几何光学作业
- 格式:ppt
- 大小:506.00 KB
- 文档页数:18
习题九 几何光学(习题参考解答)[9-1] 将一物置于长柱形玻璃的凸球面前25cm 处,设这个凸球面曲率半径为5cm ,玻璃前的折射率n=1.5,玻璃前的媒质是空气,求:(1) 像的位置,是实像还是虚像?(2) 该折射面的焦距。
已知:5.11525====n n cm r cm u o 求:①?=v ②??21==f f 解:∵ rn n v n u n 1221-=+ ∴ 515151251-=+.v . )(25cm v = 成实像当:时∞=u 2f v =515.112-=f cm f 152=当:1f u v =∞=时55.15.111=∞+f cm f 101=答:像的位置在球面后25cm 外 为实像焦距cm f 101= cm f 152=[9-2] 有一厚度为3cm ,折射率为1.5的共轴球面系统,其第一折射面是半径为2cm 的球面,第二折射面是平面,若在该共轴球面系统前面对第一折射面8cm 处放一物,像在何处? 已知:cm d 3= 1=o n 5.1=n cm r 21= ∞=2rcm u 81=求:?=v解:∵ rn n v n u n 1221-=+ ∴ 215151811-=+.v . cm v 121=又 ∵ ∞-=+--5.111)312(5.1v ∴ cm v 6=答:像最后成在第二折射面后6cm 处。
[9-3] 一个双凸透镜,放在空气中,两面的曲率半径分别为15cm 和30cm ,如玻璃折射率为1.5,物距为100cm ,求像的位置和大小,并作图验证之。
已知:cm r 151= cm r 302-= 5.1=n cm u 100=求:像的位置?=v 像的大小解:∵ 透镜的焦距f 为:()121111-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--=r r n f ∴ 1)301151)(15.1(-⎥⎦⎤⎢⎣⎡---=f )(20cm =又 ∵ fv u 111=+ ∴20111001=+v )(25cm v =又 ∵ 放大率 uv m = 10025= 41=答:像的位置在透镜后20cm 外,实像且放大率为41[9-4] 一对称的双凸透镜折射率为1.5它在空气中的焦距为12cm ,其曲率半径为多大?另一双凸薄透镜置下列介质中,其左边为折射率为n 1=4/3的水,右边为空气,且右侧球面的半径与上一透镜的相同。
几何光学练习(一)1、有一直径为4cm 的实心玻璃球,球内有一小气泡,当观察者的眼睛与球心、气泡在同一条直线上时,气泡似相距球面1cm ,试求此气泡距球面的真实距离。
玻璃的折射率为1.5。
2、如图所示,一个半径为R 的球型玻璃鱼缸放置在直立的平面镜前,缸壁很薄,其中心距镜面3R ,缸中充满水,观察者在远处通过球心并与镜面垂直的方向注视鱼缸,一条小鱼以速度v 0射率n=4/3。
3、某人将折射率n=1.50、半径为10cm的玻璃球放在书上看字。
试求:(1)看到的字在什么地方?放大率为多少?(2)若将玻璃球切成两半并取其一,令其平面向上,而让球面和书面接触,这时看到的字在何处?放大率等于多少?4、如图所示,凸透镜焦距为f=15cm ,OC=25cm ,以C 点为圆心,r=5cm 为半径的发光圆环与主轴共面,试求出该圆环通过透镜折射后所成的像。
5、若一会聚透镜在空气中的焦距为5cm ,平置于离水箱底面40cm 高处,水箱充水至60cm ,试问:(1)水箱底面经过这一系统成像于何处?设透镜的折射率为1.52,水的折射率为1.33。
(2)假定水面以2cm/s 的速率向下降至透镜处,求这段时间内像的变化情况。
6、如图所示,一个小会聚透镜紧靠在凹面镜上,遮住面镜反射面的中央部分,当物体位于面镜前某一位置时,此光具组成两个实像。
