°,则∠AEN等于()A.25°B.50°C.65°D.70°4.(2020•稷山校级一模)如图,直线a∥b,∠1=32°,∠2=45°,则∠3的度数是()A.77°B.97°C.103°D.113°5.(2020•温岭市一模)如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.30°B.40°C.50°D.60°6.(2020•遂宁期末)如图,∠BCD=95°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=95°B.∠β﹣∠α=95°C.∠α+∠β=85°D.∠β﹣∠α=85°7.(2020•河南模拟)如图,将矩形ABCD沿GH折叠,点C路在点Q处,点D落在AB边上的点E处,若∠AGE=34°.则∠BHQ等于()A.73°B.34°C.45°D.30°8.(2020•孟津期末)如图,AB∥EF,设∠C=90°,那么x、y和z的关系是()A.y=x+z B.x+y﹣z=90°C.x+y+z=180°D.y+z﹣x=90°9.(2020•福州期末)如图,BC⊥AE,垂足为C,过C作CD∥AB,若∠ECD=43°,则∠B=()A.43°B.57°C.47°D.45°10.(2020•长春模拟)如图,将一副三角板按如图放置,则下列结论:①∠1=∠3;②如果∠2=30°,则有BC∥AE;③如果∠1=∠2=∠3,则有BC∥AE;④如果∠2=45°,必有∠4=∠E.其中正确的有()A.①②B.①③C.①②④D.①③④11.(2020•烟台)小明将一张正方形纸片按如图所示顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),∠AOB的度数是________.12.(2020•苏州期末)将一张长方形纸条折成如图所示的图形,如果∠1=64°,那么∠2=__________.13.(2020•遂宁期末)如图,把一张长方形纸片ABCD沿EF折叠,若∠EFG=52°,则∠AEG的度数是__________.14.(2020•东至期末)如图,将一张长方形纸条折叠,若∠1=52°,则∠2=__________.15.(2020•河西区期中)如图,一副直角三角板技如图所示的方式摆放,其中点C在FD的延长线上,且AB∥FC,则∠CBD的度数为__________.16.(2020•沙坪坝区校级期末)将一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G、D、C分别在M、N的位置上,若∠EFG=52°,则∠2﹣∠1=____________°.17.(2020•诸城市期末)如图(1)是长方形纸带,∠DEF=20°,将纸带沿EF折叠图(2)形状,则∠FGD等于__________度.18.(2020•南昌期末)将三角尺的直角顶点放在直尺的一边上,若∠1=30°,∠2=56°,则∠3的度数是____________.19.(2020•泉州期末)如图,将一张长方形纸条沿某条直线折叠,若∠1=116°,则∠2等于__________.20.(2020•沙坪坝区校级期末)将一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G、D、C分别在M、N的位置上,若∠EFG=52°,则∠2﹣∠1=°.21.(2020•泉州期末)如图,将一张长方形纸条沿某条直线折叠,若∠1=116°,则∠2等于.22.(2020•开远市二模)如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=70°,∠BCD=40°,则∠BED 的度数为.。
