2020年黑龙江省佳木斯市中考数学试题及参考答案(word解析版)
- 格式:docx
- 大小:304.63 KB
- 文档页数:26
佳木斯市2020年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)下列说法错误的()A . 相反数等于本身的数只有0B . 平方后等于本身的数只有0、1C . 立方后等于本身的数是-1、0、1D . 绝对值等于本身的数只有12. (2分) (2019九上·腾冲期末) 下列计算正确的是()A . a4+a4=2a4B . a2·a3=a6C . (a4)3=a7D . a6÷a2=a33. (2分)我国第六次人口普查显示,全国人口为1370536875人,将这个总人口数(保留三个有效数字)用科学记数法表示为()A . 1.37×109B . 1.37×107C . 1.37×108D . 1.37×10104. (2分) (2020八上·徐州期末) 在等腰三角形ABC中,∠A=80°.则∠B的度数不可能为()A . 20°B . 40°C . 50°D . 80°5. (2分)已知直角三角形的两条边长分别是方程x2-14x+48=0的两个根,则此三角形的第三边是()A . 6或8B . 10或2C . 10或8D . 26. (2分)(2017·资中模拟) 已知P1(x1 , y1),P2(x2 , y2)是一次函数y=﹣ x+2图象上的两点,下列判断中,正确的是()A . y1>y2B . y1<y2C . 当x1<x2时,y1<y2D . 当x1<x2时,y1>y27. (2分) 2014年11月份,某市区一周空气质量报告中某污染指数的数据是:61,75,61,63,50,63,61,则下列表述错误的是()A . 方差是44B . 众数是61C . 平均数是62D . 中位数是618. (2分)(2016·云南模拟) 已知抛物线y=﹣x2+2x﹣3,下列判断正确的是()A . 开口方向向上,y有最小值是﹣2B . 抛物线与x轴有两个交点C . 顶点坐标是(﹣1,﹣2)D . 当x<1时,y随x增大而增大二、填空题 (共10题;共11分)9. (2分)在学校舞蹈比赛中,10名学生参赛成绩统计如图,极差和中位数分别是________,________.10. (1分) (2016七下·吉安期中) 已知xy=﹣3,x+y=﹣4,则x2﹣xy+y2的值为________.11. (1分)函数y=中,自变量x的取值范围是________12. (1分)若∠1=33°30′,则∠1的补角等于________°.13. (1分)△ABO与△A1B1O在平面直角坐标系中的位置如图所示,它们关于点O成中心对称,其中点A(4,2),则点A1的坐标是________ .14. (1分)(2018·天水) 已知⊙O1的半径为3,⊙O2的半径为r,⊙O1与⊙O2只能画出两条不同的公共切线,且O1O2=5,则⊙O2的半径为r的取值范围是________.15. (1分) (2020九下·西安月考) 如图,和都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数在第一象限的图象经过点B,则和的面积之差为________.16. (1分)(2020·滨州) 如图,是正方形ABCD的内切圆,切点分别为E、F,G,H,ED与相交于点M,则sin∠MFG的值为________.17. (1分)一个扇形的弧长是,它的面积是,这个扇形的圆心角度数是________.18. (1分)(2019·江岸模拟) ⊙O的内接正三角形的边长记为a3 ,⊙O的内接正方形的边长记为a4 ,则等于________.三、解答题 (共10题;共93分)19. (10分)(2018·无锡模拟)(1)计算:(2)先化简,再求值:,其中x= .20. (10分) (2019七下·河南期中) 已知 + =b+8.(1)求a的值;(2)求a2-b2的平方根.21. (8分)(2020·抚州模拟) 为了绿化环境,某中学八年级(3班)同学都积极参加了植树活动,下面是今年3月份该班同学植树情况的扇形统计图和不完整的条形统计图:请根据以上统计图中的信息解答下列问题.(1)植树3株的人数为________;(2)扇形统计图中植树为1株的扇形圆心角的度数为________;(3)该班同学植树株数的中位数是________(4)小明以下方法计算出该班同学平均植树的株数是:(1+2+3+4+5)÷5=3(株),根据你所学的统计知识判断小明的计算是否正确,若不正确,请写出正确的算式,并计算出结果22. (5分)(2011·徐州) 小明骑自行车从家去学校,途经装有红、绿灯的三个路口.假设他在每个路口遇到红灯和绿灯的概率均为,则小明经过这三个路口时,恰有一次遇到红灯的概率是多少?请用树状图的方法加以说明.23. (5分)自2014年12月启动“绿茵行动,青春聚力”郴州共青林植树活动以来,某单位筹集7000元购买了桂花树和樱花树共30棵,其中购买桂花树花费3000元.已知桂花树比樱花树的单价高50%,求樱花树的单价及棵树.24. (10分) (2020九上·柳州期末) 如图,已知 AB 为⊙O的直径, F为⊙O 上一点, AC 平分∠BAF 且交⊙O 于点 C ,过点C 作CD⊥AF 交AF 的延长线于点 D ,延长AB 、 DC 交于点 E ,连接 BC 、 CF .(1)求证: CD 是⊙O 的切线.(2)求证: .25. (5分)(2019·宜宾) 如图,为了测得某建筑物的高度,在C处用高为1米的测角仪,测得该建筑物顶端A的仰角为45°,再向建筑物方向前进40米,又测得该建筑物顶端A的仰角为60°.求该建筑物的高度.(结果保留根号)26. (10分)如图,将矩形ABCD沿对角线BD对折,点C落在E处,BE与AD相交于点F.若DE=4,BD=8.(1)求证:AF=EF;(2)求证:BF平分∠ABD.27. (10分)(2020·上虞模拟) 一个有进水管与出水管的容器,从某时刻开始的4min内只进水不出水,在随后的8min内既进水又出水,每分钟进水量和出水量是两个常数。
2024年黑龙江佳木斯中考数学试题及答案考生注意:1.考试时间120分钟2.全卷共三道大题,总分120分一、选择题(每小题3分,共30分)1. 下列计算正确的是( )A. 326a a a ⋅=B. ()527a a =C. ()339328a b a b -=-D.()()22a b a b a b -++=-【答案】C【解析】【分析】本题主要考查同底数幂的乘法,幂的乘方与积的乘方,平方差公式,运用相关运算法则求出各选项的结果后再进行判断即可.【详解】解:A 、3256a a a a ⋅=≠,故选项A 计算错误,此选项不符合题意;B 、()52107a a a =≠,故选项B 计算错误,此选项不符合题意;C 、()339328a b a b -=-,此选项计算正确,符合题意;D 、 ()()()()22a b a b b a b a b a -++=-+=-,故选项D 计算错误,此选项不符合题意;故选:C .2. 下列图形既是轴对称图形又是中心对称图形的是( )A. B. C. D.【答案】B【解析】【分析】本题主要考查了轴对称图形和中心对称图形,根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A 、是轴对称图形,不是中心对称图形,故A 选项不合题意;B、既是轴对称图形又是中心对称图形,故B选项符合题意;C、是轴对称图形,不是中心对称图形,故C选项不合题意;D、是轴对称图形,不是中心对称图形,故D选项不合题意.故选:B.3. 