一个像到面镜的距离为v 1=50cm ,另一个像到面镜的距离为v 2=10cm 。
求透镜的焦距。
7、平面镜M 1与凸透镜L 的主光轴的夹角α=45°,L 的焦距f=15cm ,AO=24cm ,BO=32cm ,N 是一挡光板,发光点P 在A 点正上方16cm 处,但发出的光线不能直接射到凸透镜上,如图所示,求发光点P 通过此光学系统最终成像的位置。
2 2题图 4题图几何光学练习题(二)1、平行光束垂直射在等腰棱镜的底面上,如图所示。
如果在离棱镜距离L=100cm 处放一个屏M ,在屏幕中央形成宽为2d=1cm 的暗纹,求棱镜的折射角α。
09专题:几何光学专题1.如图所示,甲、乙两块透明介质,折射率不同,截面为14圆周,半径均为R,对接成半圆。
一光束从A点垂直射入甲中,OA=22R,在B点恰好发生全反射,从乙介质D点(图中未画出)射出时,出射光线与BD连线间夹角为15°。
已知光在真空中的速度为c,求:(1)乙介质的折射率;(2)光由B到D传播的时间。
2.如图所示,单色细光束射到一半径为R的透明球表面,光束在过球心的平面内,入射角θ1=60°,该光束折射进入球内后在内表面反射一次,再经球表面折射后射出,出射光束恰好与最初入射光束平行。
(已知真空中光速为c)①补充完整该光束的光路图,求透明球的折射率;②求这束光在透明球中传播的时间。
3.如图所示,三棱镜的横截面ABC为直角三角形,∠A=90°,∠B=30°,边AC长为20cm,三棱镜材料的折射率为3,一束平行于底边BC的单色光从AB边上的中点O射入此棱镜,已知真空中光速为3.0×108m/s。
求:(1)从AB边射入的折射角;(2)通过计算判断光束能否从BC边射出。
4.如图所示,半圆玻璃砖的半径R=12cm,直径AB与光屏MN垂直并接触于A点。
一束激光a从半圆弧表面上射向半圆玻璃砖的圆心O,光线与竖直直径AB之间的夹角为60°,最终在光屏MN上出现两个光斑,且A点左侧光斑与A之间距离为4cm。
求:①玻璃砖的折射率;②改变激光a 的入射方向,使光屏MN 上只剩一个光斑,求此光斑离A 点的最远距离。
5.(多选)如图,一束光沿半径方向射向一块半圆柱形玻璃砖,在玻璃砖底面上的入射角为θ,经折射后射出a 、b 两束光线。
则( )A .在玻璃中,a 光的传播速度小于b 光的传播速度B .在真空中,a 光的波长小于b 光的波长C .玻璃砖对a 光的折射率小于对b 光的折射率D .若改变光束的入射方向使θ角逐渐变大,则折射光线a 首先消失E .分别用a 、b 光在同一个双缝干涉实验装置上做实验,a 光的干涉条纹间距大于b 光的干涉条纹间距6.(2019·沈阳市第一七0中学高二期中)如图所示,将半圆形玻璃砖放在竖直面内,它左方有较大的光屏P ,一光束SA 总是射向圆心O ,在光束SA 绕圆心O 逆时针转动过程中,在光屏P 上先看到七色光带,然后各色光陆续消失,则此七色光带从下到上....的排列顺序以及最早消失的光是( ) A .红光→紫光,红光 B .紫光→红光,红光 C .红光→紫光,紫光D .紫光→红光,紫光7.固定的半圆形玻璃砖的横截面如图。
1.桌面上有一倒立的玻璃圆锥,其顶点恰好与桌面接触,圆锥的轴(图中虚线)与桌面垂直,过轴线的截面为等边三角形,如图所示,有一半径为r=3cm的圆柱形平行光束垂直入射到圆锥的底面上,光束的中心轴与圆锥的轴重合。
已知玻璃的折射率为n=1.6,求光束在桌面上形成的光斑半径。
【答案】6cm2.如图,一赛艇停在平静的水面上,赛艇前端有一标记P离水面的高度为h1=0.6m,尾部下端Q略高于水面;赛艇正前方离赛艇前端S1=0.8m处有一浮标。
一潜水员在浮标前方S2=3.0m处下潜到深度为h2=4.0m时,看到标记P刚好被浮标挡住,此处看不到船尾端Q;潜水员继续下潜△h=4.0m,恰好能看见Q,求:(1) 水的折射率n;(2) 赛艇的长度l。