平行线与转角的教案简介本教案旨在帮助学生理解平行线与转角的概念和性质。
通过丰富的教学活动和互动,学生将能够掌握平行线与转角的基本知识,并能够应用这些知识解决实际问题。
教学目标1.了解平行线的定义和性质;2.掌握如何使用尺规作图方法作出平行线;3.理解转角的概念及其分类;4.能够用转角的性质解决实际问题。
教学内容平行线平行线的定义;平行线的性质:两条直线平行的判定;平行线之间的距离;平行线上的等角;平行线的交角。
转角转角的定义;转角的分类:邻补角;对顶角;内错角;外错角;同旁内角;同旁外角。
教学活动活动一:平行线的尺规作图学生将通过使用尺规工具来画出给定的平行线。
老师将引导学生使用正确的步骤和技巧,并让学生自主探索如何用尺规作图来得到平行线。
活动二:平行线的性质验证学生将通过实验验证平行线的性质,例如平行线上的等角是否相等,平行线之间的距离是否相等等。
学生将自己设计实验,并记录实验结果,从而加深对平行线性质的理解。
活动三:转角性质探究学生将参与小组活动,对转角的不同性质进行探究。
每个小组将负责研究其中一种转角,并汇报给其他小组。
学生将用具体的例子来说明各种转角的性质,并解释其应用。
活动四:应用问题解决学生将应用所学的平行线和转角的知识解决实际问题。
老师将给出一些与平行线和转角相关的问题,学生将在小组中合作讨论,并提出解决方法,并给出解决过程和答案。
教学评估个人作业学生将完成一份个人作业,用于检验他们对平行线和转角知识的掌握情况。
个人作业将包括选择题、判断题和问题求解等。
小组展示每个小组将就转角的一种性质进行展示,展示中需要给出具体的例子,并能够解释其应用和意义。
教学反馈在教学过程中,老师将与学生进行及时的交流和反馈,并对学生的研究情况进行评估。
教学资源平行线和转角的教科书尺规工具平行线和转角的练题参考文献平行线和转角中文介绍]()平行线和转角英文介绍]()以上就是本教案的基本内容和安排。
通过本次教学,学生将能够在平行线和转角的概念和性质上有更深入的理解,并能够灵活运用这些知识解决实际问题。
《平行线中的“拐角“问题》教学设计【教学目标】1、经历探究平行线中“拐角”问题方法的过程,掌握对该类问题作辅助线的方法以及处理该类问题的方法技能.2、掌握用字母表示动角,经过转化探索题目所求动角之间数量关系的方法,进一步深化数形结合的数学思想.3、经历观察、操作、想象、推理、交流等活动,进一步培养推理能力以及有条理的表达能力.【教学重难点】教学重点:探索并掌握平行线中“拐角“问题的方法.教学难点:平行线中“拐角”问题中如何添加辅助线.【教学方法】本节课主要利用超级画板软件来进行教学,通过有目的、有设计地设计问题,引导学生进行观察、实验、猜测、推理等活动,从而使学生形成对待该类问题的理解和有效的学习策略.在平行线“拐角问题”的探究过程中,引导学生通过观察以及实验的结果,运用归纳、类比的方法先得出猜想,然后再进行证明,这十分有利于学生对证明的全面理解,组织学生探索出不同的辅助线作法,并适当进行比较讨论,有助于开阔学生的视野,学会有条理的思考问题,在探索动角的数量关系时,引导学生用字母表示动角,通过代数的方法得出其数量关系,过程简单并且条理清晰.【教学过程】一、复习巩固,引入新课问题1:如图AB//CD,此时∠BAC+∠ACD为多少度?问题2: 若在线段AC上取一点E,此时∠AEC是一个什么角?∠BAE+∠AEC+∠ECD为多少度?问题3:若将点E移动到直线AC的左侧,利用超级画板分别测量∠BAE、∠AEC和∠ECD角度,再计算该三个角的和,你有什么发现?问题4:如何用理论证明你实验得出的结论?设计意图:“拐角”问题对学生来说是个难点问题,所以让学生先从我们着手的简单图形出发,回顾平行线的性质定理,进而通过学生动手实验得出我们本节课要证明的结论,然后引发学生思考如何用理论去证明该结论,这样从简单到复杂,符合学生的学习规律,自然而然引入新课。
