常用的交通检测器简介和选用
- 格式:docx
- 大小:159.75 KB
- 文档页数:10
几种主流的交通流量检测方案的比较目前市场上主要的交通流量检测手段有:环形线圈、微波检测、视频检测,无线地磁检测等其他检测器,下面我们逐个来分析其优缺点。
1、基于线圈技术原理:以金属环形线圈埋设于路面下,利用车辆经过线圈区域时因车身铁材料所造成的电感量的变化来探测车辆的存在。
该探测技术可测车速,车流量,占有率等基本交通信息参数,但是不能多车道同时探测。
安装:埋设式。
在路面开一条深槽,将探测线圈埋入其中,信息处理部分安装于路边的控制箱。
优点:首次投资较少、准确度高、不受气候和光照等外界条件影响。
缺点:安装与维修因为需要中断交通、破坏路面而变得很复杂,加上车辆重压等因素导致寿命不长,因而维护成本很高。
另外特殊路段如桥梁、隧道等难以安装。
技术:最简单也最成熟应用成本:首次投资相对较少,维护成本极高。
应用范围:可应用于除不能破坏路面情况外的所有地方。
与其他系统的兼容性:与交通信号灯控制系统兼容性很好,但是与基于其它技术的交通信息采集系统的兼容性较差。
目前常规的线圈交通信息检测系统信息传输采用的是轮循,而基于其它技术的系统主要采用的是主动上报的方式。
2、基于视频技术原理:使用计算机视频技术检测交通信息,通过视频摄象头和计算机模仿人眼的功能,在视频范围内划定虚拟线圈,车辆进入检测区域使背景灰度发生变化,从而感知车辆的存在,并以此检测车辆的流量和速度。
该探测技术可测车速,车流量,占有率等基本交通信息参数,但是难以实现很多车道同时探测。
安装:正向安装于龙门架或者L型横梁上。
优点:在气候和光照等外界条件理想的情况下准确度高。
缺点:极易受气候和光照等外界条件等影响,因为需要正向安装于龙门架或者L型横梁上而使得安装与维修变得很复杂。
技术:不成熟,主要问题是要克服外界条件的影响。
应用成本:首次投资相对线圈要高,但是维护成本很低。
应用范围:可应用于能架设龙门架或者L型横梁的所有地方。
与其他系统的兼容性:好。
3、基于微波雷达技术基于微波雷达技术的交通信息采集系统可分为侧向安装与正向安装2种。
几种主要车辆检测器的对比几种主要检测技术的对比道路交通信息采集是智能交通系统的一项重要内容。
在道路交通信息采集技术中,环形线圈车辆检测器因其技术成熟、易于掌握、初期建设成本较低而成为当前国内用量最大一种检测设备。
但是,环形线圈检测器同时具有获得的信息量少,难于安装和较低的灵活性等缺点。
为克服以上不足,微波车辆检测器和视频车辆检测器技术得以发展并应用于城市道路和高速公路的交通信息检测。
下面对几种检测技术的优缺点做具体分析随着道路交通检测技术的发展,基于视频图像处理、模式识别技术的视频车辆检测器应运而生。
视频车辆检测器具有采集信息量大、区域广泛、设定灵活、调整维护简便等特点,与传统的交通信息系统采集技术相比,视频检测器可提供现场的视频图像。
1.地感线圈环形线圈车辆检测器是传统的交通检测器,其工作原理为在道路上埋设感应线圈,感应线圈与车辆检测器连接。
当车辆经过线圈时,由于线圈电感量的变化,车辆的通过状态变化将被检测到,同时将状态信号传输给车辆检测器,由其进行采集和计算。
环形线圈车辆检测器相对于其他检测器具有低成本、高可靠性、高检测精度、全天候工作的优点,是目前应用最广泛的车辆检测器。
缺点:1、按照环形线圈施工要求,检测线圈在初次安装时要切割路面,植入环形检测线圈。
封路施工不可避免会造成交通阻塞,对于城市主干道交通产生影响。
2、埋植线圈的切缝容易使路面受损,缩短路面及检测线圈的使用寿命。
实际使用中尤其对沥青路面的损坏更为严重,导致检测线圈的损毁率居高不下,使用和维护成本上升,影响系统的可用性。
3、检测线圈容易受到路面下沉、裂缝、冰冻等环境影响,产生误报。
4、受自身测量原理限制,当车流拥堵、车辆间距较小时,其测量精度大幅度下降,不适于城市交叉路口交通流检测。
5、环形线圈车辆检测器一经设置即固定不变,在道路通行状况改变时调整困难。
2.微波车辆检测器微波车辆检测器是以微波对车辆发射电磁波产生感应原理为基础。
以RTMS微波为例,其工作方式为:悬挂于路侧,在扇形区域内发射连续的低功率调制微波,并在路面上留下一条长长的投影。