由一些大小相同的小正方体搭成的几何体的主视图和左视图如图,则搭成该几何体的小正方体的个数最少是()A. 3B. 4C. 5D. 6【答案】B【解析】【分析】根据三视图的知识,主视图是由4个小正方形组成,而左视图是由4个小正方形组成,故这个几何体的底层最少有3个小正方体,第2层最少有1个小正方体.【详解】解:根据左视图和主视图,这个几何体的底层最少有1+1+1=3个小正方体,第二层最少有1个小正方体,因此组成这个几何体的小正方体最少有3+1=4个.故选B.【点睛】本题考查了由三视图判断几何体,意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就容易得到答案.4. 一组数据2,3,3,4,则这组数据的方差为()A. 1B. 0.8C. 0.6D. 0.5【答案】D【解析】【分析】本题主要考查了方差的计算,解题的关键是方差的计算公式的识记.根据方差的计算公式,先算出数据的平均数,然后代入公式计算即可得到结果.【详解】平均数为:()233443+++÷=方差为:()()()()222221233333434S ⎡⎤=⨯-+-+-+-⎣⎦()110014=⨯+++0.5=故选:D .5. 关于x 的一元二次方程()22420m x x -++=有两个实数根,则m 的取值范围是( )A. 4m ≤ B. 4m ≥ C. 4m ≥-且2m ≠ D. 4m ≤且2m ≠【答案】D【解析】【分析】本题考查了一元二次方程根的判别式.根据一元二次方程20(0)ax bx c a ++=≠的根的判别式24b ac ∆=-的意义得到20m -≠且0∆≥,即244(2)20m -⨯-⨯≥,然后解不等式组即可得到m 的取值范围.【详解】解: 关于x 的一元二次方程()22420m x x -++=有实数根,20m ∴-≠且0∆≥,即244(2)20m -⨯-⨯≥,解得:4m ≤,m ∴取值范围是4m ≤且2m ≠.故选:D .6. 已知关于x 的分式方程2333x x kx -=--无解,则k 的值为( )A. 2k =或1k =- B. 2k =- C. 2k =或1k = D. 1k =-【答案】A【解析】【分析】本题考查了解分式方程无解的情况,理解分式方程无解的意义是解题的关键.先将分式方程去分母,化为整式方程,再分两种情况分别求解即可.【详解】解:去分母得,2(3)3kx x --=-,整理得,(2)9k x -=-,的当2k =时,方程无解,当2k ≠时,令3x =,解得1k =-,所以关于x 的分式方程2333x x kx -=--无解时,2k =或1k =-.故选:A .7. 国家“双减”政策实施后,某班开展了主题为“书香满校园”的读书活动.班级决定为在活动中表现突出的同学购买笔记本和碳素笔进行奖励(两种奖品都买),其中笔记本每本3元,碳素笔每支2元,共花费28元,则共有几种购买方案( )A. 5B. 4C. 3D. 2【答案】B【解析】【分析】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.设购买x 支笔记本,y 个碳素笔,利用总价=单价⨯数量,即可得出关于x ,y 的二元一次方程,再结合x ,y 均为正整数,即可得出购买方案的个数.【详解】解:设购买x 支笔记本,y 个碳素笔,依题意得:3228x y +=,3142y x ∴=-.又x ,y 均为正整数,∴211x y =⎧⎨=⎩或48x y =⎧⎨=⎩或65x y =⎧⎨=⎩或82x y =⎧⎨=⎩,∴共有4种不同的购买方案.故选:B .8. 如图,双曲线()120y x x=>经过A 、B 两点,连接OA 、AB ,过点B 作BD y ⊥轴,垂足为D ,BD 交OA 于点E ,且E 为AO 的中点,则AEB △的面积是( )A. 4.5B. 3.5C. 3D. 2.5【答案】A【解析】【分析】本题考查了反比例函数,相似三角形的判定与性质等知识,过点A 作AF BD ⊥,垂足为F ,设12,A a a ⎛⎫ ⎪⎝⎭,证明AFE ODE ∽,有AF AE EF OD OE DE ==,根据E 为AO 的中点,可得AF OD =,EF DE =,进而有1122EF DE DF a ===,162A AF OD y a ===,可得6B y OD a==,2B x a =,则有32BE BD DE a =-=,问题随之得解.【详解】如图,过点A 作AF BD ⊥,垂足为F ,设12,A a a ⎛⎫ ⎪⎝⎭,0a >,∵BD y ⊥轴,AF BD ⊥,∴AF y ∥轴,DF a =,∴AFE ODE ∽,∴AF AE EF OD OE DE==,∵E 为AO 的中点,∴AE OE =,∴1AF AE EF OD OE DE===,∴AF OD =,EF DE =∴1122EF DE DF a ===,162A AF OD y a ===,∵B OD y =,∴6B y OD a==,∴2B x a =,∴2B BD x a ==,∴32BE BD DE a =-=,∴11639 4.52222ABE S AF BE a a =⨯⨯=⨯⨯== ,故选:A .9. 如图,菱形ABCD 中,点O 是BD 的中点,AM BC ⊥,垂足为M ,AM 交BD 于点N ,2OM =,8BD =,则MN 的长为( )【答案】C【解析】【分析】本题主要考查了解三角形,菱形的性质、直角三角形斜边中线等于斜边一半.先由菱形性质可得对角线AC 与BD 交于点O ,由直角三角形斜边中线等于斜边一半可得2OA OC OM ===,进而由菱形对角线求出边长,由sin sin MAC OBC ∠=∠=sin MC AC MAC =∠=,tan MN BM OBC =∠=.【详解】解:连接AC ,如图,∵菱形ABCD 中,AC 与BD 互相垂直平分,又∵点O 是BD 的中点,∴A 、O 、C 三点在同一直线上,∴OA OC =,∵2OM =,AM BC ⊥,∴2OA OC OM ===,∵8BD =,∴142OB OD BD ===,∴BC ===,21tan 42OC OBC OB ===∠,∵90ACM MAC ∠+∠=︒,90ACM OBC ∠+∠=︒,∴MAC OBC∠=∠∴sin sin OC MAC OBC BC ∠=∠===,∴sin MC AC MAC =∠=,∴BM BC MC =-=-=,∴1tan 2MN BM OBC =∠==故选:C .10. 如图,在正方形ABCD 中,点H 在AD 边上(不与点A 、D 重合),90BHF ∠=︒,HF 交正方形外角的平分线DF 于点F ,连接AC 交BH 于点M ,连接BF 交AC 于点G ,交CD 于点N ,连接BD .则下列结论:①45HBF ∠=︒;②点G 是BF 的中点;③若点H 是AD 的中点,则sin NBC ∠=BN =;⑤若12AH D H =,则112BND AHM S S =△△,其中正确的结论是( )A. ①②③④B. ①③⑤C. ①②④⑤D. ①②③④⑤【答案】A【解析】【分析】连接DG,可得BD AB=AC 垂直平分BD ,先证明点B 、H 、D 、F 四点共圆,即可判断①;根据AC 垂直平分BD ,结合互余可证明DG FG =,即有DG FG BG ==,则可判断②正确;证明ABM DBN ∽,即有BN BD BM AB ==,可判断④;根据相似有212ABM DBN S AB S BD ⎛⎫== ⎪⎝⎭ ,根据12AH D H =可得3AH AD =,再证明AHM CBM ∽,可得13AHM ABM S HM S BM == ,即可判断⑤;根据点H 是AD 的中点,设2AD =,即求出BH ==,同理可证明AHM CBM ∽,可得23BM BH ==,即可得BN ==,进而可判断③.