IMP次黄嘌呤核苷酸
- 格式:ppt
- 大小:1.04 MB
- 文档页数:57
嘌呤核苷酸从头合成的原料:漂呤多肽链从头合成指的是在肝脏和结肠黏膜等人体器官中,以硫酸铵核糖和甘氨酸等物质为原材料开展生成的全过程。
漂呤多肽链的关键作用是参加植物体内的微生物化学变化,而且对身体的功能一切正常运行具有尤为重要的功效,另外漂呤多肽链对人体生物学具备一定的缓冲作用。
嘌呤核苷酸从头合成的原料漂呤多肽链从头合成的特性是:漂呤多肽链是在硫酸铵核糖分子结构基本上逐渐生成的,并不是最先独立生成漂呤碱随后再与硫酸铵核糖融合的。
漂呤多肽链的从头合成指,在肝脏、结肠黏膜和胸腺等人体器官中,以硫酸铵核糖、天冬氨酸、甘氨酸、谷氨酰胺、一碳单位及CO2等为原材料生成漂呤多肽链的全过程。
关键反映流程分成两个阶段:最先生成次黄嘌呤多肽链(IMP),随后IMP再转化成腺嘌呤多肽链(AMP)与鸟嘌呤多肽链(GMP)。
漂呤环各原素来源于以下:N1由天冬氨酸出示,C2由N10-甲酰FH4出示、C8由N5,N10-甲炔FH4出示,N3、N9由谷氨酰胺出示,C4、C5、N7由甘氨酸出示,C6由CO2出示。
嘌呤核苷酸从头合成的特点是:嘌呤核苷酸是在磷酸核糖分子基础上逐步合成的,不是首先4102单独合1653成嘌呤碱然后再与磷酸核糖结合的。
嘌呤核苷酸的从头合成指,在肝脏、小肠粘膜和胸腺等器官中,以磷酸核糖、天冬氨酸、甘氨酸、谷氨酰胺、一碳单位及CO2等为原料合成嘌呤核苷酸的过程。
主要反应步骤分为两个阶段:首先合成次黄嘌呤核苷酸(IMP),然后IMP再转变成腺嘌呤核苷酸(AMP)与鸟嘌呤核苷酸(GMP)。
嘌呤环各元素来源如下:N1由天冬氨酸提供,C2由N10-甲酰FH4提供、C8由N5,N10-甲炔FH4提供,N3、N9由谷氨酰胺提供,C4、C5、N7由甘氨酸提供,C6由CO2提供。
嘌呤核苷酸:嘌呤核苷酸是一种嘌呤碱的核苷酸,五碳糖与有机碱合成核苷,核苷与磷酸合成核苷酸。
次黄嘌呤核苷酸脱氢酶抑制剂产生菌的筛选及aquayamycin的结构鉴定徐冬梅;穆云龙;郭会灿;张丽媛;亢希然;郭英【摘要】筛选次黄嘌呤核苷酸脱氢酶(IMPDH)抑制剂及其产生菌,为新的抗癌药物和免疫抑制药物的研发提供先导化合物.对菌株进行发酵培养,通过以IMPDH为靶点的高通量筛选模型获得微生物活性代谢产物及其阳性菌种,采用16s rDNA序列构建阳性菌株的系统发育进化树,综合波谱解析确定化合物结构,并利用相关细胞对化合物进行活性评价.结果鉴定N05WA-1324A产生菌菌株为链霉菌属菌株,m/z 486,分子式为C25H26O10,为aquayamycin.该化合物具有较强的IMPDH抑制活性,IC50为18.1μmol/L;对T淋巴细胞有很强的抑制活性,在2.5μmol/L浓度下能抑制99.8%的细胞增殖;同时对人结肠癌细胞株SW-620和人乳腺癌细胞株MDA-MB-231具有较强的增殖抑制活性,IC50分别为8.6和23.3μmol/L.N05WA-1324A具有很强的IMPDH和免疫抑制活性为国内外首次报道,在细胞水平上的活性评价显示其具有抗癌药物和免疫抑制药物的开发潜力.