交通事件检测器(CP-TFCS01)使用说明书普天首信广州哈迪目录1.硬件 (3)1.1.CP-TFCS01车辆检测器机架描述 (3)1.1.1.机架面板视图 (3)1.1.2.车辆检测器互连框图 (4)1.2.电源板 (4)1.3.通信板 (4)1.4.检测板 (5)2.设置 (5)2.1.通信板设置 (5)2.1.1.复位 (5)2.1.2.地址跳线 (6)2.1.3.其它参数设置 (6)2.2.检测板设置 (7)2.2.1.复位 (7)2.2.2.灵敏度设置(SENS) (7)2.2.3.存在时间设置(PRES) (7)2.2.4.工作频率设置(FREQ) (8)3.通信 (8)4.环形线圈安装 (9)4.1.环形线圈检测的基本原理 (9)4.2.线圈线 (9)4.3.线圈的尺寸 (10)4.4.线的绞接 (10)4.5.线圈的安装 (10)4.6.线圈填充物 (11)4.7.线圈接入检测器 (11)4.8.线圈安装注意事项 (11)5.检测数据范围 (12)6.故障分析及解决 (12)6.1.供电故障 (12)6.2.线圈检测板故障 (12)6.3.通信板故障 (13)1.硬件1.1.CP-TFCS01车辆检测器机架描述CP-TFCS01型车辆检测器由一个10英寸机架以及电源板、通信板和1~5块检测板组成。
1.1.1.机架面板视图图1 前面视图图2 后面视图1.1.2.车辆检测器互连框图中心计算机图3 车辆检测器互连框图1.2.电源板电源板供电给机架中所有的模块。
机架电源装在机架的左端,占两个插槽。
电源面板上一个电源开关,当打到“ON”位置时,开关中的红色指示灯亮指示电源已接通。
物理尺寸:3U×2槽位(高×宽)输入电压:240V AC 50Hz输出电压:24VDC1.3.通信板通信板是线圈检测器的主控制处理器卡。
该板负责对来自检测器的所有数据进行采集和处理,并负责处理所有的串行通信和错误报告。
道路检测设备预防交通事故的利器近年来,交通事故频发成为社会的一大难题,给人们的生命财产安全造成了巨大威胁。
因此,寻找一种高效可靠的方法来预防交通事故成为人们的当务之急。
在这个背景下,道路检测设备应运而生,被人们普遍认为是预防交通事故的利器。
本文将以道路检测设备作为焦点,探讨其在交通事故预防中的重要性和应用前景。
一、道路检测设备的种类及功能道路检测设备主要分为以下几种:交通监控摄像头、交通流量检测器、超速监控雷达、车辆识别系统等。
这些设备通过安装在道路或交叉口的具体位置,能够及时准确地收集到路面、车辆等相关数据,从而提供给相关部门进行交通管控和事故预防。
交通监控摄像头是一种常见的道路检测设备,它能够实时监测路面交通状况,记录交通违法行为,并通过图像识别技术对车牌进行自动识别,从而提供有效的交通违法证据。
交通流量检测器则通过计数和统计车辆的流量,帮助交通管理部门做出合理的交通规划,减少交通拥堵和事故发生的可能性。
超速监控雷达则可以测量车辆的速度,提醒驾驶员遵守交通规则,降低超速行驶引发的交通事故风险。
车辆识别系统能够根据车牌号码自动识别并录入,实现对车辆的追踪和监管。
二、道路检测设备在交通事故预防中的重要性道路检测设备在交通事故预防中起着重要的作用。
首先,它能够及时监测并记录交通违法行为,如闯红灯、违规超车等,为交通管理部门提供有效的证据,加大执法力度,从而有效遏制和减少交通违法行为的发生。
其次,道路检测设备能够统计车辆的流量和速度等数据,为交通规划和道路改造提供科学依据,减少交通拥堵和事故风险。
此外,通过车辆识别系统,交通管理部门可以对潜在违法车辆进行及时查处,提高道路执法的效率和准确性。
综上所述,道路检测设备不仅可以监管交通秩序,还能够有效预防交通事故的发生,具有非常重要的意义。
三、道路检测设备在交通事故预防中的应用前景随着科技的不断进步和创新,道路检测设备在交通事故预防中的应用前景更加广阔。
首先,随着人工智能技术的发展,交通监控摄像头可以实现更加智能化的监测和管理,如人脸识别技术可以识别驾驶员是否疲劳或使用手机等违规行为,从而提醒驾驶员并及时采取措施。
交通信息检测设备分析—微波交通检测器卢勇(江西梨温高速公路公司进贤 331721)摘要:本文对交通信息采集技术和检测设备的选用进行了综合性能的评估,并对现有检测技术应用现状进行分析。
重点介绍了江西梨温高速公路关于微波检测器的试验安装过程和测试结果。
关键字:信息工程;交通信息采集;微波检测器;安装测试;应用现状0 前言随着社会经济的快速增长,人民生活水平的不断提高,道路交通需求愈发旺盛。