【详解】连接DG ,如图,∵四边形ABCD 是正方形,∴45BDC BAC ADB ∠=∠=∠=︒,BD AB =90BAD ADC ∠=∠=︒,AC 垂直平分BD ,∴90CDP ∠=︒,∵DF 平分CDP ∠,∴1452CDF CDP CDB ∠=∠=︒=∠,∴90BDF CDF CDB ∠=∠+∠=︒,∵90BHF BDF ∠=︒=∠,∴点B 、H 、D 、F四点共圆,∴45HFB HDB ∠=∠=︒,DHF DBF ∠=∠,∴18045HBF HFB FHB ∠=︒-∠-∠=︒,故①正确,∵AC 垂直平分BD ,∴BG DG =,∴BDG DBG ∠=∠,∵90BDF ∠=︒,∴90BDG GDF DBG DFG ∠+∠=︒=∠+∠,∴GDF DFG ∠=∠,∴DG FG =,∴DG FG BG ==,∴点G 是BF 的中点,故②正确,∵90BHF BAH ∠=︒=∠,∴90AHB DHF AHB ABH ∠+∠=︒=∠+∠,∴DHF ABH ∠=∠,∵DHF DBF ∠=∠,∴ABH DBF ∠=∠,又∵45BAC DBC ∠=∠=︒,∴ABM DBN ∽,∴BNBDBM AB ==,∴BN =,故④正确,∴212ABM DBN S AB S BD⎛⎫== ⎪⎝⎭ ,若12AH D H =,则()1122AH HD AD AH ==-,∴3AH AD =,∴13=AH AD ,即13H HA ABC AD ==,∵AD BC ∥,∴AHM CBM ∽,∴13HMAHBM BC ==,∴13AHM ABM S HM S BM == ,∴3ABM AHM S S = ,∵12ABM DBN S S = ,∴26BND ABM AHM S S S == △,故⑤错误,如图,③若点H 是AD 的中点,设2AD =,即2AB BC AD ===,∴112AH AD ==,∴BH ==,同理可证明AHM CBM ∽,∴12HM AH BM BC ==,∴32HM BM BH BM BM+==,∴23BM BH ==,∵BN =,∴BN ==,∵2BC =,∴在Rt BNC △中,23NC ==,sin NC NBC BN ∠==,故③正确,则正确的有:①②③④,故选:A .【点睛】本题是一道几何综合题,主要考查了正方形的性质,相似三角形的判定与性质,正弦,圆周角定理以及勾股定理等知识,证明点B 、H 、D 、F 四点共圆,ABM DBN ∽,是解答本题的关键.二、填空题(每小题3分,共30分)11. 国家统计局公布数据显示,2023年我国粮食总产量是13908亿斤,将13908亿用科学记数法表示为________.【答案】121.390810⨯【解析】【分析】本题考查了科学记数法,科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原来的数,变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数,确定a 与n 的值是解题的关键.【详解】1 亿81.010=⨯,13908亿48121.39081010 1.390810=⨯⨯=⨯故答案为:121.390810⨯12. 在函数y =中,自变量x 的取值范围是________.【答案】3x ≥##3x≤【解析】【分析】本题主要考查函数自变量取值范围,分别根据二次根式有意义的条件和分式有意义的条件列出不等式求解即可.【详解】解:根据题意得,30x -≥,且20x +≠,解得,3x ≥,故答案为:3x ≥.13. 已知菱形ABCD 中对角线AC BD 、相交于点O ,添加条件_________________可使菱形ABCD 成为正方形.【答案】AC BD =或AB BC⊥【解析】【分析】本题主要考查的是菱形和正方形的判定,熟练掌握菱形的判定定理是解题的关键,依据正方形的判定定理进行判断即可.【详解】解:根据对角线相等的菱形是正方形,可添加:AC BD =;根据有一个角是直角的菱形是正方形,可添加的:AB BC ⊥;故添加的条件为:AC BD =或AB BC ⊥.14. 七年一班要从2名男生和3名女生中选择两名学生参加朗诵比赛,恰好选择1名男生和1名女生的概率是________.【答案】35【解析】【分析】本题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.画树状图,共有12种等可能的结果,其中选取的2名学生恰好是1名男生、1名女生的结果有6种,再由概率公式求解即可.【详解】解:画树状图如下:由图可知,共有20种等可能的结果,其中选取的2名学生恰好是1名男生、1名女生的结果有12种,∴选取的2名学生恰好是1名男生、1名女生的概率为:123205=,故答案为:35.15. 关于x 的不等式组420102x x a -≥⎧⎪⎨->⎪⎩恰有3个整数解,则a 的取值范围是________.【答案】102a -≤<【解析】【分析】本题考查解一元一次不等式(组),一元一次不等式组的整数解,解答本题的关键是明确解一元一次不等式的方法.先解出不等式组中每个不等式的解集,然后根据不等式组420102x x a -≥⎧⎪⎨->⎪⎩恰有3个整数解,即可得到关于a 的不等式组,然后求解即可.【详解】解:由420-≥x ,得:2x ≤,由102x a ->,得:2x a >, 不等式组420102x x a -≥⎧⎪⎨->⎪⎩恰有3个整数解,∴这3个整数解是0,1,2,120a ∴-≤<,解得102a -≤<,故答案为:102a -≤<.16. 如图,ABC 内接于O ,AD 是直径,若25B ∠=︒,则CAD ∠________︒.【答案】65【解析】【分析】本题考查了圆周角定理,直角三角形的两个锐角互余,连接CD ,根据直径所对的圆周角是直角得出=90ACD ∠︒,根据同弧所对的圆周角相等得出25D B ∠=∠=︒,进而根据直角三角形的两个锐角互余,即可求解.【详解】解:如图所示,连接CD ,∵ABC 内接于O ,AD 是直径,∴=90ACD ∠︒,∵ AC AC =,25B ∠=︒,∴25D B ∠=∠=︒∴902565CAD ∠=︒-︒=︒,故答案为:65.17. 若圆锥的底面半径为3,侧面积为36π,则这个圆锥侧面展开图的圆心角是________︒.【答案】90【解析】【分析】此题主要考查了圆锥的侧面积公式以及与展开图扇形面积关系,求出圆锥的母线长是解决问题的关键.根据圆锥的侧面积公式πS rl =求出圆锥的母线长,再结合扇形面积公式即可求出圆心角的度数.【详解】根据圆锥侧面积公式:πS rl =,可得π336πl ⨯⨯=解得:12l =,2π1236π360n ⨯∴=,解得90n =,∴侧面展开图的圆心角是90︒.故答案为:90.18. 如图,在Rt ABC △中,90ACB ∠=︒,1tan 2BAC ∠=,2BC =,1AD =,线段AD 绕点A 旋转,点P 为CD 的中点,则BP 的最大值是________.【答案】12+【解析】【分析】本题考查了解直角三角形,三角形中位线定理,旋转的性质,解题的关键是找出BP 取最大值时B 、P 、M 三点的位置关系.取AC 的中点M ,连接PM 、BM ,利用解三角形求出BM ==,利用三角形中位线定理推出1122PM AD ==,当AD 在AC 下方时,如果B 、P 、M 三点共线,则BP 有最大值.【详解】解:取AC 的中点M ,连接PM 、BM .∵90ACB ∠=︒,1tan 2BAC ∠=,2BC =,∴124tan 2BC AC BAC ==÷=∠,∴122AM CM AC ===,∴BM ===,∵P 、M 分别是CD AC 、的中点,∴1122PM AD ==.如图,当AD 在AC 下方时,如果B 、P 、M 三点共线,则BP 有最大值,最大值为12BM MP +=,故答案为:12+.19. 矩形ABCD 中,3AB =,4BC =,将AB 沿过点A 的一条直线折叠,折痕交直线BC 于点P (点P 不与点B 重合),点B 的对称点落在矩形对角线所在的直线上,则PC 长为________.