(可用根式表示)【答案】(1)43n=(2)87( 3.8) 3.33l m m=-≈3.如图所示,空气中有一折射率为的玻璃柱体,其横截面是圆心角为90°,半径为R的扇形OAB。
一束平行光平行于横截面,以45°入射角照射到0A上,0B不透光。
若只考虑首次入射到圆弧AB上的光,则AB上有光透出部分的弧长为多长?【答案】14Rπ4.(9分)用透明物质做成内、外半径分别为a,b的空心球的内表面上,涂有能完全吸光的物质,当一束平行光射向此球时,被吸收掉的光束的横截面积S=2πa2,如图所示。
不考虑透明物质的吸收和外表面的反射,试求该透明物质的折射率n【答案】n=25.一位学生用如图所示的方法来测定水的折射率,该学生在一个游泳池测得池中水深h=1.2 m(池底水平),用一根竹竿竖直立于池底,浸入水中部分刚好是全长的一半,太阳光与水平方向成θ=37°角射入游泳池,池底竹竿顶端的影子到竹竿底端的距离为L=2.5 m,求水的折射率和光在水中的传播速度。
(sin37°=0.6,cos37°=0.8)【答案】34;2.25×108 m/s6.【物理-选修3-4】(15分)(1)如图所示,一列简谐横波沿x轴传播,实线为t1=0时刻的波形图,虚线为t2=0.25s时刻的波形图,已知这列波的周期大于0.25s,则这列波的传播速度大小和方向可能是:A.2m/s,向左B.2m/s,向右C.6m/s,向左D.6m/s,向右(2)单色光束射到折射率n=1.414的透明球表面,光束在过球心的平面内,入射角i=450研究经折射进入球内后,又经内表面反射一次,再经球面折射后射出的光线,如图示。
几何光学习题及解答1.证明反射定律符合费马原理。
证明:费马原理是光沿着光程为最小值、最大值或恒定值的路径传播。
⎰=BAnds 或恒值max .min ,在介质n 与'n 的界面上,入射光A 遵守反射定律11i i '=,经O 点到达B 点,如果能证明从A 点到B 点的所有光程中AOB 是最小光程,则说明反射定律符合费马原理。
设C 点为介质分界面上除O 点以外的其他任意一点,连接ACB 并说明光程∆ ACB>光程∆AOB由于∆ACB 与∆AOB 在同一种介质里,所以比较两个光程的大小,实际上就是比较两个路程ACB 与AOB 的大小。
从B 点到分界面的垂线,垂足为o ',并延长O B '至 B ′,使B O B O '='',连接 B O ',根据几何关系知B O OB '=,再结合11i i '=,又可证明∠180='B AO °,说明B AO '三点在一直线上,B AO ' 与AC 和B C '组成ΔB AC ',其中B C AC B AO '+〈'。
又∵CB B C AOB OB AO B O AO B AO ='=+='+=',ACB CB AC AOB =+〈∴即符合反射定律的光程AOB 是从A 点到B 点的所有光程中的极小值,说明反射定律符合费马原理。
2、根据费马原理可以导出在近轴光线条件下,从物点发出并会聚到像点的所有光线的光程都相等.由此导出薄透镜的物象公式。
证明:由QB A ~FBA 得:OF\AQ=BO\BQ=f\s同理,得OA\BA=f '\s ',BO\BA=f\s由费马定理:NQA+NQ A '=NQ Q '结合以上各式得:(OA+OB)\BA=1得证 3.眼睛E 和物体PQ 之间有一块折射率为1.5的玻璃平板(见题3.3图),平板的厚度d 为30cm.求物PQ 的像 与物体PQ 之间的距离 为多少?解:.由题意知光线经两次折射后发生的轴向位移为:cmn d p p 10)321(30)11(=-=-=',即像与物的距离为cm 103.眼睛E 和物体PQ 之间有一块折射率为1.5的玻璃平板(见题3.3图),平板的厚度d 为30cm.求物PQ 的像 与物体PQ 之间的距离 为多少?解:.