近年来道路基础设施建设的步伐加快,道路网已初具规模。
大型道路系统的数据化信息化管理也对基础的数据采集系统提出了新的要求,交通信息数据的采集手段和工具越来越受到人们的重视。
交通信息采集的主要任务是获得道路上的运行信息,包括车流量、车速、车型分类、占有率等信息。
准确有效的信息使道路管理部门能够在此基础上做出正确的决策规划,保障道路系统的有效运行。
目前应用的交通信息采集方式主要有三种,即电感线圈检测、视频检测和微波检测。
1 交通数据采集技术和检测设备的选用交通信息数据采集系统的检测设备是进行道路信息管理的基础,准确完整的交通信息采集是实现道路信息管理的前题。
如何选用有效的交通信息数据检测设备可以从以下几个方面进行评估选择:技术发展、设备性能、相关成本、安装维护等。
1.1技术发展检测技术的应用与发展趋势,是选择检测设备时的重要因素。
1.1.1考察该技术的现状和应用对于现有的检测设备,考察国内外该技术的发展现状和应用情况。
1.1.2判断该技术的发展前景从系统供货商处取得相关技术的研发信息,以了解系统未来功能扩充的方向,判断该项技术是否是会成为或将会成为市场应用的主流技术。
1.2设备性能1.2.1功能是否符合需求例如是否能满足交通流量、占有率等应用的需求,以及其精确程度。
1.2.2系统整合及扩展性所提供的数据参数和数收稿日期:2004-7-29 据传输格式是否符合国家标准,在未来是否可与其他系统兼容。
其功能是否能够满足未来系统扩展的需求,如检测车道数的增加等。
文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。
ITMS-01智能交通微波检测器产品介绍南京莱斯信息技术股份有限公司目录1产品简介................................................................................................... 错误!未定义书签。
1.1概述............................................................................................... 错误!未定义书签。
1.2工作原理....................................................................................... 错误!未定义书签。
2产品特点................................................................................................... 错误!未定义书签。
2.1高准确性....................................................................................... 错误!未定义书签。
2.2高适应性....................................................................................... 错误!未定义书签。
2.3工作模式....................................................................................... 错误!未定义书签。
车辆检测器1. 概述车辆检测器是一种用于实时监测和识别路上行驶的车辆的设备。
它主要通过使用图像处理技术和计算机视觉算法,对交通场景中的车辆进行检测、跟踪和分类。
车辆检测器在交通管理、智能交通系统以及自动驾驶等领域具有重要的应用。
2. 车辆检测器的工作原理车辆检测器的工作原理可以分为以下几个步骤:2.1 图像采集车辆检测器通常使用摄像头来采集交通场景的图像。
这些摄像头可以安装在交通信号灯、高架桥、路边或者特定的交通监控设备上。
2.2 图像预处理在进行车辆检测之前,需要对采集到的图像进行预处理。
预处理通常包括图像去噪、图像增强、图像尺寸调整等操作。
2.3 车辆检测车辆检测是车辆检测器的核心部分。
在车辆检测过程中,通常使用目标检测算法,如卷积神经网络(CNN)、支持向量机(SVM)等,对图像中的车辆进行定位和识别。