【答案】52或72或10【解析】【分析】本题考查了矩形与折叠问题,解直角三角形,先根据点B 的对称点落在矩形对角线所在的直线上的不同位置分三种情况,画出对应的图形,再根据矩形性质,利用解直角三角形求出PC 即可.【详解】解:①点B 的对称点落在矩形对角线BD 上,如图1,∵在矩形ABCD 中,3AB CD ==,4BC AD ==,由折叠性质可知:BB AP '⊥,∴BAP BPA BPA CBD∠+∠=∠+∠∴=BAP CBD∠∠∴3tan =tan =4CD BAP CBD BC ∠∠=,∴39tan 642BP AB BAP =∠=⨯=∴97822PC BC BP =-=-=;②点B 的对称点B '落在矩形对角线AC 上,如图2,∵在矩形ABCD 中,3AB CD ==,4BC AD ==,90B Ð=°,∴5AC ===,∴4cos 5BC ACB AC ∠==,由折叠性质可知:=90ABP AB P '∠=∠︒,3AB AB '==,∴532B C AC AB ''=-=-=∴452cos 52B C PC ACB '==÷=∠;③点B 的对称点B '落在矩形对角线CA 延长线上,如图3,∵在矩形ABCD 中,3AB CD ==,4BC AD ==,90B Ð=°,∴5AC ===,∴4cos 5BC ACB AC ∠==,由折叠性质可知:=90ABP AB P '∠=∠︒,3AB AB '==,∴538B C AC AB ''=+=+=∴4810cos 5B C PC ACB '==÷=∠;综上所述:则PC 长为52或72或10.故答案为:52或72或10.20. 如图,在平面直角坐标系中,正方形OMNP 顶点M 的坐标为()3,0,OAB 是等边三角形,点B 坐标是()1,0,OAB 在正方形OMNP 内部紧靠正方形OMNP 的边(方向为O M N P O M →→→→→→ )做无滑动滚动,第一次滚动后,点A 的对应点记为1A ,1A 的坐标是()2,0;第二次滚动后,1A 的对应点记为2A ,2A 的坐标是()2,0;第三次滚动后,2A 的对应点记为3A ,3A 的坐标是132⎛⎫ ⎪ ⎪⎝⎭;如此下去,……,则2024A 的坐标是________.【答案】()1,3【解析】【分析】本题考查了点的坐标变化规律,正方形性质,等边三角形性质,根据三角形的运动方式,依次求出点A 的对应点1A ,2A , ,12A 的坐标,发现规律即可解决问题.【详解】解: 正方形OMNP 顶点M 的坐标为()3,0,3OM MN NP OP ∴====,OAB 是等边三角形,点B 坐标是()1,0,∴,由题知,1A 的坐标是()2,0;2A 的坐标是()2,0;3A 的坐标是132⎛⎫ ⎪ ⎪⎝⎭;继续滚动有,4A 的坐标是()3,2;5A 的坐标是()3,2;6A 的坐标是5,32⎛ ⎝;7A 的坐标是()1,3;8A 的坐标是()1,3;9A 的坐标是52⎫⎪⎪⎭;10A 的坐标是()0,1;11A 的坐标是()0,1;12A 的坐标是12⎛ ⎝;13A 的坐标是()2,0; 不断循环,循环规律为以1A ,2A , ,12A ,12个为一组,2024121688÷= ,∴2024A 的坐标与8A 的坐标一样为()1,3,故答案为:()1,3.三、解答题(满分60分)21. 先化简,再求值:22222111m m m m m m ⎛⎫-+÷- ⎪-+⎝⎭,其中cos 60m =︒.【答案】1m -+,12【解析】【分析】本题主要考查分式的化简求值及特殊三角函数值,先对分式进行化简,然后利用特殊三角函数值进行代值求解即可.【详解】解:原式()()()()21111m m m m m m-+=⋅+--1m =-+,当1cos 602m =︒=时原式12=.22. 如图,在正方形网格中,每个小正方形的边长都是1个单位长度,在平面直角坐标系中,ABC 的三个顶点坐标分别为()1,1A -,()2,3B -,()5,2C -.(1)画出ABC 关于y 轴对称的111A B C △,并写出点1B 的坐标;(2)画出ABC 绕点A 逆时针旋转90︒后得到的22AB C ,并写出点2B 的坐标;(3)在(2)的条件下,求点B 旋转到点2B 的过程中所经过的路径长(结果保留π)【答案】(1)作图见解析,()12,3B(2)作图见解析,()23,0B -(3【解析】【分析】本题考查了利用旋转变换作图,轴对称和扇形面积公式等知识,熟练掌握网格结构准确找出对应点的位置是解题的关键.(1)根据题意画出即可;关于y 轴对称点的坐标横坐标互为相反数,纵坐标不变;(2)根据网格结构找出点B 、C 以点A 为旋转中心逆时针旋转90︒后的对应点,然后顺次连接即可;(3)先求出AB =,再由旋转角等于90︒,利用弧长公式即可求出.【小问1详解】解:如图,111A B C △为所求;点1B 的坐标为()2,3,小问2详解】如图,22AB C 为所求;()23,0B -,【小问3详解】AB ==,点B 旋转到点2B=.23. 如图,抛物线2y x bx c =-++与x 轴交于A 、B 两点,与y 轴交于点C ,其中()1,0B ,()0,3C .(1)求抛物线的解析式.(2)在第二象限的抛物线上是否存在一点P ,使得APC △的面积最大.若存在,请直接写出点P 坐标和APC △的面积最大值;若不存在,请说明理由.【答案】(1)223y x x =--+(2)存在,点P 的坐标是315,24P ⎛⎫- ⎪⎝⎭,APC △的面积最大值是278【解析】【分析】本题主要考查二次函数的图象与性质以及与几何综合:【(1)将B ,C 两点坐标代入函数解析式,求出b ,c 的值即可;(2)过点P 作PE x ⊥轴于点E ,设()2,23P x x x --+,且点P 在第二象限,根据APC APE AOC PCOE S S S S =+- 梯形可得二次函数关系式,再利用二次函数的性质即可求解.【小问1详解】解:将()1,0B ,()0,3C 代入2y x bx c =-++得,103b c c -++=⎧⎨=⎩解得:23b c =-⎧⎨=⎩223y x x ∴=--+【小问2详解】解:对于223y x x =--+,令0,y =则2230,x x --+=解得,123,1x x =-=,∴()3,0A -,∴3,OA =∵()0,3C ,∴3OC =,过点P 作PE x ⊥轴于点E ,如图,设()2,23P x x x --+,且点P 在第二象限,∴,3,OE x AE x =-=+∴APC APE AOCPCOE S S S S =+- 梯形()111222AE PE OC PE OE OA OC =⨯++⨯-⨯()()()()2211132332333222x x x x x x =+--++--+--⨯⨯23327228x ⎛⎫=-++ ⎪⎝⎭∵302-<,∴S 有最大值,∴当32x =-时,S 有最大值,最大值为278,此时点P 的坐标为315,24⎛⎫- ⎪⎝⎭24. 为贯彻落实教育部办公厅关于“保障学生每天校内、校外各一小时体育活动时间”的要求,某学校要求学生每天坚持体育锻炼.学校从全体男生中随机抽取了部分学生,调查他们的立定跳远成绩,整理如下不完整的频数分布表和统计图,结合下图解答下列问题:组别分组(cm )频数A50100x <≤3B 100150x <≤m C150200x <≤20D200250x <≤14E 250300x <≤5(1)频数分布表中m = ,扇形统计图中n = .(2)本次调查立定跳远成绩的中位数落在 组别.(3)该校有600名男生,若立定跳远成绩大于200cm 为合格,请估计该校立定跳远成绩合格的男生有多少人?