由题意知光线经两次折射后发生的轴向位移为:cmn d p p 10)321(30)11(=-=-=',即像与物的距离为cm 10En=1题3.3图4.玻璃棱镜的折射棱角A 为60度,对某一波长的光其折射率为1.6.计算(1)最小偏向角;(2)此时的入射角;(3)能使光线从A 角两侧透过棱镜的最小入射角.解:由最小偏向角定义得 n=sin2A0+θ/sin 2A,得θ0=46゜16′由几何关系知,此时的入射角为:i=2A0+θ=53゜8′当在C 处正好发生全反射时:i 2’= sin-16.11 =38゜41′,i 2=A- i 2’=21゜19′∴i 1= sin -1(1.6sin 21゜19′)= 35゜34′ ∴imin =35゜34′5.图示一种恒偏向棱角镜,它相当于一个30度-60-90度棱镜与一个45度-45度度棱镜按图示方式组合在一起.白光沿i 方向入射,我们旋转这个棱镜来改变1θ,从而使任意一种波长的光可以依次循着图示的路径传播,出射光线为r.求证:如果2sin 1n=θ则12θθ=,且光束i 与 r 垂直(这就是恒偏向棱镜名字的由来). 解: i nsin sin 11=θ若θ1sin = 2n , 则 sini 1 = 21, i 1=30。
几何光学习题及解答1.证明反射定律符合费马原理。
证明:费马原理是光沿着光程为最小值、最大值或恒定值的路径传播。
Bndmin.ma某或恒值A,在介质n与n'的界面上,入射光A遵守反射定律i1i1,经O点到达B点,如果能证明从A点到B点的所有光程中AOB是最小光程,则说明反射定律符合费马原理。
设C点为介质分界面上除O点以外的其他任意一点,连接ACB并说明光程ACB>光程AOB由于ACB与AOB在同一种介质里,所以比较两个光程的大小,实际上就是比较两个路程ACB与AOB的大小。
从B点到分界面的垂线,垂足为o,并延长BO至B,使OBOB,连接OB,根′据几何关系知OBOB,再结合i1i1,又可证明∠AOB180°,说明AOB三点在一直线上,AOB与AC和CB组成ΔACB,其中AOBACCB。
又∵AOBAOOBAOOBAOB,CBCBAOBACCBACB即符合反射定律的光程AOB是从A点到B点的所有光程中的极小值,说明反射定律符合费马原理。
BAi’n‘OCOn’‘B2、根据费马原理可以导出在近轴光线条件下,从物点发出并会聚到像点的所有光线的光程都相等.由此导出薄透镜的物象公式。
证明:由QBA~FBA得:OF\\AQ=BO\\BQ=f\\同理,得OA\\BA=f\\,BO\\BA=f\\结合以上各式得:(OA+OB)\\BA=1得证3.眼睛E和物体PQ之间有一块折射率为1.5的玻璃平板(见题3.3图),平板的厚度d为30cm.求物PQ 的像与物体PQ之间的距离为多少解:.由题意知光线经两次折射后发生的轴向位移为:12ppd(1)30(1)10cmn3,即像与物的距离为10cm3.眼睛E和物体PQ之间有一块折射率为1.5的玻璃平板(见题3.3图),平板的厚度d为30cm.求物PQ的像与物体PQ之间的距离为多少解:.由题意知光线经两次折射后发生的轴向位移为:12ppd(1)30(1)10cmn3,即像与物的距离为10cmEQn=1题3.3图4.玻璃棱镜的折射棱角A为60度,对某一波长的光其折射率为1.6.计算(1)最小偏向角;(2)此时的入射角;(3)能使光线从A角两侧透过棱镜的最小入射角.0A解:由最小偏向角定义得n=in2A/in2,得0=46゜16′0A由几何关系知,此时的入射角为:i=2=53゜8′当在C处正好发生全反射时:i2=in’11.6-1=38゜41′,i2=A-i2=21゜19′’i1=in-1(1.6in21゜19′)=35゜34′imin=35゜34′5.图示一种恒偏向棱角镜,它相当于一个30度-60-90度棱镜与一个45度-45度度棱镜按图示方式组合在一起.白光沿i方向入射,我们旋转这个棱镜来改变1,从而使任意一种波长的光可以依次循着图示的路径传播,出射光线为r.求证:如果束i与r 垂直(这就是恒偏向棱镜名字的由来).解:in1nini1in1n2则21,且光n1。