二、动手实践,探索新知活动1:如图,直线AB//CD,点E、F分别是AB、CD上的一点,点G在直线EF的左侧,求证:∠BEG+∠EGF+∠GFD=360°.教学说明:本过程教师适当的提问“如何添加辅助线”使得这个图形能转化为我们熟悉的平行线“三线八角”的模型,让学生小组讨论进行探索,最后进行总结,继而引导学生书写证明过程.活动2:如图,直线AB//CD,点E、F分别是AB、CD上的一点,点G在直线EF的左侧,EH、FH分别平分∠AEG和∠CFG,猜想∠EGF和∠EHF的数量关系,并证明你的结论.教学说明:在本活动中,因为G是动点,所以∠EGF和∠EHF均是动角,可以通过让学生利用软件测量观察,进行猜想,引导学生可以选择用字母x、y分别代替动角∠AEH以及∠HFC,然后利用题目给的条件用x、y去表示∠EGF和∠EHF,通过对比得出其数量关系,进而完成证明.活动3:如图,直线AB//CD,点E、F分别是AB、CD上的一点,点G在直线EF的右侧,EH、FH分别平分∠AEG和∠CFG,猜想∠EGF和∠EHF的数量关系,并证明你的结论.教学说明:在本活动中,让学生类比活动2的方法,完成证明。
平行线与转角教学案教学目标:1. 能够理解平行线与转角的概念。
2. 能够准确地绘制平行线和测量转角。
3. 能够应用平行线与转角的知识解决实际问题。
一、引入在我们的日常生活和学习中,遇到很多与平行线和转角相关的情景。
比如,在建筑设计、地图绘制和几何推理等领域,平行线与转角都扮演着重要的角色。
通过学习本节课的内容,我们将更好地理解和应用平行线和转角的概念。
二、概念解释1. 平行线:平行线是指在同一个平面内永不相交的两条直线。
可以用箭头符号或标记线段来表示。
2. 转角:转角是指由两条相交线段所夹角度的大小。
常用度数来表示。
三、绘制平行线绘制平行线的方法有很多,下面介绍其中两种常见的方法。
1. 利用直尺和铅笔步骤:a) 以直尺上的一条线段作为基准线。
b) 向上或向下平行地移动直尺,使用铅笔点在直尺上,延长基准线。
c) 通过连接两条平行线上的点,完成绘制平行线的过程。
2. 利用转角棱镜步骤:a) 将转角棱镜平放在纸上,将两条交叉线段放入转角棱镜内。
b) 观察转角棱镜上的刻度,记下两条线段之间的夹角度数。
c) 移动转角棱镜,保持两条线段不变,并且保持刻度与纸面平行。
d) 在刻度上方或下方画一条新的线段,即为平行线。
四、测量转角我们可以使用量角器或直角器来测量转角的大小。
1. 量角器测量步骤:a) 将量角器的中心点放在两条线段的交点上。
b) 转动量角器,对齐两条线段。
c) 读取量角器上的刻度,即为转角大小。
2. 直角器测量步骤:a) 将直角器的一条边与一条线段对齐。
b) 转动直角器,让另一条边与另一条线段对齐。
c) 观察直角器上的刻度,读取转角大小。
五、应用实例1. 示例一:建筑设计在建筑设计中,平行线的概念非常重要。
例如,在绘制平面图时,需要绘制平行的墙壁,以保持建筑物的结构稳定和美观。
2. 示例二:地图绘制地图上的道路通常是平行的,通过绘制平行线可以更准确地表示道路的走向和宽度。
3. 示例三:几何推理在几何推理中,平行线和转角被广泛应用。
平行线与转角教案一、引言平行线与转角是初中数学中重要的几何概念之一。
通过学习这一内容,学生能够理解平行线的性质、判断直线之间的关系以及应用转角的知识来解决实际问题。
本教案旨在帮助学生深入理解平行线与转角的概念和性质,并能够运用所学知识解决相关问题。
二、知识点 1:平行线的性质1. 平行线的定义:在平面内,如果两条直线没有交点且在同一平面内,我们就称这两条直线是平行线。