【答案】(1)8,40(2)C (3)估计该校立定跳远成绩合格的男生有228人【解析】【分析】本题主要考查了扇形统计图和频数表、中位数,用样本估计总体,(1)用A 组的频数除以所占的百分比,即可求出调查的总人数;用总人数减去其它组的人数,即可求得B 组的人数,用C 组的人数除以总人数即可求解;(2)根据中位数的求法,即可求解;(3)用总人数乘以样本中立定跳远成绩合格的男生人数所占,即可求解.【小问1详解】解:被抽取的学生数为:36%50÷=(人)故503201458m =----=(人),%205040%n =÷=,即40n =,故答案为:8,40;【小问2详解】解:把这组数据从小到大排列,第25和第26个数据的平均数为这组数据的中位数,382526+<< ,5142526+<<,∴把这组数据从小到大排列,第25和第26个数据都在C 组,故本次调查立定跳远成绩的中位数落在C 组,答案为:C ;【小问3详解】解:14560022850+⨯=(人)答:该校立定跳远成绩合格的男生有228人.25. 甲、乙两货车分别从相距225km 的A 、B 两地同时出发,甲货车从A 地出发途经配货站时,停下来卸货,半小时后继续驶往B 地,乙货车沿同一条公路从B 地驶往A 地,但乙货车到达配货站时接到紧急任务立即原路原速返回B 地,结果比甲货车晚半小时到达B 地.如图是甲、乙两货车距A 地的距离()km y 与行驶时间()h x 之间的函数图象,结合图象回答下列问题:(1)甲货车到达配货站之前的速度是 km/h ,乙货车的速度是 km/h ;(2)求甲货车在配货站卸货后驶往B 地的过程中,甲货车距A 地的距离()km y 与行驶时间()h x 之间的函数解析式;(3)直接写出甲、乙两货车在行驶的过程中,出发多长时间甲、乙两货车与配货站的距离相等.【答案】(1)30,40(2)EF 的函数解析式是()802154 5.5y x x =-≤≤(3)经过1.5h 或45h 14或5h 甲、乙两货车与配货站的距离相等【解析】【分析】本题考查一次函数的应用,待定系数法求一次函数解析式的运用,认真分析函数图象,读懂函数图象表示的意义是解题关键.(1)由图象可知甲货车到达配货站路程为105km ,所用时间为3.5h ,乙货车到达配货站路程为120km ,到达后返回,所用时间为6h ,根据速度=距离÷时间即可得;(2)甲货车从A 地出发途经配货站时,停下来卸货,半小时后继续驶往B 地,由图象结合已知条件可知(4,105)E 和点(5.5,225)F ,再利用待定系数法求出y 与x 的关系式即可得答案;(3)分两车到达配货站之前和乙货车到达配货站时接到紧急任务立即原路原速返回B 地后、甲货车卸货,半小时后继续驶往B 地,三种情况与配货站的距离相等,分别列方程求出x 的值即可得答案.【小问1详解】解:由图象可知甲货车到达配货站路程为105km ,所用时间为3.5h ,所以甲货车到达配货站之前的速度是105 3.5=30÷(km/h )∴乙货车到达配货站路程为225105=120(km)-,到达配货站时接到紧急任务立即原路原速返回B 地,总路程为240km ,总时间是6h ,∴乙货车速度240640km /h =÷=,故答案为:30;40【小问2详解】甲货车从A 地出发途经配货站时,停下来卸货,半小时后继续驶往B 地,由图象可知(4,105)E 和点(5.5,225)F 设(4 5.5)EF y kx b x =+≤≤∴41055.5225k b k b +=⎧⎨+=⎩解得:21580b k =-⎧⎨=⎩,∴甲货车距A 地的距离()km y 与行驶时间()h x 之间的函数解析式()802154 5.5y x x =-≤≤【小问3详解】设甲货车出发h x ,甲、乙两货车与配货站的距离相等,①两车到达配货站之前:1053012040x x -=-,解得:32x =,②乙货车到达配货站时开始返回,甲货车未到达配货站:1053040120x x -=-,解得:4514x =,③甲货车在配货站卸货后驶往B 地时:0802151054012x x =---,解得:5x =,答:经过1.5h 或45h 14或5h 甲、乙两货车与配货站的距离相等.26. 已知ABC 是等腰三角形,AB AC =,12MAN BAC ∠=∠,MAN ∠在BAC ∠的内部,点M 、N 在BC 上,点M 在点N 的左侧,探究线段BM NC MN 、、之间的数量关系.(1)如图①,当90BAC ∠=︒时,探究如下:由90BAC ∠=︒,AB AC =可知,将ACN △绕点A 顺时针旋转90︒,得到ABP ,则CN BP =且90PBM ∠=︒,连接PM ,易证AMP AMN △≌△,可得MP MN =,在Rt PBM △中,222BM BP MP +=,则有222BM NC MN +=.(2)当60BAC ∠=︒时,如图②:当120BAC ∠=︒时,如图③,分别写出线段BM NC MN 、、之间的数量关系,并选择图②或图③进行证明.【答案】图②的结论是:222BM NC BM NC MN ++⋅=;图③的结论是:222BM NC BM NC MN +-⋅=;证明见解析【解析】【分析】本题主要考查等边三角形的性质,全等三角形的判定与性质,30度角所对的直角边等于斜边的一半,勾股定理等知识 ,选②,以点B 为顶点在ABC 外作60ABK ∠=︒,在BK 上截取BQ CN =,连接QA QM 、,过点Q 作QH BC ⊥,垂足为H ,构造全等三角形,得出AN AQ =,CAN QAB ∠=∠,再证明AQM ANM △≌△,得到MN QM =;在Rt QHM △中由勾股定理得222QH HM QM +=,即22212BM BQ QM ⎫⎛⎫++=⎪ ⎪⎪⎝⎭⎭,整理可得结论;选③方法同②【详解】解:图②的结论是:222BM NC BM NC MN ++⋅=证明:∵,60,AB AC BAC =∠=︒∴ABC 是等边三角形,∴60ABC ACB ∠=∠=︒,以点B 为顶点在ABC 外作60ABK ∠=︒,在BK 上截取BQ CN =,连接QA QM 、,过点Q 作QH BC ⊥,垂足为H ,AB AC = ,C ABQ ∠=∠,CN BQ=ACN ABQ∴△≌△AN AQ ∴=,CAN QAB∠=∠又30CAN BAM ∠+∠=︒30BAM QAB ∴∠+∠=︒即QAM MAN∠=∠又AM AM = ,AQM ANM ∴△≌△,MN QM ∴=;∵60,60,ABQ ABC ∠=︒∠=︒∴60QBH ∠=︒,∴30,BQH ∠=︒12B BH Q ∴=,QH BQ =∴12HM BM BH BM BQ =+=+,在Rt QHM △中,可得:222QH HM QM +=即22212BM BQ QM ⎫⎛⎫++=⎪ ⎪⎪⎝⎭⎭整理得222BM BQ B Q M M B Q ⋅++=222NC B M N N B M M C ∴=⋅++图③的结论是:222BM NC BM NC MN +-⋅=证明:以点B 顶点在ABC 外作30ABK ∠=︒,在BK 上截取BQ CN =,连接QA QM 、,过点Q 作QH BC ⊥,垂足为H ,为AB AC = ,C ABQ ∠=∠,CN BQ=ACN ABQ∴△≌△AN AQ ∴=,CAN QAB∠=∠又60CAN BAM ∠+∠=︒60BAM QAB ∴∠+∠=︒即QAM MAN∠=∠又AM AM = ,AQM ANM ∴△≌△,MN QM∴=在Rt BQH 中,60QBH ∠=︒,30BQH ∠=︒12B BH Q ∴=,QH BQ =12HM BM BH BM BQ =-=-,在Rt QHM △中,可得:222QH HM QM +=即22212BQ BM BQ QM ⎫⎛⎫+-=⎪ ⎪⎪⎝⎭⎭整理得222BM BQ B Q M M B Q ⋅+-=222NC B M N N B M M C ∴=⋅+-27. 为了增强学生的体质,某学校倡导学生在大课间开展踢毽子活动,需购买甲、乙两种品牌毽子.