2.4 车辆跟踪与分类一旦车辆被检测到,车辆检测器会对其进行跟踪和分类。
车辆跟踪主要是通过目标跟踪算法,如卡尔曼滤波、粒子滤波等,实时跟踪车辆的位置和运动轨迹。
车辆分类主要是通过车辆特征提取和分类算法,将不同类型的车辆进行分类和统计。
2.5 结果输出车辆检测器会将检测结果以图像或文本的形式进行输出。
通常情况下,检测结果会包括车辆的坐标、类型、速度等信息。
3. 车辆检测器的应用车辆检测器在交通管理、智能交通系统以及自动驾驶等领域具有广泛的应用。
3.1 交通管理在交通管理中,车辆检测器可以帮助交通管理部门对交通流量进行实时监测和统计。
通过车辆检测器,可以及时获取道路上的车辆数量、车速等信息,从而优化交通信号灯的控制策略,改善交通拥堵问题。
3.2 智能交通系统车辆检测器是智能交通系统中重要的组成部分。
它可以用于交通信号控制、车牌识别、违章监测等功能。
通过车辆检测器,智能交通系统可以实现对交通场景的实时监测和分析,提供更加智能高效的交通服务。
3.3 自动驾驶在自动驾驶领域,车辆检测器可以帮助自动驾驶系统识别和跟踪周围的车辆。
几种常见的交通检测器人们对交通事件检测的方法一般分为直接检测法和间接检测法。
直接检测法是通过监控摄像机采取图像信息,然后根据图像处理的算法提取出图像所包含的交通信息,如交通流量、速度、占有率等判断是否有交通事故发生;或者通过工作人员巡逻或者路人观察到有事故发生[[23]。
间接检测法则比直接检测法要复杂,首先布设在道路下的检测线圈采集到交通流参数并将采集到的参数传送给PC机,PC机利用有关的算法分析有没有事故发生。
由于直接检测法所需的工作量比间接检测法大,所以目前世界各国普遍采用间接监测的方法。
间接检测法用到的主要的采集数据的工具就是检测线圈,下面介绍一下各种交通检测器的工作原理及其优缺点。
(1>超声波检测器工作原理:根据光沿直线传播的原理,当光遇到障碍物时就会被反射回来,同理当超声波遇到障碍物(车辆)时就会产生一反射波,反射波传送回接收端,根据时间差就可以判断是否有车辆通过。
正常情况下,没有车辆时超声波返回到超声波检测器用的时间比有车辆通过时用的时间要长,当接收到反射波的事件变短就可以判断出车辆通过。
优点:首先超声波检测器安装在路侧,不用破坏路面;其次,耐用且安装方便。
缺点:易受周围环境的影响,例如温度、雨雪等;其次检测范围有限,检测精度不高,当有人或者其他动物通过时极可能发生误检。
(2>线圈检测器:环形线圈检测器是最早使用的事件检测器,目前世界很多国家的高速公路仍然在使用线圈检测器。
工作原理:线圈检测器包含一个长方形或者圆形的闭合线圈,线圈内通有时刻变化的电流,根据变化的电场会产生磁场,交变的电磁会产生电场的原理,当线圈受到压力的作用时线圈内的回路电感量会产生变化,进而导致电流的变化,根据电感量是否发生变化就可以知道是否有车辆通过了。
优点:首先目前线圈检测技术己被世界大部分国家使用,相对来说比较成熟,且价格相对合理;其次线圈检测器被埋在地下,所以受周围环境的影响很小,且其自身的结构决定了它很高的稳定性和精确度。
几种主要检测技术的对比道路交通信息采集是智能交通系统的一项重要内容。
在道路交通信息采集技术中,环形线圈车辆检测器因其技术成熟、易于掌握、初期建设成本较低而成为当前国内用量最大一种检测设备。
但是,环形线圈检测器同时具有获得的信息量少,难于安装和较低的灵活性等缺点。
为克服以上不足,微波车辆检测器和视频车辆检测器技术得以发展并应用于城市道路和高速公路的交通信息检测。
下面对几种检测技术的优缺点做具体分析随着道路交通检测技术的发展,基于视频图像处理、模式识别技术的视频车辆检测器应运而生。
视频车辆检测器具有采集信息量大、区域广泛、设定灵活、调整维护简便等特点,与传统的交通信息系统采集技术相比,视频检测器可提供现场的视频图像。
1.地感线圈环形线圈车辆检测器是传统的交通检测器,其工作原理为在道路上埋设感应线圈,感应线圈与车辆检测器连接。
当车辆经过线圈时,由于线圈电感量的变化,车辆的通过状态变化将被检测到,同时将状态信号传输给车辆检测器,由其进行采集和计算。
环形线圈车辆检测器相对于其他检测器具有低成本、高可靠性、高检测精度、全天候工作的优点,是目前应用最广泛的车辆检测器。
缺点:1、按照环形线圈施工要求,检测线圈在初次安装时要切割路面,植入环形检测线圈。
封路施工不可避免会造成交通阻塞,对于城市主干道交通产生影响。