几何光学习题及答案几何光学习题及答案光学是物理学的一个重要分支,研究光的传播、反射、折射、干涉、衍射等现象。
几何光学是光学中的一个重要概念,它主要研究光在直线传播时的规律。
在几何光学中,有许多有趣的习题可以帮助我们更好地理解光的行为。
下面,我将提供一些几何光学习题及其答案,希望对大家的学习有所帮助。
习题一:平面镜反射假设有一面平面镜,光线以45度的角度入射到镜面上,求出反射光线的角度。
答案:根据平面镜反射定律,入射角等于反射角,因此反射光线的角度也是45度。
习题二:球面镜成像一面凸透镜的焦距为20cm,物体距离透镜20cm,求出成像的位置和倍率。
答案:根据透镜公式1/f = 1/v - 1/u,其中f为焦距,v为像距,u为物距。
代入数据计算可得1/20 = 1/v - 1/20,解得v = 40cm。
根据倍率公式m = v/u,代入数据计算可得m = 40/20 = 2。
因此成像位置在距离透镜40cm处,倍率为2。
习题三:折射定律光线从空气射入折射率为1.5的介质中,入射角为30度,求出折射角。
答案:根据折射定律n1sinθ1 = n2sinθ2,其中n1为入射介质折射率,n2为出射介质折射率,θ1为入射角,θ2为折射角。
代入数据计算可得1sin30 =1.5sinθ2,解得θ2 = arcsin(1sin30/1.5) ≈ 19.47度。
因此折射角约为19.47度。
习题四:薄透镜成像一面凸透镜的焦距为10cm,物体距离透镜20cm,求出成像的位置和倍率。
答案:根据透镜公式1/f = 1/v - 1/u,代入数据计算可得1/10 = 1/v - 1/20,解得v = 20cm。
根据倍率公式m = v/u,代入数据计算可得m = 20/20 = 1。
因此成像位置在距离透镜20cm处,倍率为1。
习题五:干涉条纹两束光线以相同的频率和相位差为0的情况下通过两个狭缝,观察到干涉条纹。
如果将狭缝之间的距离减小一半,观察到的干涉条纹间距会发生什么变化?答案:干涉条纹的间距与狭缝之间的距离成正比。
可编辑修改精选全文完整版
51几何光学
授课内容:
例题1、求视深。
设水下h处有一物体,从它的正上方水面观察,看到的物体的像在什么位置?设水的折射率为n。
例题2、如图一个储油桶的底面直径与高均为d,当桶内没有油时,从某点A恰能看到桶底边缘的某点B。
当桶内油的深度等于桶高的一半时,仍沿AB方向看去,恰好看到桶底上的点C,CB两点距离d/4。
求油的折射率和光在油中传播的速度。
A
d
B
例题3、假设地球表面不存在大气层,那么人们观察到的日出时刻与存在大气层的情况相比()
A、将提前
B、将延后
C、不变
D、在某些地区将提前,在另一些地区将延后。
例题4、如图所示,两块同样的的玻璃直角三棱镜ABC,两者的AC面是平行放置的,在它们之间是均匀的未知透明介质。
一单色细光束O垂直于AB面入射,在图示的出射光线中
A.1、2、3(彼此平行)中的任一条都有可能
B.4、5、6(彼此平行)中的任一条都有可能
C.7、8、9(彼此平行)中的任一条都有可能
D.只能是4、6中的某一条
例题5、例题5. 光线由介质A进入介质B,入射角小于折射角,由此可知()
A、介质A是光密介质
B、光在介质A中的速度大些
C、介质A的折射率比介质B的小
D、光从介质A进入介质B不可能发生全反射
例题6. 如图所示,一立方体玻璃砖,放在空气中,平行光束从立方体的顶面斜射入玻璃砖,然后投射到它的一个侧面,若全反射临界角为42°,问:
(1)这光线能否从侧面射出?
(2)若光线能从侧面射出,
玻璃砖折射率应该满足何条件?
i r。