已知购买甲种品牌毽子10个和乙种品牌毽子5个共需200元;购买甲种品牌毽子15个和乙种品牌毽子10个共需325元.(1)购买一个甲种品牌毽子和一个乙种品牌毽子各需要多少元?(2)若购买甲乙两种品牌毽子共花费1000元,甲种品牌毽子数量不低于乙种品牌毽子数量的5倍且不超过乙种品牌毽子数量的16倍,则有几种购买方案?(3)若商家每售出一个甲种品牌毽子利润是5元,每售出一个乙种品牌毽子利润是4元,在(2)条件下,学校如何购买毽子商家获得利润最大?最大利润是多少元?【答案】(1)购买一个甲种品牌毽子需15元,购买一个乙种品牌毽子需10元的(2)共有3种购买方案(3)学校购买甲种品牌毽子60个,购买乙种品牌毽子10个,商家获得利润最大,最大利润是340元【解析】【分析】本题考查了二元一次方程组、一元一次不等式组以及一次函数的应用,(1)设购买一个甲种品牌毽子需a 元,购买一个乙种品牌毽子需b 元,根据题意列出二元一次方程组,问题得解;(2)设购买甲种品牌毽子x 个,购买乙种品牌毽子31002x ⎛⎫-⎪⎝⎭个,根据题意列出一元一次不等式组,解不等式组即可求解;(3)设商家获得总利润为y 元,即有一次函数3541002y x x ⎛⎫=+-⎪⎝⎭,根据一次函数的性质即可求解.【小问1详解】解:设购买一个甲种品牌毽子需a 元,购买一个乙种品牌毽子需b 元.由题意得:1052001510325a b a b +=⎧⎨+=⎩,解得:1510a b =⎧⎨=⎩,答:购买一个甲种品牌毽子需15元,购买一个乙种品牌毽子需10元;【小问2详解】解:设购买甲种品牌毽子x 个,购买乙种品牌毽子1000153100102x x -⎛⎫=- ⎪⎝⎭个.由题意得:3510023161002x x x x ⎧⎛⎫≥- ⎪⎪⎪⎝⎭⎨⎛⎫⎪≤- ⎪⎪⎝⎭⎩,解得:14586417x ≤≤,x 和31002x ⎛⎫- ⎪⎝⎭均为正整数,60x ∴=,62,64,3100102x -=,7,4,∴共有3种购买方案.【小问3详解】设商家获得总利润为y 元,3541002y x x ⎛⎫=+- ⎪⎝⎭,400y x =-+,10k =-< ,y ∴随x 的增大而减小,∴当60x =时,340y =最大,答:学校购买甲种品牌毽子60个,购买乙种品牌毽子10个,商家获得利润最大,最大利润是340元.28. 如图,在平面直角坐标系中,等边三角形OAB 的边OB 在x 轴上,点A 在第一象限,OA 的长度是一元二次方程2560x x --=的根,动点P 从点O 出发以每秒2个单位长度的速度沿折线OA AB -运动,动点Q 从点O 出发以每秒3个单位长度的速度沿折线OB BA -运动,P 、Q 两点同时出发,相遇时停止运动.设运动时间为t 秒(0 3.6t <<),OPQ △的面积为S .(1)求点A 的坐标;(2)求S 与t 的函数关系式;(3)在(2)的条件下,当S =时,点M 在y 轴上,坐标平面内是否存在点N ,使得以点O 、P 、M 、N 为顶点的四边形是菱形.若存在,直接写出点N 的坐标;若不存在,说明理由.【答案】(1)点A的坐标为(A (2)()())2202233 3.6t S t t ⎧<≤⎪⎪⎪=+<≤⎨⎪⎪+<<⎪⎩ (3)存在,(12,4N +,()22,4N -,(32,N -,4N ⎛⎝【解析】【分析】(1)运用因式分解法解方程求出OA 的长,根据等边三角形的性质得出6,60OA OB AC OAB AOB ABO ===∠=∠=∠=︒,过点A 作AC x ⊥轴,垂足为C ,求出AC 的长即可;(2)分02t <≤,23t <≤和3 3.6t <<三种情况,运用三角形面积公式求解即可;(3)当2=时求出2t =,得4OP =,分OP 为边和对角线两种情况可得点N 的坐标;当2+=和+=O 、P 、M 、N 为顶点的四边形是菱形【小问1详解】解:2560x x --=,解得16x =,21x =-OA 的长度是2560x x --=的根,6OA ∴=∵OAB 是等边三角形,∴6,60OA OB AC OAB AOB ABO ===∠=∠=∠=︒,过点A 作AC x ⊥轴,垂足为C ,在Rt AOC 中,60,AOC ∠=︒∴30,OAC ∠=︒116322OC OA ∴==⨯=,∴AC ===∴点A 的坐标为(A 【小问2详解】解:当02t <≤时.过P 作PD x ⊥轴,垂足为点D ,∴2OP t =,3OQ t =,30OPD ∴∠=︒∴,OD t =∴PD ===,211322S OQ PD t ∴=⨯⨯=⨯=;当23t <≤时,过Q 作QE OA ⊥,垂足为点E∵60,A ∠=︒∴30,AQE ∠=︒又123,AQ t =-∴13622AE AQ t ==-,QE ==又2OP t =,2122S t ⎛⎫∴=⨯⨯=+ ⎪ ⎪⎝⎭。
黑龙江省佳木斯市2019-2020学年中考第二次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图所示,如果将一副三角板按如图方式叠放,那么∠1 等于( )A.120︒B.105︒C.60︒D.45︒2.计算(x-2)(x+5)的结果是A.x2+3x+7 B.x2+3x+10 C.x2+3x-10 D.x2-3x-10'''由△ABC绕点P旋转得到,则点P的坐标为()3.如图,在平面直角坐标系xOy中,△A B CA.(0,1)B.(1,-1)C.(0,-1)D.(1,0)4.老师在微信群发了这样一个图:以线段AB为边作正五边形ABCDE和正三角形ABG,连接AC、DG,交点为F,下列四位同学的说法不正确的是( )A.甲B.乙C.丙D.丁5.如图,l1∥l2,AF:FB=3:5,BC:CD=3:2,则AE:EC=()A.5:2 B.4:3 C.2:1 D.3:26.满足不等式组21010x x -≤⎧⎨+>⎩的整数解是( )A .﹣2B .﹣1C .0D .17.如图,▱ABCD 对角线AC 与BD 交于点O ,且AD =3,AB =5,在AB 延长线上取一点E ,使BE =25AB ,连接OE 交BC 于F ,则BF 的长为( )A .23B .34C .56D .18.如图,已知边长为2的正三角形ABC 顶点A 的坐标为(0,6),BC 的中点D 在y 轴上,且在点A 下方,点E 是边长为2、中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE 的最小值为( )A .3B .4﹣3C .4D .6﹣239.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( ) A .9人B .10人C .11人D .12人10.如图是二次函数2y ax bx c =++的图象,有下面四个结论:0abc >①;0a b c ②-+>;230a b +>③;40c b ->④,其中正确的结论是( )A .①②B .①②③C . ①③④D . ①②④11.下列各式中,计算正确的是 ( )A.235+= B .236a a a⋅= C .32a a a ÷=D .()2222a ba b =12.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、1.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( ) A .14B .12C .34D .56二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在矩形ABCD 中,AB=3,AD=5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么cos ∠EFC 的值是 .14.