2. 平行线的判定方法:a) 同位角相等定理:如果两条直线被一条横截线分成多个同位角,且其中一个对应角为直角,则这两条直线平行。
b) 内错角相等定理:如果两条直线被一条横截线分成多个内错角,且其中一个对应角为直角,则这两条直线平行。
三、知识点 2:转角1. 转角的定义:当直线AB转到直线AC时,直线AB需要旋转的角度称为转角。
2. 转角的表示方法:通常用字母来表示转角,例如∠BAC。
3. 转角的种类:a) 顺时针转角:当直线AB需要顺时针旋转到直线AC时,转角为正角。
b) 逆时针转角:当直线AB需要逆时针旋转到直线AC时,转角为负角。
四、课堂实践1. 活动一:平行线判定游戏a) 设计一个游戏,让学生通过测量角度来判断给定的两条线是否平行。
b) 学生可以使用量角器或者直尺进行测量,通过比较角度大小来判断线是否平行。
c) 在游戏中加入奖励机制,激发学生的兴趣和积极参与。
2. 活动二:转角问题解决a) 给学生提供一些实际问题,要求他们利用转角的知识来解决问题。
b) 例如:一辆汽车绕一个圆形马路行驶一圈,转角是多少?又或者,根据某个建筑物的朝向,计算太阳在上午10点与建筑物之间的转角等等。
c) 引导学生绘制示意图,并通过旋转直线来计算转角。
五、巩固练习1. 在课堂上布置一些练习题,让学生巩固所学的知识。
2. 练习题的设计要涵盖平行线的判定和转角的计算,既注重基础知识的理解,又能够培养学生的运用能力。
3. 鼓励学生主动参与,通过合作解决问题,互相讨论和交流经验。
《平行线中的拐点问题》教学设计一、学习内容分析鲁教版七年级下册第八章《平行线的相关证明》平行线中的拐点问题,它是在学生学习了本章内容后,在回顾和思考中利用平行线的性质和判定以及三角形内角和定理解决平行线中的“拐点”问题。
内容特色:整合教材,做小专题研究。
二、学习目标分析1.掌握经常遇到的平行线中拐点问题的考察方式。
2.熟练应用平行线性质定理和判定定理解决实际问题。
3.进一步发展演绎推理能力。
4.增强学生学数学,用数学,探索数学奥妙的愿望,体验成功的感觉,学会倾听、欣赏和感悟,享受数学学习的快乐。
教学重点:拐点问题的解决方法教学难点:灵活利用已学知识添加辅助线三、学习者特征分析1.学生已经熟练掌握平行线的判定和性质以及三角形的内角和定力和推论;2. 学生在平时的练习中遇到过有关拐点问题的题目,但是很少有深入研究获得一般化结论。
3. 可能出现的问题:(1)学生几何语言不规范。
(2)学生运用数学知识归纳总结和数学建模的能力不强。
四、课前任务设计学生课前的准备:复习第八章《平行线的相关证明》,注意梳理定理,做手抄报。
五、授课过程设计第一环节:复习巩固,提出问题教师带着同学们回顾第八章的主要内容,进行归纳,并由生活中的实例提出平行线中的“拐点”问题。
如图1,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,你能求出∠C 的度数吗?图1第二环节:“拐点”问题分类探究探究1:如图2,AB∥CD,点E是平面内一点,那么∠BED与∠B、∠D之间的数量关系是什么呢?并说明理由解:过点E做EF∥A B∵AB∥EF(已知)∴∠B+∠BEF=180°(两直线平行,同旁内角互补)∵AB∥CD(已知)∴CD∥EF(平行于同一直线的两条直线互相平行)∴∠FED+∠D=180°(两直线平行,同旁内角互补)∴∠B+∠BEF+∠FED+∠D=360°(等式的性质)即∠B+∠BED+∠D=360°此处鼓励学生用多种方法解决,解决问题的关键是辅助线的添加方法,主要用到平行线的性质和判定,以及三角形的内角和定理及推论。
