核酸的降解和核苷酸的代谢
- 格式:doc
- 大小:33.00 KB
- 文档页数:3
第十五章核苷酸的降解和核苷酸代谢第一节分解代谢一、核酸的降解核酸由磷酸二酯酶水解,有核糖核酸酶、脱氧核糖核酸酶、内切酶和外切酶之分。
蛇毒磷酸二酯酶和牛脾磷酸二酯酶都是外切酶,既可水解DNA,又可水解RNA,但蛇毒磷酸二酯酶从3’端水解,生成5’-核苷酸;牛脾磷酸二酯酶从5’端水解,生成3’-核苷酸。
细胞内还有限制性内切酶,可水解外源DNA。
二、核苷酸的降解核苷酸由磷酸单酯酶水解成核苷和磷酸,特异性强的酶只水解5’-核苷酸,称为5’-核苷酸酶,或相反。
核苷磷酸化酶将核苷分解为碱基和戊糖-1-磷酸,核苷水解酶生成碱基和戊糖。
核糖-1-磷酸可被磷酸核糖变位酶催化为核糖-5-磷酸,进入戊糖支路或合成PRPP。
三、嘌呤的分解(一)水解脱氨:腺嘌呤生成次黄嘌呤,鸟嘌呤生成黄嘌呤。
也可在核苷或核苷酸水平上脱氨。
(二)氧化:次黄嘌呤生成黄嘌呤,再氧化生成尿酸。
都由黄嘌呤氧化酶催化,生成过氧化氢。
别嘌呤醇是自杀底物,其氧化产物与酶活性中心的Mo4+紧密结合,有强烈抑制作用。
可防止尿酸钠沉积,用于治疗痛风。
(三)鸟类可将其他含氮物质转化为尿酸,而某些生物可将尿酸继续氧化分解为氨和CO2。
四、嘧啶的分解胞嘧啶先脱氨生成尿嘧啶,再还原成二氢尿嘧啶,然后开环,水解生成β-丙氨酸,可转氨参加有机酸代谢。
胸腺嘧啶与尿嘧啶相似,还原、开环、水解生成β-氨基异丁酸,可直接从尿排出,也可转氨生成甲基丙二酸半醛,最后生成琥珀酰辅酶A,进入三羧酸循环。
第二节合成代谢一、嘌呤核糖核苷酸的合成(一)从头合成途径1.嘌呤环的元素来源2.IMP的合成:其磷酸核糖部分由PRPP提供,由5-磷酸核糖与ATP在磷酸核糖焦磷酸激酶催化下生成。
IMP 的合成有10步,分两个阶段,先生成咪唑环,再生成次黄嘌呤。
首先由谷氨酰胺的氨基取代焦磷酸,再连接甘氨酸、甲川基,甘氨酸的羰基生成氨基后环化,生成5-氨基咪唑核苷酸。
然后羧化,得到天冬氨酸的氨基,甲酰化,最后脱水闭环,生成IMP。
第十章核苷酸代谢1. 核苷酸的分解代谢1)核酸的降解:核酸+H2O+核酸酶→单核苷酸+核苷酸酶→核苷+PPi+核苷酶→戊糖+碱基(嘌呤/嘧啶) +核苷酸酸化酶→戊糖-1-磷酸+碱基※核苷水解酶不对脱氧核糖核苷生效。
2)限制性内切酶:3)嘌呤核苷酸的降解:代谢中间产物——黄嘌呤,终产物尿酸(彻底分解为CO2和NH3)。
嘌呤核苷酸→嘌呤核苷→①腺嘌呤(脱氨→次黄嘌呤+黄嘌呤氧化酶→黄嘌呤)②鸟嘌呤(脱氨→黄嘌呤)黄嘌呤+黄嘌呤氧化酶→尿酸肌肉中的嘌呤核苷酸循环生成氨;AMP+AMP脱氨酶→IMP,肌肉中的IMP→AMP,这一过程为嘌呤核苷酸循环。
4)嘧啶核苷酸的降解:分解成磷酸、核糖和嘧啶碱。
