智能高分子材料 刘心悦20420092201280

  • 格式:doc
  • 大小:23.50 KB
  • 文档页数:4

下载文档原格式

  / 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

智能高分子凝胶简介

班级:09化学2班姓名:刘心悦学号:20420092201280

摘要:智能高分子凝胶可以通过控制高分子凝胶网络的微观结构与形态,来影响其溶胀或伸缩性能,从而使凝胶对外界刺激作出灵敏的响应,表现出智能。

关键词:智能高分子材料高分子凝胶

智能高分子材料

智能高分子材料属于智能材料(intelligentmaterial)的范畴。智能材料是指对环境可感知、响应,并且具有发现能力的新材料[1]。智能材料的研究与开发正孕育着新一代的技术革新。

智能材料包括金属智能材料、无机非金属智能材料和高分子智能材料,其中高分子智能材料包括智能高分子凝胶、智能高分子复合材料和智能高分子膜材料等,目前研究最广的是智能高分子凝胶。

智能高分子凝胶

高分子凝胶是由具有三维交联网络结构的聚合物与低分子介质共同组成的多元体系,其大分子主链或侧链上含有离子解离性、极性或疏水性基团,对溶剂组分、温度、pH值、光、电场、磁场等的变化能产生可逆的、不连续(或连续)的体积变化,所以可以控制高分子凝胶网络的微观结构与形态,来影响其溶胀或伸缩性能,从而使凝胶对外界刺激作出灵敏的响应,表现出智能。

智能凝胶的体积相变原理

根据高分子凝胶溶胀及退溶胀的渗透压公式,渗透压由高分子链与溶剂的相互作用、高分子链的橡胶弹性和高分子凝胶内外离子浓度差构成。当这三者之间达到平衡时,高分子凝胶呈平衡状态。温度、pH值、无机盐的浓度、溶剂的性质对溶胀平衡都有影响,在一定的外界刺激下,凝胶会因为溶液性质的微小变化而引起极大的体积变化,即所谓的凝胶体积相变,这就是智能高分子凝胶对外界

刺激作出响应的依据。

智能高分子凝胶对各种外界刺激的响应性

1 溶剂组成

体积变化。也就是说,当pH值发生变化时,水凝胶体积随之变化。考虑到国外智能高分子材料均集中在合成聚合物(由均聚物、接枝或嵌段共聚物到共混物、互穿聚合物网络及高分子微球等),他将智能材料的研究开拓到具有凝胶相转变的天然高分子材料,特别是生物相容性良好而且可以生物降解的壳聚糖(chitosan,CS )

3 温敏性凝胶

利用高分子与溶剂之何的相互作用力的变化、溶胀高分子凝胶的大分子链的线团一球的转变,使凝胶由溶胀状态急剧地转化为退溶胀状态,从而高分子凝胶表现出对溶剂组分变化的响应,这类材料可由聚乙烯醇、聚丙烯酞胺等制成川。如:聚丙烯酞胺(PAAM)纤维经环化处理后除去未环化的部分以及未参加反应的物质,干燥后即得到P八AM凝胶纤维。这种纤维在水中伸长,在丙酮中收缩,而且其体积随溶剂体系中丙酮含量的增加发生连续的收缩。如果在凝胶网络中引人电解质离子成部分离子化凝胶,则在某一溶剂组成时产生不连续的体积变化。

2 pH值响应凝胶

具有pH值响应性的凝胶,一般均是通过交联形成大分子网络。凝胶中含有弱酸和碱基团,这些基团在不同的pH值及离子强度的溶液中,响应的离子化,使凝胶带电荷,并使网络中氢键断裂,导致凝胶发生不连续的

温敏性凝胶,当温度升高时,疏水相相互作用增强,使凝胶收缩,而降低温度,疏水相间作用减弱使凝胶溶胀,既所谓的热缩凝胶。例如,轻微交联的N一异丙基丙烯酞胺(NIPA )与丙烯酸钠的共聚体。其中丙烯酸钠是阴离子单体,其加量对凝胶的溶胀比和热收缩敏感温度有明显影响。阴离子单体含量增加,溶胀比增加,热收缩温度提高。所以可以从阴离子单体的加量来调节溶胀比和热收缩温度。NIPA与甲基丙烯酸钠共聚交联体亦是一种性能优良的阴离子型热缩温敏性水凝胶。最近报道的以NIPA,丙烯酞胺一2一甲基丙磺酸钠、N-(3- 甲基胺)丙基丙烯酞胺制得的两性水凝胶,其敏感温度随组成的变化在等物质的量比时最低,约为3590,而只要正离子或负离子的量增加,均会使敏感温度上升。

4 电场响应凝胶

大部分凝胶的网络上都带有电荷。如果将一块高吸水膨胀的水凝胶放在一对电极之间,然后加上适当的直流电压,凝胶将会收缩并放出水分。网络上带有正电荷的凝胶,在电场作用下,水分从阳极放出,否则从阴极放出。如果将在电场下收缩的凝胶放人水中,则会膨胀到原来的大小。凝胶的这种电收缩效应,实际上反映了一个将电能转换为机械能的过程。

5 光影响凝胶

光响应高分子凝胶的最大特点是响应过程具有可逆性,离

开光的作用凝胶会恢复到原来的状态。

凝胶材料中含有感光性物质,感光物质吸收光能后导致材料温度、电场等环境因素发生改变,进而对某一环境因素作出响应性。常用的感光性化合物有叶绿酸、重铬酸盐类、芳香族叠氮化合物与重氮化合物、芳香族硝基化合物和有机卤素化合物等。

凝胶分子链上含有感光基团后,感光基团一旦吸收了光,在相应波长光能作用下就会引起电子跃迁而成为激发态。处于激发态的分子通过分子内或分子间的能量转移发生异构化作用,引起分子构型的变化,促使材料内部发生某些物理或化学性质的改变,进而产生一定的响应性。引人的感光基团种类很多,主要有:光二聚型感光基团(如肉桂酸醋基)、重氮或叠氮感光基团(如邻偶氮醒磺酞基)、丙烯酸酷基团以及其他具有特种功能的感光基团(如具有光色性、光催化性和光导电性基团等)。

有些高分子凝胶体系中可同时含有多种对不同环境响应因素有响应性的组分,在光的作用下,各种组分协同作用,使材料在宏观上发生明显改变,作出响应。此类光响应凝胶材料可视用途不同而设计和改变组分与配方,从而拓宽光响应凝胶的品种。

智能高分子的展望

智能高分子材料的研究开发已取得了一定的进展,但作为材料学科的前沿课题,使其生产、加工、设备技术的提高仍有一定空间。有人预计,21世纪它将向模糊高分子材料发展。智能高分子材料的研究是一个多学科交叉的研究领域。

对其研究开发需要多学科协同进行。我们期待着这一领域的全面发展。

参考文献:

【1】智能高分子凝聚的研究与应用张子鹏文章编号:1004-7050(2004)04-0017-04

【2】高分子材料的智能性及其应用王锦成,李光,杨胜林,江建明文章编号:1006-334X(2001)04-0017-05

【3】光响应高分子凝胶的研究与进展张玉欣,陈莉,赵义平