七年级下册第24题压轴题平行线的拐角问题七下平行线,平面直角坐标系压轴题二.解答题(共27小题)14.如图,已知直线AB∥CD,直线EF分别与AB、CD相交于点E、F,FM平分∠EFD,点H是射线EA上一动点(不与点E重合),过点H的直线交EF于点P,HM平分∠BHP交FM于点M.(1)如图1,试说明:∠HMF=(∠BHP+∠DFP);请在下列解答中,填写相应的理由:解:过点M作MQ∥AB(过直线外一点有且只有一条直线与这条直线平行).∵AB∥CD(已知),∴MQ∥CD(如果两条直线都和第三条直线平行,那么这两条直线也互相平行)∴∠1=∠3,∠2=∠4()∴∠1+∠2=∠3+∠4(等式的性质)即∠HMF=∠1+∠2.∵FM平分∠EFD,HM平分∠BHP(已知)∵∠1=∠BHP,∠2=∠DFP()∴∠HMF=∠BHP+∠DFP=(∠BHP+∠DFP)(等量代换).(2)如图2,若HP⊥EF,求∠HMF的度数;(3)如图3,当点P与点F重合时,FN平分∠HFE交AB于点N,过点N作NQ⊥FM于点Q,试说明无论点H在何处都有∠EHF=2∠FNQ.14.如图,已知直线AB∥CD,直线EF分别与AB、CD相交于点E、F,FM平分∠EFD,点H是射线EA上一动点(不与点E重合),过点H的直线交EF于点P,HM平分∠BHP交FM于点M.(1)如图1,试说明:∠HMF=(∠BHP+∠DFP);请在下列解答中,填写相应的理由:解:过点M作MQ∥AB(过直线外一点有且只有一条直线与这条直线平行).∵AB∥CD(已知),∴MQ∥CD(如果两条直线都和第三条直线平行,那么这两条直线也互相平行)∴∠1=∠3,∠2=∠4(两直线平行,内错角相等)∴∠1+∠2=∠3+∠4(等式的性质)即∠HMF=∠1+∠2.∵FM平分∠EFD,HM平分∠BHP(已知)∵∠1=∠BHP,∠2=∠DFP(角平分线定义)∴∠HMF=∠BHP+∠DFP=(∠BHP+∠DFP)(等量代换).(2)如图2,若HP⊥EF,求∠HMF的度数;(3)如图3,当点P与点F重合时,FN平分∠HFE交AB于点N,过点N作NQ⊥FM于点Q,试说明无论点H在何处都有∠EHF=2∠FNQ.【分析】(1)根据两直线平行,内错角相等,以及角平分线定义进行判断即可;(2)先根据HP⊥EF,AB∥CD,得到∠EHP+∠DFP=90°,再根据(1)中结论即可得到∠HMF的度数;(3)先根据题意得到∠NFQ=90°﹣∠FNQ,再根据FN平分∠HFE,FM平分∠EFD,即可得出∠HFD=2∠NFQ,最后根据∠EHF+∠HFD=180°,即可得出∠EHF=2∠FNQ.【解答】解:(1)由MQ∥CD,得到∠1=∠3,∠2=∠4,其依据为:两直线平行,内错角相等;由FM平分∠EFD,HM平分∠BHP,得到∠1=∠BHP,∠2=∠DFP,其依据为:角平分线定义.故答案为:两直线平行,内错角相等;角平分线定义.(2)如图2,∵HP⊥EF,∴∠HPE=90°,∴∠EHP+∠HEP=180°﹣90°=90°(三角形的内角和等于180°)又∵AB∥CD,∴∠HEP=∠DFP.∴∠EHP+∠DFP=90°.由(1)得:∠HMF=(∠EHP+∠DFP)=×90°=45°.(3)如图3,∵NQ⊥FM,∴∠NFQ+∠FNQ=180°﹣90°=90°(三角形的内角和等于180°).∴∠NFQ=90°﹣∠FNQ.∵FN平分∠HFE,FM平分∠EFD,又∵∠NFQ=∠NFE+∠QFE=(∠HFE+∠EFD)=∠HFD,∴∠HFD=2∠NFQ.又∵AB∥CD,∴∠EHF+∠HFD=180°,∴∠EHF=180°﹣∠HFD=180°﹣2∠NFQ=180°﹣2(90°﹣∠FNQ)=2∠FNQ,即无论点H在何处都有∠EHF=2∠FNQ.