2、埋植线圈的切缝容易使路面受损,缩短路面及检测线圈的使用寿命。
实际使用中尤其对沥青路面的损坏更为严重,导致检测线圈的损毁率居高不下,使用和维护成本上升,影响系统的可用性。
3、检测线圈容易受到路面下沉、裂缝、冰冻等环境影响,产生误报。
4、受自身测量原理限制,当车流拥堵、车辆间距较小时,其测量精度大幅度下降,不适于城市交叉路口交通流检测。
5、环形线圈车辆检测器一经设置即固定不变,在道路通行状况改变时调整困难。
2.3.微波车辆检测器微波车辆检测器是以微波对车辆发射电磁波产生感应原理为基础。
以RTMS微波为例,其工作方式为:悬挂于路侧,在扇形区域内发射连续的低功率调制微波,并在路面上留下一条长长的投影。
常用的交通检测器简介和选用1、概述现在社会交通的发展,交通检测器的应用越来越普及。
交通检测器以车辆为检测目标,检测车辆的通过或存在状况,也检测路上车流的各种参数,其作用是为控制系统提供足够的信息以便进行最优的控制。
常用的检测器有环形线圈检测器、超声波检测器、红外线检测器、视频图像处理机等。
检测器种类很多,其工作原理大致可分为两类:○1检测能使某种开关触点闭合的机械力;○2检测因车辆的运动或存在引起的能量变化。
压力检测器就是利用机械力检测的例子,而利用能量变化进行检测则有环形线圈检测器超声波检测器等等。
按照能否检测静止车辆来分,检测器可分为两类。
有些检测器如环形线圈、磁强计检测器能检测存在于检测区域的静止或运动的车辆,这类检测器称为存在型检测器;而另一类检测器只能检测运动通过检测区域的车辆,这类检测器称作通过型检测器。
检测器还可以检测和交通有关的环境条件,以便在出现有害的环境条件时能够对交通进行控制或提出警告。
2、常用的交通检测器2.1环形线圈检测器2.1.1环形线圈检测器的构成及其检测原理环形线圈检测器是一种基于电磁感应原理的车辆检测器,它的传感器是一个埋在路面下面、通过一定工作电流的环形线圈。
当车辆通过线圈或停在12线圈上时,车辆引起线圈回路电感量的变化,检测器检测出变化量就可以检测出车辆的存在,从而达到检测目的。
环形线圈检测器主要包括:环形线圈、线圈调谐回路和检测电路。
(1)环形线圈环形线圈是由专用电缆几匝构成(一般为4匝),一般规格为2m ×2m 的正方形,根据不同的需要,可以改变线圈的形状和尺寸。
对车辆检测起直接作用的是环形线圈回路的总电感。
总电感主要包括环形线圈的自感和线圈与车辆之间的互感。
我们知道,任何载流导线都将在其周围产生磁场,对于长度为l ,匝数为N 的螺线管型线圈,线圈内磁场强度均匀。
道路上的环形线圈不能完全等同于螺线管,考虑其磁场的不均匀修正因子F 1,其自感量自L 可近似于螺线管得自感量乘修正因子F 1,即:lA N F r 201L μμ=自 (3-1) 式中r μ是介质的相对磁导率,空气的1=r μ,170104--⨯=hm μ;A 为线圈面积。
常用机动车辆安全检测器性能比较与应用前景摘要:近年来,随着交通运输业的蓬勃发展,机动车辆成为人类生活中不可或缺的组成部分。
但随之也带来众多交通事故的发生以及尾气所造成的环境污染。
故而为保障交通安全和大气生态环境的平衡,对机动车辆进行定期的检查和调整使必不可少的。
本文就以机动车辆在安全检测过程中所使用设备的性能进行比较,同时讨论分析其应用前景。
关键词:滚筒式制动试验台;平板式制动试验台1.引言为更好保障我国交通安全,机动车辆需要定期进行安全检测,而在安全检测过程中使用到的设备众多,主要包括轴重仪、制动试验台、侧滑试验台、车速表试验台、前照灯检测仪、废气分析仪、烟度计和声级计等。
同时由于我国对于机动车辆安全检测起步相对来说比较晚,故而在检测过程中所使用的部分设备制造技术依赖于引进国外。
但在一般情况下各国的技术设备更适用于检测本国车辆,而对于检测我国车辆的适应性并不高。
故而我们需要明晰每种检测设备的工作原理,优缺点以确定其在不同环境下的适用性。
本文就以其中的制动试验台为例,制动试验台在机动车安全检测中主要用于检测汽车制动力、阻滞力等相关参数,依据试验台支撑车轮形式的不同可将其分为两种类型:滚筒式制动试验台和平板式制动试验台。
下面分别从两者的工作原理,优缺点进行讨论分析。
二、滚筒式制动试验台近年来,滚筒式制动试验台依据工作原理又可将其分为滚筒反力式制动试验台和滚筒惯力式制动试验台。