①胞嘧啶+胞嘧啶脱氢酶→尿嘧啶+二氢尿嘧啶脱氢酶(开环)→β-脲基丙酸→β-丙氨酸(脱氨参与有机代谢)+NH3+CO2+H2O②胸腺嘧啶+二氢尿嘧啶脱氢酶→二氢胸腺嘧啶+二氢嘧啶酶→β-脲基异丁酸→β-氨基异丁酸(监测放化疗程度)+NH3+CO2+H2O5)尿酸过高与痛风:尿酸在体内过量积累会导致痛风症,别嘌呤醇可治疗痛风,因与次黄嘌呤相似,可抑制黄嘌呤氧化酶从而抑制尿酸生成。
尿酸中体内彻底分解形成CO2和氨。
2. 核苷酸的合成代谢:分布广、功能强;从头合成:利用核糖磷酸、氨基酸CO2和NH3等简单的前提分子,经过酶促反应合成核苷酸。
补救合成:简单、省能,无需从头合成碱基;利用体内现有的核苷和碱基再循环。
嘌呤核苷酸合成前体:次黄嘌呤核苷酸(IMP/肌苷酸)+5-磷酸核糖(起始物)↓活化形式1)嘌呤核糖核苷酸的从头合成途径:主要调节方式——反馈调节;ATP+5-磷酸核糖+5-磷酸核糖焦磷酸合成酶(PRPP合成酶)→5-磷酸核糖焦磷酸(PRPP)腺嘌呤核苷酸AMP鸟嘌呤核苷酸GMPIMP+Asp+腺苷酸琥珀酸合成酶→腺苷酸琥珀酸+腺苷酸琥珀酸裂合酶→延胡索酸+AMPIMP+IMP脱氢酶→黄嘌呤核苷酸+鸟嘌呤核苷酸合成酶→GMP补救合成途径:脑、骨髓组织缺乏从头合成所需要的酶,依靠嘌呤碱或嘌呤核苷合成嘌呤核苷酸。
第33章、核酸的降解和核苷酸的代谢(下册P387)
本章重点:熟悉体内核苷酸的来源、分布及多种生物学功能。
了解食物中核酸的消化吸收概况。
(一)合成代谢:1、熟悉从头合成的概念、原料、进行部位;熟悉从头合成的大致过程及特点。
了解从头合成的调节概况。
2、了解补救合成的概念、大致过程及生理意义。
3、了解嘌呤核苷酸的相互转变。
4、熟悉dNDP由NDP(N=A、G、U、C)还原生成的概况。
5、了解多种嘌呤核苷酸抗代谢物(嘌呤类似物、氨基酸类似物及叶酸类似物)的作用原理要点。
(二)分解代谢:熟悉嘌呤核苷酸分解代谢的终产物及特点。
(一)合成代谢:1、从头合成:熟悉嘧啶核苷酸从头合成的概念、原料、进行部位、大致过程及特点。
熟悉dTMP 的生成,了解从头合成的调节要点2、补救合成:了解嘧啶核苷酸补救合成概况。
3、抗代谢物:了解三种嘧啶核苷酸抗代谢物(嘧啶类似物、氨基酸类似物及叶酸类似物)的作用原理要点。
(二)分解代谢:熟悉嘧啶核苷酸分解代谢的终产物及特点。
本章主要内容:
8-1 核酸和核苷酸的分解代谢
核酸在核酸酶(磷酸二酯酶)作用下降解成核苷酸,核苷酸在核苷酸酶(磷酸单酯酶)作用下分解成核苷与磷酸,然后再在核苷磷酸化酶作用下可逆生成碱基(嘌呤和嘧啶)和戊糖-1-磷酸。
(一)嘌呤碱的分解代谢:P390 图33-2
首先在各种脱氨酶作用下水解脱去氨基(脱氨也可以在核苷或核苷酸的水平上进行),腺嘌呤脱氨生成次黄嘌呤(I),鸟嘌呤脱氨生成黄嘌呤(X),I和X在黄嘌呤氧化酶作用下氧化生成尿酸。
人和猿及鸟类等为排尿酸动物,以尿酸作为嘌呤碱代谢最终产物;其他生物还能进一步分解尿酸形成尿囊素、尿囊酸、尿素及氨等不同代谢产物。