不等式组42348x x -+<⎧⎨-≤⎩①②的解集是_____.15.已知21x y =⎧⎨=⎩是方程组ax 5{1by bx ay +=+=的解,则a ﹣b 的值是___________16.如图,△ABC 中,AD 是中线,AE 是角平分线,CF ⊥AE 于F ,AB=10,AC=6,则DF 的长为__.17.方程组538389x y x y -=⎧⎨+=⎩的解一定是方程_____与_____的公共解.18.如图,在正方形ABCD 中,△BPC 是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F ,连结BD 、DP ,BD 与CF 相交于点H ,给出下列结论:①△DFP ~△BPH ;②3FP DF PH CD ==;③PD 2=PH•CD ;④ABCD31=3BPD S S ∆-正方形,其中正确的是______(写出所有正确结论的序号).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,EF 过点O 且与AB 、CD 分别交于点E 、F .求证:OE =OF .20.(6分)计算:sin30°﹣4+(π﹣4)0+|﹣12|. 21.(6分)随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A (0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B (5001~10000步),C (10001~15000步),D (15000步以上),统计结果如图所示:请依据统计结果回答下列问题:本次调查中,一共调查了 位好友.已知A 类好友人数是D 类好友人数的5倍. ①请补全条形图;②扇形图中,“A”对应扇形的圆心角为 度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?22.(8分)如图,在矩形ABCD 中,E 是BC 边上的点,AE BC DF AE ⊥=,,垂足为F.(1)求证:AF BE =;(2)如果21BE EC :=:,求CDF ∠的余切值. 23.(8分)某校航模小组借助无人飞机航拍校园,如图,无人飞机从A 处水平飞行至B 处需10秒,A 在地面C 的北偏东12°方向,B 在地面C 的北偏东57°方向.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果精确到0.1米,参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)24.(10分)试探究:小张在数学实践活动中,画了一个△ABC,∠ACB=90°,BC=1,AC=2,再以点B为圆心,BC为半径画弧交AB于点D,然后以A为圆心,AD长为半径画弧交AC于点E,如图1,则AE=;此时小张发现AE2=AC•EC,请同学们验证小张的发现是否正确.拓展延伸:小张利用图1中的线段AC及点E,构造AE=EF=FC,连接AF,得到图2,试完成以下问题:(1)求证:△ACF∽△FCE;(2)求∠A的度数;(3)求cos∠A的值;应用迁移:利用上面的结论,求半径为2的圆内接正十边形的边长.25.(10分)为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A.由父母一方照看;B.由爷爷奶奶照看;C.由叔姨等近亲照看;D.直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.该班共有名留守学生,B类型留守学生所在扇形的圆心角的度数为;将条形统计图补充完整;已知该校共有2400名学生,现学校打算对D类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?26.(12分)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.类别 频数(人数) 频率 小说 0.5 戏剧 4 散文 10 0.25 其他 6 合计1根据图表提供的信息,解答下列问题:八年级一班有多少名学生?请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.27.(12分)计算: (1)2162)12(8)3- (2)221cos60cos 45tan 603+-o oo 参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.B 【解析】解:如图,∠2=90°﹣45°=45°,由三角形的外角性质得,∠1=∠2+60°=45°+60°=105°.故选B .点睛:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.2.C【解析】【分析】根据多项式乘以多项式的法则进行计算即可.【详解】故选:C.【点睛】考查多项式乘以多项式,掌握多项式乘以多项式的运算法则是解题的关键.3.B【解析】试题分析:根据网格结构,找出对应点连线的垂直平分线的交点即为旋转中心.试题解析:由图形可知,对应点的连线CC′、AA′的垂直平分线过点(0,-1),根据旋转变换的性质,点(1,-1)即为旋转中心. 故旋转中心坐标是P(1,-1)故选B.考点:坐标与图形变化—旋转.4.B【解析】【分析】利用对称性可知直线DG是正五边形ABCDE和正三角形ABG的对称轴,再利用正五边形、等边三角形的性质一一判断即可;【详解】∵五边形ABCDE是正五边形,△ABG是等边三角形,∴直线DG是正五边形ABCDE和正三角形ABG的对称轴,∴DG垂直平分线段AB,∵∠BCD=∠BAE=∠EDC=108°,∴∠BCA=∠BAC=36°,∴∠DCA=72°,∴∠CDE+∠DCA=180°,∴DE∥AC,∴∠CDF=∠EDF=∠CFD=72°,∴△CDF是等腰三角形.故丁、甲、丙正确.故选B.【点睛】本题考查正多边形的性质、等边三角形的性质、轴对称图形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.D【解析】【分析】依据平行线分线段成比例定理,即可得到AG=3x,BD=5x,CD=25BD=2x,再根据平行线分线段成比例定理,即可得出AE与EC的比值.【详解】∵l1∥l2,∴35 AF AGBF BD==,设AG=3x,BD=5x,∵BC:CD=3:2,∴CD=25BD=2x,∵AG∥CD,∴3322 AE AG xEC CD x===.故选D.【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.6.C 【解析】 【分析】先求出每个不等式的解集,再根据不等式的解集求出不等式组的解集即可. 【详解】21010x x -≤⎧⎨+⎩①>②∵解不等式①得:x≤0.5, 解不等式②得:x >-1, ∴不等式组的解集为-1<x≤0.5, ∴不等式组的整数解为0, 故选C . 【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集找出不等式组的解集是解此题的关键. 7.A 【解析】 【分析】首先作辅助线:取AB 的中点M ,连接OM ,由平行四边形的性质与三角形中位线的性质,即可求得:△EFB ∽△EOM 与OM 的值,利用相似三角形的对应边成比例即可求得BF 的值. 【详解】取AB 的中点M ,连接OM ,∵四边形ABCD 是平行四边形, ∴AD ∥BC ,OB=OD , ∴OM ∥AD ∥BC ,OM=12AD=12×3=32,∴△EFB ∽△EOM ,∴BF BEOM EM=, ∵AB=5,BE=25AB ,∴BE=2,BM=52,∴EM=52+2=92,∴2 39 22 BF=,∴BF=23,故选A.