【点评】本题主要考查了平行线的性质与判定,角平分线的定义以及平行公理的运用,解决问题的关键是掌握:两直线平行,内错角相等;两直线平行,同旁内角互补.15.如图1,直线m∥n,点B、F在直线m上,点E、C在直线n上,连结FE并延长至点A,连结BA和CA,使∠AEC=∠BAC.(1)求证:∠BFA+∠BAC=180°;(2)请在图1中找出与∠CAF相等的角,并加以证明;(3)如图2,连结BC交AF于点D,作∠CBF和∠CEF的角平分线交于点M,若∠ADC=α,请直接写出∠M的度数(用含α的式子表示)【分析】(1)根据平行线的性质即可得到∠AEC=∠AFM,再根据∠AEC=∠BAC,可得∠AFM=∠BAC,根据∠BFA+∠AFM=180°,可得结论;(2)根据三角形内角和定理以及平行线的性质,即可得到与∠CAF相等的角;(3)过D作DH∥BF,过M作MG∥BF,根据平行线的性质,即可得到∠CED=∠HDE,∠FBD=∠HDB,再根据∠CBF和∠CEF的角平分线交于点M,可得∠CEM+∠FBM=(∠CED+∠FBD),进而得到∠M的度数.【解答】解:(1)如图1,∵直线m∥n,∴∠AEC=∠AFM,∵∠AEC=∠BAC,∴∠AFM=∠BAC,又∵∠BFA+∠AFM=180°,∴∠BFA+∠BAC=180°;(2)与∠CAF相等的角有:∠ANC,∠ABF,∠BNG.证明:∵∠AEC=∠BAC,∠ACE=∠NCA,∴∠CAE=∠ANC=∠BNG,∵m∥n,∴∠ABF=∠ANC,∴与∠CAF相等的角有:∠ANC,∠ABF,∠BNG;(3)如图2,过D作DH∥BF,过M作MG∥BF,∵BF∥CE,∴DH∥BF∥CE,MG∥BF∥CE,∴∠CED=∠HDE,∠FBD=∠HDB,∴∠CED+∠FBD=∠EDB=180°﹣∠ADC=180°﹣α,∵∠CBF和∠CEF的角平分线交于点M,∴∠CEM+∠FBM=(∠CED+∠FBD)=(180°﹣α)=90°﹣α,∵MG∥BF∥CE,∴∠CEM=∠GME,∠FBM=∠GMB,∴∠BME=∠GME+∠GMB=∠CEM+∠FBM=90°﹣α.【点评】本题主要考查了平行线的性质的运用,解决问题的关键是作辅助线构造内错角,解题时注意:两直线平行,内错角相等.16.已知直线AB∥CD,M,N分别是AB,CD上的点.(1)若E是AB,CD内一点.①如图甲所示,请写出∠BME,∠DNE,∠MEN之间的数量关系,并证明.②如图乙所示,若∠1=∠BME,∠2=∠DNE,请利用①的结论探究∠F与∠MEN的数量关系.(2)若E是AB,CD外一点.①如图丙所示,请直接写出∠EMB,∠END,∠E之间的数量关系.②如图丁所示,已知∠BMP=∠EMB,在射线MP上找一点G,使得∠MGN=∠E,请在图中画出点G的大致位置,并求∠ENG:∠GND的值.【分析】(1)①过E作EF∥AB,构造内错角,依据两直线平行,同旁内角互补进行推导,即可得到∠BME+∠DNE+∠MEN=360°.②过F作FG∥AB,构造内错角,依据两直线平行,内错角相等,即可得到∠MFN=∠1+∠2,再结合①的结论,即可得出3∠MFN+∠MEN=360°;(2)①过E作EF∥AB,构造内错角,依据两直线平行,内错角相等进行推导计算,即可得到∠DNE﹣∠BME=∠MEN;②设∠GMB=α,∠G=β,由∠BMP=∠EMB,∠G=∠E,可得∠EMQ=3α,∠E=4β,根据8字形结构得到∠GNQ=3α+3β,根据三角形外角性质以及平行线的性质,得到∠GND=∠1=α+β,据此可得∠ENG:∠GND的值.【解答】解:(1)①∠BME+∠DNE+∠MEN=360°.证明:如图甲,过E作EF∥AB,∵AB∥CD,∴EF∥CD,∴∠BME+∠FEM=180°,∠DNE+∠FEN=180°,∴∠BME+∠FEM+∠DNE+∠FEN=180°+180°=360°,即∠BME+∠DNE+∠MEN=360°.