尿酸过多是痛风病起因,病人血尿酸> 7mg %,为嘌呤代谢紊乱引起的疾病。
可服用别嘌呤醇,结构见P389,与次黄嘌呤相似。
别嘌呤醇在体内先被黄嘌呤氧化酶氧化成别黄嘌呤,别黄嘌呤与酶活性中心的Mo(Ⅳ)牢固结合,使Mo(Ⅳ)不易转变成Mo(Ⅵ),黄嘌呤氧化酶失活,使I和X不能生成尿酸,血尿酸含量下降。
(二)嘧啶碱的分解代谢:见P391 图33-3
C:胞嘧啶先脱氨成尿嘧啶U,U再还原成二氢尿嘧啶后水解成β-丙氨酸。
T:胸腺嘧啶还原成二氢胸腺嘧啶后水解成β-氨基异丁酸。
8-2 核苷酸的生物合成
(一)核糖核苷酸的生物合成
(1)从头合成:从一些简单的非碱基前体物质合成核苷酸。
1.嘌呤核苷酸:从5-磷酸核糖焦磷酸(5-PRPP)开始在一系列酶催化下先合成
五元环,后合成六元环,共十步生成次黄嘌呤核苷酸。
然后再生成A、G等嘌
呤核苷酸。
2.嘧啶核苷酸:先合成嘧啶环(乳清酸),再与5-PRPP(含核糖、磷酸部分)反
应生成乳清苷酸,失羧生成尿嘧啶核苷酸(UMP),再转变成其他嘧啶核苷酸。
(2)补救途径:利用已有的碱基、核苷合成核苷酸,更经济,可利用已有成分。
特别在从头合成受阻时(遗传缺陷或药物中毒)更为重要。
外源或降解产生的碱基和核苷可通过补救途径被生物体重新利用。
总之,无论动物、植物或微生物通常都能合成各种嘌呤和嘧啶核苷酸,满足自身需要。
(二)嘌呤核苷酸的合成
(1)次黄嘌呤核苷酸的合成:用同位素标记的化合物实验证明,生物体内能利用CO2、甲酸盐、Gln、Asp和Gly作为合成嘌呤环的前体,见P391 图33-4 嘌
呤环的元素来源。
次黄嘌呤合成分成两个阶段,见P394 图33-5。
第一阶段关五元环:5-PRPP与①Gln ②Gly ③N10-甲酰THFA ④Gln
⑤关环,生成5-氨基咪唑核苷酸。
第二阶段关六元环:5-氨基咪唑核苷酸与⑥CO2⑦Asp ⑧失去延胡索酸
⑨N10-甲酰THFA ⑩失水关环,生成次黄嘌呤核苷酸(IMP)。
(2)嘌呤核苷酸的合成(P394):IMP与Asp反应(由GTP供能),再失去延胡索酸而成为AMP。
(3)鸟嘌呤核苷酸的合成(P395):IMP被NAD+ 氧化生成黄嘌呤核苷酸(XMP)再与Gln反应(由ATP供能),氨基化生成GMP。
(4)抗癌杀菌剂:
从嘌呤核苷酸生物合成得知:Asp、Gln和N10-甲酰THFA为合成原料,因此这些化合物的结构类似物可成为酶的抑制剂,抑制嘌呤核苷酸的合成而成
为抗癌药或杀菌剂
1.Asp结构类似物羽田杀菌剂(结构见P395),为有抗癌作用的抗生素,强烈抑
制次黄嘌呤合成的第⑦步的酶(腺苷酸琥珀酸合成酶,以Asp为原料)。
2.Gln结构类似物重氮丝氨酸和6-重氮-5-氧正亮氨酸(结构见P393),也为有
抗癌作用的抗生素,抑制从头合成第①和第④步。