【期刊名称】《中国抗生素杂志》【年(卷),期】2018(043)012【总页数】6页(P1482-1487)【关键词】IMPDH抑制剂;抗肿瘤;结构;Aquayamycin【作者】徐冬梅;穆云龙;郭会灿;张丽媛;亢希然;郭英【作者单位】石家庄职业技术学院,石家庄050081;国家微生物药物工程研究中心,华北制药集团新药研究开发有限责任公司,石家庄050015;石家庄职业技术学院,石家庄050081;石家庄职业技术学院,石家庄050081;石家庄市果树站,石家庄050000;石家庄职业技术学院,石家庄050081【正文语种】中文【中图分类】R979.1+4次黄嘌呤单核苷酸脱氢酶(inosine 5'-monophosphate dehydrogenase, IMPDH)是鸟嘌呤从头合成途径的重要限速酶[1],其依赖NAD发挥活性,催化次黄嘌呤核苷酸(IMP)转化为黄嘌呤核苷酸(XMP),如其胞内活性受阻,将导致鸟苷酸合成受阻,从而影响DNA合成,细胞增殖受到抑制。
嘌呤核苷酸循环是什么意思嘌呤核苷酸循环,指的是人体骨骼肌里面的一种氨基酸脱氨基的作用方法,也就是转氨耦联杯amv循环脱氧的作用。
在做氨基的作用里,能够生成天冬氨酸和次磺嘌呤核苷酸。
这样能够保持人体的腺嘌呤和鸟嘌呤核苷酸的水平保持平衡,这样能够保证核酸合成的需要,对人体具有比较重要的意义。
★合成途径体内核苷酸的合成有两条途径:①利用磷酸核糖、氨基酸、一碳单位及CO2等简单物质为原料合成核苷酸的过程,称为从头合成途径(denovo synthesis),是体内的主要合成途径。
②利用体内游离碱基或核苷,经简单反应过程生成核苷酸的过程,称重新利用(或补救合成)途径(salvage pathway)。
在部分组织如脑、骨髓中只能通过此途径合成核苷酸。
嘌呤核苷酸的主要补救合成途径是嘌呤碱与5'-PRPP(5'-磷酸核糖焦磷酸)在磷酸核糖转移酶作用下形成嘌呤核苷酸。
★合成过程嘌呤核苷酸的从头合成早在1948年,Buchanan等采用同位素标记不同化合物喂养鸽子,并测定排出的尿酸中标记原子的位置的同位素示踪技术,证实合成嘌呤的前身物为:氨基酸(甘氨酸、天门冬氨酸、和谷氨酰胺)、CO2和一碳单位(N10甲酰FH4,N、N10-甲炔FH4)。
随后,由Buchanan和Greenberg等进一步搞清了嘌呤核苷酸的合成过程。
出人意料的是,体内嘌呤核苷酸的合成并非先合成嘌呤碱基,然后再与核糖及磷酸结合,而是在磷酸核糖的基础上逐步合成嘌呤核苷酸。
嘌呤核苷酸的从头合成主要在胞液中进行,可分为两个阶段:首先合成次黄嘌呤核苷酸(inosine monophosphate IMP);然后通过不同途径分别生成AMP和GMP。
下面分步介绍嘌呤核苷酸的合成过程。
★从头合成的调节嘌呤核苷酸从头合成的调节从头合成是体内合成嘌呤核苷酸的主要途径。
但此过程要消耗氨基酸及ATP。
机体对合成速度有着精细的调节。
在大多数细胞中,分别调节IMP,ATP和GTP的合成,不仅调节嘌呤核苷酸的总量,而且使ATP和GTP的水平保持相对平衡。
嘌呤核苷酸从头合成的原料
嘌呤核苷酸的从头合成要点:
合成部位:肝细胞胞质
关键酶:5-磷酸核糖焦磷酸(PRPP)酰胺转移酶、PRPP合成酶
嘌呤碱基原料:甘氨酸(Gly)、天冬氨酸(Asp)、谷氨酰胺、甲酰基(来自四氢叶酸)、CO2。
核糖-5'-磷酸来自磷酸戊糖途径,嘌呤核苷酸从头合成是在磷酸核糖分子上逐步合成嘌呤环。
步骤:IMP的合成(IMP是重要的中间产物)、AMP和GMP的生成。
能量变化:IMP的合成需5个ATP,6个高能磷酸键。
AMP或GMP 的合成又需1个ATP。
一
合成过程
1.部位:肝是体内从头合成嘌呤核苷酸的主要器官,其次是小肠和胸腺,而脑、骨髓则无法进行此合成途径。
2.步骤:在磷酸戊糖的基础上逐步合成嘌呤核苷酸。
首先合成IMP,IMP是重要的中间产物。
二
合成的调节
别构酶:PRPP酰胺转移酶是一类变构酶,其单体形式有活性,二聚体形式无活性。