②如图乙,过F作FG∥AB,∵AB∥CD,∴FG∥CD,∴∠1=∠MFG,∠2=∠NFG,∴∠MFN=∠1+∠2,又∵∠1=∠BME,∠2=∠DNE,∴∠BME=3∠1,∠DNE=3∠2,又∵∠BME+∠DNE+∠MEN=360°,∴3∠1+3∠2+∠MEN=360°,即3∠MFN+∠MEN=360°;(2)①∠EMB,∠END,∠E之间的数量关系为:∠DNE﹣∠BME=∠MEN.理由如下:如图丙,过E作EF∥AB,∵AB∥CD,∴EF∥CD,∴∠DNE=∠FEN,∠BME=∠FEM,又∵∠FEN﹣∠FEM=∠MEN,∴∠DNE﹣∠BME=∠MEN;②点G的大致位置如图丁所示:设MG与NE交于点Q,NG与AB交于点F,设∠GMB=α,∠G=β,由∠BMP=∠EMB,∠G=∠E,可得∠EMQ=3α,∠E=4β,∵∠EQM=∠GQN,∴∠E+∠EMQ=∠G+∠GNQ,即∠GNQ=∠E+∠EMQ﹣∠G=4β+3α﹣β=3α+3β,∵∠1是△GFM的外角,∴∠1=∠G+∠GMF=β+α,又∵AB∥CD,∴∠GND=∠1=α+β,∴∠ENG:∠GND=(3α+3β):(α+β)=3.【点评】本题主要考查了平行线的性质以及三角形的一个外角等于与它不相邻的两个内角的和的性质的运用,过拐点作平行线,准确识图,理清图中各角度之间的关系是解决问题的关键.17.已知,AB∥CD,点E为射线FG上一点.(1)如图1,若∠EAF=30°,∠EDG=40°,则∠AED=70°;(2)如图2,当点E在FG延长线上时,此时CD与AE交于点H,则∠AED、∠EAF、∠EDG之间满足怎样的关系,请说明你的结论;(3)如图3,DI平分∠EDC,交AE于点K,交AI于点I,且∠EAI:∠BAI=1:2,∠AED=22°,∠I=20°,求∠EKD的度数.【分析】(1)延长DE交AB于H,依据平行线的性质,可得∠D=∠AHE=40°,再根据∠AED是△AEH的外角,即可得到∠AED=∠A+∠AHE=30°+40°=70°;(2)依据AB∥CD,可得∠EAF=∠EHC,再根据∠EHC是△DEH的外角,即可得到∠EHG=∠AED+∠EDG,即∠EAF=∠AED+∠EDG;(3)设∠EAI=α,则∠BAE=3α,进而得出∠EDK=α﹣2°,依据∠EHC=∠EAF=∠AED+∠EDG,可得3α=22°+2α﹣4°,求得∠EDK=16°,即可得出∠EKD的度数.【解答】解:(1)如图,延长DE交AB于H,∵AB∥CD,∴∠D=∠AHE=40°,∵∠AED是△AEH的外角,∴∠AED=∠A+∠AHE=30°+40°=70°,故答案为:70;(2)∠EAF=∠AED+∠EDG.理由:∵AB∥CD,∴∠EAF=∠EHC,∵∠EHC是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵∠EAI:∠BAI=1:2,∴设∠EAI=α,则∠BAE=3α,∵∠AED=22°,∠I=20°,∠DKE=∠AKI,又∵∠EDK+∠DKE+∠DEK=180°,∠KAI+∠KIA+∠AKI=180°,∴∠EDK=α﹣2°,∵DI平分∠EDC,∴∠CDE=2∠EDK=2α﹣4°,∵AB∥CD,∴∠EHC=∠EAF=∠AED+∠EDG,即3α=22°+2α﹣4°,解得α=18°,∴∠EDK=16°,∴在△DKE中,∠EKD=180°﹣16°﹣22°=142°.【点评】本题主要考查了平行线的性质,三角形外角性质以及三角形内角和定理的综合应用,解决问题的关键是作辅助线构造内错角,运用三角形外角性质进行计算求解.解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.19.