而其中以滚筒反力式制动试验台在当下国内外市场中占据主要地位。
滚筒反力式制动试验台主要由滚筒组、驱动装置、减速器、传动链、测力传感器和指示、控制装置等部件组成[1]。
其主要通过检测作用于测力滚筒上车轮制动力所产生的反力,再结合参考车辆本身相关参数而得到车辆性能评估的结果。
1.优点:相较于其它制动试验台,滚筒反力式试验台在性能上保险的更加稳定,并且制动力检测值重复性较好,而从检测结果来看,其准确度也较高。
2.缺点:滚筒反力式制动试验台由于其自身架构相对而言比较复杂,且在使用过程中驱动设备等装置极容易产生损耗,故而该试验台在维护和保养方面会耗费比较大的人力及资源。
MTD微波交通检测器应用方案国家智能交通系统工程技术研究中心 北京中交国通智能交通系统技术有限公司2004年7月目录1.微波交通检测器简介 (2)2. 技术规格 (2)2.1微波信号和覆盖区域 (2)2.2检测精度 (3)2.3机械性能 (3)2.4接口 (3)2.5电源要求 (4)2.6环境条件 (4)2.7可靠性 (4)3.设备特性 (4)4.工作原理 (7)4.1 MTD 工作原理 (7)4.2 MTD微波特性 (7)5. 设备应用 (8)5.1设备应用领域 (8)5.2设备安装 (8)6.公路应用解决方案 (13)6.1系统结构 (13)6.2设备安装 (15)6.3场地选择 (16)6.4安装工程条件 (16)6.5安装设备清单 (17)6.6数据存储与管理 (17)6.7 外部接口 (18)7.工程安装实例 (20)7.1 京津塘高速公路马驹桥段 (20)7.2江西梨温高速公路 (21)7.3北京西二环路广安门地段 (21)8.技术支持和服务承诺 (22)9.附件-检测报告 (24)1.微波交通检测器简介微波交通检测器(Microwave Traffic Detector-以下简称MTD)是利用雷达线性调频技术原理,对路面发射微波,通过对回波信号进行高速实时的数字化处理分析,检测车流量、速度、车道占有率和车型等交通流基本信息的非接触式交通检测器。
MTD微波交通检测器主要应用于高速公路、城市快速路、普通公路交通流量调查站和桥梁的交通参数采集,提供车流量、速度、车道占有率和车型等实时信息,此信息可用隔离接触器连接到现行的控制器或通过串行通信线路连接到其它系统,为交通控制管理,信息发布等提供数据支持。
MTD可安装于路侧立柱或类似结构上,具有安装维护方便,不用破坏路面,不影响交通,技术先进,成本低等特点。
该产品由国家ITS中心(北京中交国通智能交通系统技术有限公司)研制生产,通过了交通部交通工程监理检测中心的性能测试。
常用的交通检测器简介和选用1、概述现在社会交通的发展,交通检测器的应用越来越普及。
交通检测器以车辆为检测目标,检测车辆的通过或存在状况,也检测路上车流的各种参数,其作用是为控制系统提供足够的信息以便进行最优的控制。
常用的检测器有环形线圈检测器、超声波检测器、红外线检测器、视频图像处理机等。
检测器种类很多,其工作原理大致可分为两类:○ 1 检测能使某种开关触点闭合的机械力;○2 检测因车辆的运动或存在引起的能量变化。
压力检测器就是利用机械力检测的例子,而利用能量变化进行检测则有环形线圈检测器超声波检测器等等。
按照能否检测静止车辆来分,检测器可分为两类。
有些检测器如环形线圈、磁强计检测器能检测存在于检测区域的静止或运动的车辆,这类检测器称为存在型检测器;而另一类检测器只能检测运动通过检测区域的车辆,这类检测器称作通过型检测器。
检测器还可以检测和交通有关的环境条件,以便在出现有害的环境条件时能够对交通进行控制或提出警告。
2、常用的交通检测器2.1 环形线圈检测器2.1.1 环形线圈检测器的构成及其检测原理环形线圈检测器是一种基于电磁感应原理的车辆检测器,它的传感器是一个埋在路面下面、通过一定工作电流的环形线圈。
当车辆通过线圈或停在12L F 1自r0 lN 2Ar是介质的相对磁导率,空气的7 1r1,4 10 hm线圈上时,车辆引起线圈回路电感量的变化,检测器检测出变化量就可以检测出车辆的存在,从而达到检测目的。
环形线圈检测器主要包括:环形线圈、线圈调谐回路和检测电路。
(1) 环形线圈环形线圈是由专用电缆几匝构成(一般为 4 匝),一般规格为 2m ×2m的正方形,根据不同的需要,可以改变线圈的形状和尺寸。
对车辆检测起直接作用的是环形线圈回路的总电感。
总电感主要包括环形线圈的自感和线圈与车辆之间的互感。