IMP、AMP及GMP使活性形式转变成无活性形式,而PRPP则相反。
反馈调节:嘌呤核苷酸合成起始阶段的PRPP合成酶和PRPP酰胺转移酶活性可被合成产物IMP、AMP及GMP等抑制。
在形成AMP和GMP过程中,过量的AMP控制AMP的生成,不影响GMP的合成;过量的GMP控制GMP的生成,不影响AMP 的合成;IMP转变成AMP时需要GTP,而IMP转变成GMP时需要ATP。
这样可使腺嘌呤和鸟嘌呤核苷酸的水平保持相对平衡,以满足核酸合成的需要。
嘌呤核苷酸:嘌呤核苷酸是一种嘌呤碱的核苷酸,五碳糖与有机碱合成核苷,核苷与磷酸合成核苷酸。
嘌呤核苷酸的从头合成早在1948年,Buchanan等采用同位素标记不同化合物喂养鸽子,并测定排出的尿酸中标记原子的位置的同位素示踪技术,证实合成嘌呤的前身物为:氨基酸(甘氨酸、天门冬氨酸(天冬氨酸)、和谷氨酰胺)、CO2和一碳单位(N10甲酰FH4,N、N10-甲炔FH4)。
随后,由Buchanan和Greenberg等进一步搞清了嘌呤核苷酸的合成过程。
出人意料的是,体内嘌呤核苷酸的合成并非先合成嘌呤碱基,然后再与核糖及磷酸结合,而是在磷酸核糖的基础上逐步合成嘌呤核苷酸。
嘌呤核苷酸的从头合成主要在胞液中进行,可分为两个阶段:首先合成次黄嘌呤核苷酸(inosine monophosphate IMP);然后通过不同途径分别生成AMP和GMP。
下面分步介绍嘌呤核苷酸的合成过程。
1.IMP的合成:IMP的合成包括11步反应:(1)5-磷酸核糖的活化:嘌呤核苷酸合成的起始物为α-D-核糖-5-磷酸,是磷酸戊糖途径代谢产物。
嘌呤核苷酸生物合成的第一步是由磷酸戊糖焦磷酸激酶(ribose phosphate pyrophosphohinase)催化,与ATP反应生成5-磷酸核糖-α-焦磷酸(5-phosphorlbosyl?α-pyrophosphate PRPP)。
此反应中ATP 的焦磷酸根直接转移到5-磷酸核糖C1位上。
PRPP同时也是嘧啶核苷酸及组氨酸、色氨酸合成的前体。
因此,磷酸戊糖焦磷酸激酶是多种生物合成过程的重要酶,此酶为一变构酶,受多种代谢产物的变构调节。
如PPi和2,3-DPG为其变构激活剂。
ADP和GDP为变构抑制剂。
(2)获得嘌呤的N9原子:由磷酸核糖酰胺转移酶(amidophosphoribosyl transterase)催化,谷氨酰胺提供酰胺基取代PRPP的焦磷酸基团,形成β-5-磷酸核糖胺(β-5-phosphoribasylamine PRA)。
八、核苷酸的结构、功能与核苷酸代谢一、A11、嘧啶核苷酸在核苷酸酶和核苷磷酸化酶的催化下,生成A、磷酸、核糖B、磷酸、戊糖C、核糖、嘧啶碱D、磷酸、核糖、嘧啶碱E、磷酸、核糖、β-氨基异丁酸2、关于痛风的描述错误的是A、一种多基因疾病B、多见于成年女性C、某些参与嘌呤核苷酸代谢的酶先天性缺陷可引起D、表现为尿酸生成增多,产生高尿酸血症E、常用次黄嘌呤的类似物别嘌呤醇来治疗痛风症3、IMP转变成GMP的过程中经历了A、氧化反应B、还原反应C、脱水反应D、硫化反应E、生物转化4、AMP在体内分解时首先形成的核苷酸是A、IMPB、XMPC、GMPD、CMPE、UMP5、AMP和GMP在细胞内分解时,最终均生成A、黄嘌呤B、尿酸C、次黄嘌呤核苷酸D、黄嘌呤核苷酸E、黄嘌呤核苷6、嘧啶核苷酸补救途径的主要酶是A、尿苷激酶B、嘧啶磷酸核糖转移酶C、胸苷激酶D、胞苷激酶E、氨基甲酰磷酸合成酶7、6-巯基嘌呤、5-氟尿嘧啶具有抗肿瘤作用的可能机制是A、抑制嘌呤的补救合成