3.THFA类似物氨甲喋呤,氨基喋呤(结构见P400),抑制从头合成第③和第⑨
步,已成为临床应用的抗癌和抗病毒药物。
(5)由嘌呤碱基和核苷合成核苷酸(补救途径):利用外源或降解产生的嘌呤碱和核苷合成核苷酸。
重要的是由嘌呤碱与5-PRPP在磷酸核糖转移酶作用下形成嘌
呤核苷酸。
腺嘌呤与5-PRPP反应生成AMP和PP i
次黄嘌呤(或鸟嘌呤)与5-PRPP反应生成IMP(或GMP)和PP i
缺乏磷酸核糖转移酶会产生Lesch-Nyhan二氏综合病(遗传病),补救途径缺少,从头合成增加,会引起尿酸积累,导致肾结石和痛风,严重者自残。
(6)调节:嘌呤核苷酸的从头合成受其两个终产物腺苷酸和鸟苷酸反馈控制(P396 图33-6)。
嘌呤类似物6-巯基嘌呤(6-MP),抑制从头合成第①步和由IMP生成AMP、GMP的从头合成反应及补救途径,为已临床使用的抗癌药。
(三)嘧啶核糖核苷酸的合成
(1)从头合成:见P396 图33-7。
先由氨甲酰磷酸和Asp合成二氢乳清酸,再氧化成乳清酸(形成嘧啶环),然后与5-PRPP生成乳清苷酸,失CO2形成UMP。
胞嘧啶核苷酸是在尿嘧啶核苷三磷酸(UTP)的水平上进行的,UTP由Gln氨
基化生成CTP。
(2)补救途径
1.UMP:①尿嘧啶与5-PRPP反应成UMP。
②尿嘧啶与1-磷酸核糖反应先生成尿嘧核苷,再与ATP反应生成
UMP。
2.CMP:胞嘧啶核苷C被ATP磷酸化生成CMP。
(四)脱氧核糖核苷酸的合成
(1)由核糖核苷酸还原形成,还原发生在核苷二磷酸(NDP)的水平上,酶为核糖核苷酸还原酶。
NDP(ADP,GDP,CDP,UDP)→dNDP(dADP,dGDP,dCDP,dUDP)。
NDP可由NMP与ATP形成。
另外dNMP也能利用已有的碱基和核苷合成。
(2)胸腺嘧啶核苷酸的合成
由dUMP在胸苷合成酶催化下被甲基化生成dTMP,N5,N10-亚甲基THFA 提供甲基后变成DHFA,DHFA在二氢叶酸还原酶作用下还原成THFA,再由
Ser供甲基转变成N5,N10-亚甲基THFA(再生),使dUMP甲基化反应得以继
续。
由dTMP合成开发了抗癌药5-氟尿嘧啶(5-Fu)和氨甲喋呤、氨基喋呤。
5-Fu在体内转变成氟脱氧尿苷酸F-dUMP,为dUMP和dTMP类似物,可抑
制催化dUMP甲基化合成dTMP的胸苷合成酶;氨甲喋呤和氨基喋呤为DHFA
的类似物,可抑制催化DHFA还原成THFA的二氢叶酸还原酶,使N5,N10-
亚甲基THFA不能回复,从而使dUMP甲基化无法进行。
5-Fu及氨甲喋呤等可封闭dTMP合成。
癌细胞DNA合成水平增加,对dTMP需要量增高,dTMP合成阻遏可限制癌细胞生长。
核苷酸生物合成总结见P401 图33-12。
8-33辅酶核苷酸的生物合成
烟酰胺核苷酸,黄素核苷酸和辅酶A等分子结构中包含有腺苷酸部分,因而这几种辅酶的合成亦与核苷酸代谢有关。