我们知道,任何载流导线都将在其 周围产生磁场,对于长度为 l ,匝数为 N 的螺线管型线圈,线圈内磁场强度均匀。
道路上的环形线圈不能完全等同于螺线管,考虑其磁场的不均匀修正 因子 F 1, 其自感量 L 自 可近似于螺线管得自感量乘修正因子F 1,即:(3-1 )式中;A 为线圈面积。
由上式可知,环形线圈自感的大小取决于线圈的周长、横截面的面积、匝数、周围介质情况,当线圈埋设在路面下时,上述参数就基本确定了。
而 车辆进入环线线圈是,改变了环形线圈周围介质情况。
铁磁车体使磁导率增 加,从而感量增加。
但另一方面,环形线圈是有源探头在其中加上交变电流, 则在其周围建立起交变电场。
当铁磁性的车体进入环形线圈时,车体内会感 生涡电流,并且产生与环路向耦合但方向相反的电磁场,即互感,降低线圈 环路电感。
由于线圈设计成涡流影响占支配地位的状态, 所以环路总电感量 L 减少。
检测出线圈环路电感量的变化,就可以判断车辆的存在或通过。
(2) 调谐回路环形线圈作为一个感应元件,通过一个变压器接到被恒流源支持的调谐回路上,该调谐回路是LC 谐振回路,设计选择电容C, 使调谐回路有一个固定的震荡频率。
由电子线路知识可知,LC 谐振回路的震荡频率 f 为:1f(3-2 )2 LC这表明,f 与L 成反比。
前面已分析,车辆进入环形线圈将使回路总电感L 减少,因而也会使震荡回路频率增大。
只要将该回路的输出送检测电路处理得到频率随时间变化的信号就可以检测出是否有车辆通过。
(3)信号检测与输出检测电路包括相位锁定器、相位比较器、输出电路等,现在很多型号的环形线圈检测器还包含微处理器,它与检测电路一起构成信号检测处理单元。
相位比较器的一个输入信号是相位锁定器的输出信号,其频率为调谐回路的固有震荡频率,另一个输入信号跟踪车辆通过线圈时谐振回路的频率变化,从而使输出的信号为一反映频率随时间变化的电压信号也就是反映车辆通过环形线圈的过程的信号。
输出电路先将相位比较器输出的信号进行放大,然后以两种方式输出,即模拟量输出、数字量输出。
模拟量输出用来分别车型,数字信号输出用来计数或控制。
亦可用微机综合处理输出信号获得各种交通参数。
带有微处理机的环形线圈检测器则可以直接做到这一点。
从图3-1 可以看出,当车辆前沿进入线圈一边时,检测器被触发产生信号输出,而当车辆后沿离驶线圈另一边时,信号强度低于阈值,输出电平降为零。
车辆这个实际对环形线圈作用的长度L ji 称为车辆有效长度。
车辆有效长度数值上约等于车辆长度与线圈长度之和。
显然,大多数情况下都使用检测器的数字电平输出。
为了检测不同的交通参数和适应不同检测或控制要求可设置检测器工作于方波和短脉冲两种输3出方式。
当检测器运行于“方波”的工作方式时,只要车辆进入环形线圈,检测器就产生并保持信号输出(当车辆离开环形线圈后,仍可设置信号持续一段时间)。
电路中的计时器自动计测信号持续时间,这对有些交通控制参数如占有率等的检测计算很有用处。
当检测器运行于“短脉冲”的输出方式时,每当车辆通过环形线圈检测器就产生一个短脉冲(100μs~150μs),这种方式在双线圈测速系统中得以应用。
2.1.2 环形线圈检测系统的构成环形线圈检测系统包括埋于路面下面的环形线圈、接线盒、传输电缆、信号检测处理单元等。
检测车辆时,将一个或多个环形线圈按一定的方法埋于路面下,线头接入接线盒,信号由传输电缆送入信号检测处理单元,该电路单元通常包括了微处理器,直接处理检测数据,计算一些交通控制参数。
环形线圈检测系统与控制中心的主控机通过电缆连接、通信,主控机可发送信号,设置检测器的检测周期等工作状态,并监测检测器故障;检测器则将检测数据如车辆计数、占有率等传送至主控机,以便完成控制系统的信息存储、优化配置、方案选择和事件检测等功能,实现系统的最佳控制效果。
2.2 超声波检测器超声波检测器是一种在高速公路上应用较多的检测器,它利用车辆形状对超声波波前的影响来实现检测。
超声波车辆检测的探头具有发射和接受双重功能,被设置于道路的正上方或斜上方,向路面发射超声波,并接收来自车辆的反射波。
超声波车辆检测器的工作原理可分为两种:传播时间差法和多普勒法。
(1)传播时间差法这是一种将超声波分割成脉冲射向路面并接收其反射波的方法。
当有车辆时,超声波会经车辆提前返回,检测出超前于路面的反射波,就表明车辆4存在或通过。