如图1,AC平分∠DAB,∠1=∠2.(1)试说明AB与CD的位置关系,并予以证明;(2)如图2,当∠ADC=120°时,点E、F分别在CD和AC的延长线上运动,试探讨∠E和∠F的数量关系;(3)如图3,AD和BC交于点G,过点D作DH∥BC交AC于点H,若AC⊥BC,问当∠CDH为多少度时,∠GDC=∠ADH.【分析】(1)依据AC平分∠DAB,∠1=∠2,即可得到∠2=∠BAC,进而判定CD∥AB.(2)当∠ADC=120°时,∠1=∠2=30°,依据∠2是△CEF的外角,可得∠E+∠F=∠2=30°.(3)依据DH∥BC,AC⊥BC,可得DH⊥AC,进而得到∠ADH=∠CDH,据此可得当∠GDC=∠ADH时,∠CDG=∠CDH=∠ADH,即可得到∠CDH=×180°=60°.【解答】解:(1)如图,∵AC平分∠DAB,∴∠1=∠BAC,又∵∠1=∠2,∴∠2=∠BAC,∴CD∥AB.(2)当∠ADC=120°时,∠1=∠2=30°,∵点E、F分别在CD和AC的延长线上运动,∴∠2是△CEF的外角,∴∠E+∠F=∠2=30°.(3)∵DH∥BC,AC⊥BC,∴DH⊥AC,又∵∠1=∠2,∴∠ADH=∠CDH,∴当∠GDC=∠ADH时,∠CDG=∠CDH=∠ADH,∴∠CDH=×180°=60°.故当∠CDH为60度时,∠GDC=∠ADH.【点评】本题主要考查了平行线的判定以及三角形外角性质的运用,两条直线被第三条所截,如果内错角相等,那么这两条直线平行.即内错角相等,两直线平行.22.如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.(1)如图①,求证:∠BEC=∠ABE+∠DCE;(2)如图②,求证:∠BE2C=∠BEC;(3)猜想:若∠E n=α度,那∠BEC等于多少度?(直接写出结论).【分析】(1)先过E作EF∥AB,根据AB∥CD,得出AB∥EF∥CD,再根据平行线的性质,得出∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE;(2)先根据∠ABE和∠DCE的平分线交点为E1,运用(1)中的结论,得出∠CE1B=∠ABE1+∠DCE1=∠ABE+∠DCE=∠BEC;同理可得∠BE2C=∠ABE2+∠DCE2=∠ABE1+∠DCE1=∠CE1B=∠BEC;(3)根据∠ABE2和∠DCE2的平分线,交点为E3,得出∠BE3C=∠BEC;…据此得到规律∠E n=∠BEC,最后求得∠BEC的度数.【解答】解:(1)如图①,过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2,∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;(2)如图2,∵∠ABE和∠DCE的平分线交点为E1,∴由(1)可得,∠CE1B=∠ABE1+∠DCE1=∠ABE+∠DCE=∠BEC;∵∠ABE1和∠DCE1的平分线交点为E2,∴由(1)可得,∠BE2C=∠ABE2+∠DCE2=∠ABE1+∠DCE1=∠CE1B=∠BEC;(3)如图2,∵∠ABE2和∠DCE2的平分线,交点为E3,∴∠BE3C=∠ABE3+∠DCE3=∠ABE2+∠DCE2=∠CE2B=∠BEC;…以此类推,∠E n=∠BEC,∴当∠E n=α度时,∠BEC等于2nα度.【点评】本题主要考查了角平分线的定义以及平行线性质:两直线平行,内错角相等的运用.解决问题的关键是作平行线构造内错角,解题时注意:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.。