B、抑制RNA聚合酶C、抑制DNA聚合酶D、碱基错配E、抑制蛋白质合成8、有关tRNA的结构特点叙述错误的是A、tRNA分子均是单链多核苷酸B、tRNA分子中含有较多的稀有碱基,每一分子常含有7~15个稀有碱基C、tRNA的三级结构呈倒L形D、5′-端和3′-端7对碱基组成的螺旋区称氨基酸臂,能直接与氨基酸结合E、L型的拐角处是DHU环和TΨC环,各环的核苷酸序列差别不大9、转录就是A、DNA依赖的DNA聚合酶催化B、DNA依赖的RNA聚合酶催化C、RNA依赖的DNA聚合酶催化D、RNA依赖的RNA聚合酶催化E、DNA为模板合成RNA的过程10、mRNA约占总RNA的A、9%B、8%C、7%D、5%E、3%11、细胞内含量最多的RNA是A、tRNAB、rRNAC、miRNAD、mRNAE、hnRNA12、携带蛋白质合成所需的氨基酸,并按mRNA上的密码顺序,将其转运到mRNA分子上的是A、DNAB、miRNAC、rRNAD、tRNAE、密码子13、决定合成蛋白质的氨基酸排列顺序的是A、mRNAB、18S rRNAC、28S rRNAD、tRNAE、全部RNA14、RNA主要分为A、信使RNA(mRNA)B、转运RNA(tRNA)C、核糖体RNA(rRNA)D、miRNAE、以上都包括15、核酸的基本组成单位是A、嘌呤B、戊糖C、磷酸D、碱基E、核苷酸16、关于DNA二级结构的结构要点错误的是A、DNA分子由两条反向平行互补的多核苷酸链,组成一条链走向5′→3′,另一条链3′→5′B、两条多核苷酸链通过碱基之间的氢键连接在一起.A与T、G与C配对。
核苷酸的合成及代谢调控嘌呤核苷酸的从头合成主要在胞液中进行,可分为两个阶段:首先合成次黄嘌呤核苷酸;然后通过不同途径分别生成AMP和GMP.下面分步介绍嘌呤核苷酸的合成过程。
从磷酸合成开始,和谷氨酰胺、甘氨酸、二氧化碳、天冬氨酸等代谢物质逐步合成,最后将环闭合起来形成肌苷酸(IMP)。
IMP继续向下代谢,转化为腺嘌呤核苷一磷酸(GMP)及鸟嘌呤核苷一磷酸(AMP)。
从IMP转化到GMP及AMP的途径,在枯草芽孢杆菌中,分出两条合成路线:一条是经过XMP(黄嘌呤核苷一磷酸)合成GMP,在经过GMP合成酶的作用生成IMP;另一条是经过SAMP(腺苷琥珀酸)合成AMP,在经过AMP脱氨酶的作用生成IMP这表明AMP和GMP之间可以相互转换环各元素来源如下:N1由天冬氨酸提供,C2由N10-甲酰FH4提供、C8由N5,N10-甲炔FH4提供,N3、N9由谷氨酰胺提供,C4、C5、N7由甘氨酸提供,C6由CO2提供。
嘌呤核苷酸从头合成的特点是:嘌呤核苷酸是在磷酸核糖分子基础上逐步合成的,不是首先单独合成嘌呤碱然后再与磷酸核糖结合的。
反应过程中的关键酶包括PRPP酰胺转移酶、PRPP合成酶。
PRPP酰胺转移酶是一类变构酶,其单体形式有活性,二聚体形式无活性。
IMP、AMP及GMP使活性形式转变成无活性形式,而PRPP则相反。
从头合成的调节机制是反馈调节,主要发生在以下几个部位:1、嘌呤核苷酸合成起始阶段的PRPP合成酶和PRPP酰胺转移酶活性可被合成产物IMP、AMP及GMP等抑制;2、在形成AMP和GMP过程中,过量的AMP控制AMP的生成,不影响GMP的合成,过量的GMP控制GMP的生成,不影响AMP的合成;3、IMP转变成AMP时需要GTP,而IMP 转变成GMP时需要A TP。
腺嘌呤核苷的补救合成途径是微生物从培养基中取得完整的嘌呤、戊糖和磷酸通过酶得作用直接合成核苷酸。
嘌呤碱基、核苷和核苷酸之间还能通过分段合成相互转变。