如图3-3a 所示,若超声波探头距地面高度为H,车辆高度为h,波速v,发自探头的超声波脉冲的反射波从路面和车辆返回的时间分别为t 和t’,则:t= 2 Hvt’=2 H h v (3-13 )可见时间t’与车辆高度h 向对应。
这个特点即用来判别车辆存在,也可用于估计车高。
从图3-3b 还可看出,调整启动脉冲的启动时间和宽度,能够限制输出信号发生的时间t’的范围,由式(3-13)就可以得出能被检测出来的车辆对应的车高范围。
一般超声波检测器能检测出车高处于0.75m~1.6m 的车辆。
图3-3 超声波传播时间差法检测车辆原理a超声波探头与车高; b 脉冲序列(2)多普勒法超声波探头向空间发射超声波同时接收信号,如果有移动物体,那么接收到的反射波信号就会呈现多普勒效应。
利用此方法可检测正在驶近或正在远离的车辆,而不能检测出处于检测范围内的静止车辆。
由于超声波检测器采用悬挂式安装,这与路面埋设式检测器(如环形线圈)相比有许多优点。
首先是不需破坏路面,也不受路面变形的影响;其次使用寿命长,可移动,架设方便,在日本交通工程中被大量采用。
其不足之处是容易受环境的影响,当风速 6 级以上时,反射波产生飘移而无法正常检56红外接 收管调制解调器选通放大整流车 辆调制脉冲发生器抗干扰网络驱动电路红外发射管图 3-4 红外检测器检测框图输出端测;探头下方通过的人或物也会产生反射波,造成误检。
所以超声波检测器要按照一定的规范安装。
从架设方便,使用寿命长等方面来说,路面埋设式检测器不如超声波检测器,所以超声波检测器成为目前使用量仅次于环形线圈的一种检测器。
2.3 红外检测器基于光学原理的车辆检测器用得比较多的是红外检测器与激光检测器, 下面主要介绍红外检测器(图 3-4 )。
红外检测一般采用反射式或阻断式检测技术。
例如反射式检测探头,它包括一个红外发光管和一个接收管。
无车时,接收管不受光;有车时,接受车体反射的红外线。
其工作原理是由调制脉冲发生器产生调制脉冲,经红外探头向道路上辐射,当由车辆通过时,红外线脉冲从车体反射回来,被探头的接收管接收。
经红外调解器调解,再通过选通、放大、整流和滤波后触发驱动器输出一个检测信号。
这类检测器存在的缺点是:工作现场的灰尘、冰雾会影响系统的正常工作。
2.4 视频图像处理技术基于视频图像处理的车辆检测技术是近年来逐步发展起来的一种新型车辆检测方法,它具有无线、可一次检测多参数和检测范围较大的特点,使用灵活,有着良好的应用前景。
视频图像处理车辆检测系统通常由电子摄像机、图像处理机(包含微处理器)、显示器等部分组成。
如图3-5 ,摄像机对道路的一定区域范围摄像,图像经传输线送入图像处理机,图像处理机对信号进行模/ 数转换、格式转换等,再由微处理器处理图像背景,实时识别车辆的存在,判别车型,由此进一步推导其他交通参数。
图像处理机还可根据需要给监控系统的主控机、报警器等设备提供信号,控制中心则根据这些信号制定控制策略,发出整个控制系统的控制信号。
图3-5 图像处理车辆检测系统视频图像处理方法处理的是摄像机摄取的图像。
目前的系统一般还不能立即处理连续图像,而是以某一速度处理一系列的图像帧。
摄像机将视场场景即光学图像转换成一帧一帧的电子信号。
具体来说,设一帧图像由N 个一定大小的像元组成,光电元件将每个像元的平均光亮度转换成电信号,经扫描装置逐个扫描,这些像元相应的电信号依次通过信道被发送出来,成为一帧电信号。
如图3-5 ,摄像机设置于道路上方或侧上方,设S( x,y,t) 表示摄像机视场范围内一点(x,y), 在t 时刻的反射光强,通过摄像机摄像,该点7图像强度用函数I ( x,y,t) 表示,该信号被转化成数字信号存储、处理。
由于每帧图像包含数十万个像元,摄像频率约30 帧/s ,所以需要大量的存储空间。
为了减少像元所占存储空间,提高实时处理速度,通常在多帧图像中取一帧中的一些特定线段作为检测线进行处理。
一旦选定检测线,图像处理机中的处理程序就估测无车时检测线上的背景强度(最简单的方法就是估算背景的统计平均值)从而得到阈值。
将检测线中所含的像元的强度I ( x,y,t) 与阈值比较,超过阈值,说明在点(x,y)处有车辆存在或通过,否则就表示无车通过。
图3-6 图像处理车辆检测示意图图3-6 中的横线m1、m2, m m就是在图像上设定的检测线,与摄像机视场中设置的一些等距离的检测站1、检测站2、, 检测站m相对应。