【点睛】此题考查了平行四边形的性质、相似三角形的判定与性质等知识.解此题的关键是准确作出辅助线,合理应用数形结合思想解题.8.B【解析】分析:首先得到当点E旋转至y轴上时DE最小,然后分别求得AD、OE′的长,最后求得DE′的长即可.详解:如图,当点E旋转至y轴上时DE最小;∵△ABC是等边三角形,D为BC的中点,∴AD⊥BC∵AB=BC=2∴AD=AB•sin∠3∵正六边形的边长等于其半径,正六边形的边长为2,∴OE=OE′=2∵点A的坐标为(0,6)∴OA=6∴DE′=OA-AD-OE′=43故选B.点睛:本题考查了正多边形的计算及等边三角形的性质,解题的关键是从图形中整理出直角三角形.9.C【解析】【分析】设参加酒会的人数为x 人,根据每两人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.【详解】设参加酒会的人数为x 人,依题可得:12x (x-1)=55, 化简得:x 2-x-110=0,解得:x 1=11,x 2=-10(舍去),故答案为C.【点睛】考查了一元二次方程的应用,解题的关键是根据题中的等量关系列出方程.10.D【解析】【分析】根据抛物线开口方向得到a 0>,根据对称轴02b x a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >;1x =-时,由图像可知此时0y >,所以0a b c -+>;由对称轴123b x a =-=,可得230a b +=;当2x =时,由图像可知此时0y >,即420a bc ++>,将23a b =-代入可得40c b ->.【详解】①根据抛物线开口方向得到0a >,根据对称轴02b x a =->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >,故①正确.②1x =-时,由图像可知此时0y >,即0a b c -+>,故②正确. ③由对称轴123b x a =-=,可得230a b +=,所以230a b +>错误,故③错误; ④当2x =时,由图像可知此时0y >,即420a bc ++>,将③中230a b +=变形为23a b =-,代入可得40c b ->,故④正确.故答案选D.【点睛】本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。
黑龙江省佳木斯市2020版中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分) (2019七上·九龙坡期中) 如图,数轴上,两点分别对应有理数,,则下列结论正确的是()A . a-b>0B . ab>0C . a+b>0D . |a|-|b|>02. (2分)如图所示,该几何体的左视图是()A .B .C .D .3. (2分)(2017·绍兴模拟) 在:0,﹣2,1,这四个数中,最小的数是()A .B . 1C . ﹣2D . 04. (2分) (2016九上·仙游期末) 观察下列银行标志,从图案看既是轴对称图形又是中心对称图形的有()A . 1个B . 2个C . 3个D . 4个5. (2分)如图,已知∠ACB是⊙O的圆周角,∠ACB=50°,则圆心角∠AOB是()A . 40°B . 50°C . 80°D . 100°6. (2分)把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释正确的是()A . 线段可以比较大小B . 线段有两个端点C . 两点之间线段最短D . 过两点有且只有一条直线二、填空题 (共8题;共8分)7. (1分)已知x=3.2,y=6.8,则x2+2xy+y2=________.8. (1分) (2016八上·桂林期末) 不等式2+4x>1的解集是________.9. (1分)=________10. (1分) (2015八下·嵊州期中) 若已知一元二次方程两个根为2和3,请你写出一个符合条件的一元二次方程________.11. (1分) (2018九下·扬州模拟) 某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知AB∥CD,∠BAE=87°,∠DCE=121°,则∠E的度数是________.12. (1分)如图,在Rt△ABC中,∠BAC=90°,AD是BC边上的中线,DE⊥AC于E,若AB=8,AC=12,则DE 的长为________.13. (1分) (2016九上·常熟期末) 两个相似三角形的面积比为4:9,那么它们对应中线的比为________.14. (1分) (2016八上·芦溪期中) 一艘轮船以20km/h的速度离开港口向东北方向航行,另一艘轮船同时离开港口以30km/h的速度向东南方向航行,它们离开港口半小时后相距________km.三、解答题 (共12题;共93分)15. (5分) (2017·南岸模拟) 计算:整式的运算和分式的化简(1)(x+3)2﹣x(x+2);(2)÷( + )16. (5分)(2018·长春) 剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A1、A2 ,图案为“蝴蝶”的卡片记为B)17. (10分)已知反比例函数y=﹣.(1)写出这个函数的比例系数和自变量的取值范围;(2)求当x=﹣3时函数的值;(3)求当y=﹣2时自变量x的值.18. (5分) (2018八上·开平月考) 如图,CA=CD,∠BCE=∠ACD,BC=EC,求证:∠A=∠D.19. (10分)(2017·孝感模拟) 如图,已知四边形ABCD是矩形,对角线AC的垂直平分线交AD于点E,交BC于点F,连接AF,CE,解答下列问题:(1)求证:四边形AECF是菱形;(2)记AB=a,BF=b,若a,b是方程x2﹣2(m+1)x+m2+1=0的两根,问当m为何值时,菱形AECF的周长为8 .20. (6分) (2019七下·仁寿期中) 阅读下列解方程组的方法,然后解答问题:解方程组时,由于x、y的系数及常数项的数值较大,如果用常规的代入消元法、加减消元法采解,那将是计算量大,且易出现运算错误,而采用下面的解法则比较简单:②-①得:3x+3y=3,所以x+y=1③③×14得:14x+14y=14④①-④得:y=2,从而得x=-1所以原方程组的解是(1)请你运用上述方法解方程组(2)请你直接写出方程组的解;(3)猜测关于x、y的方程组(m≠n)的解是什么?并用方程组的解加以验证。
2020年黑龙江省佳木斯市中考数学试卷一、选择题(每题3分,满分30分)1. 下列各运算中,计算正确的是()A.x8÷x2=x4B.a2⋅2a2=2a4C.(−3x2)3=−9x6D.(x−y)2=x2−xy+y22. 下列图标中是中心对称图形的是()A. B. C. D.3. 如图,由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则所需的小正方体的个数最多是()A.7B.6C.9D.84. 一组从小到大排列的数据:x,3,4,4,5(x为正整数),唯一的众数是4,则该组数据的平均数是()A.3.8或3.2B.3.6C.3.6或3.2D.3.6或3.45. 已知关于x的一元二次方程x2−(2k+1)x+k2+2k=0有两个实数根x1,x2,则实数k的取值范围是()A.k≤14B.k<14C.k≤14且k≠0 D.k>46. 如图,菱形ABCD的两个顶点A,C在反比例函数y=kx的图象上,对角线AC,BD的交点恰好是坐标原点O,已知B(−1, 1),∠ABC=120∘,则k的值是()A.4 B.5 C.2 D.37. 已知关于x的分式方程xx−2−4=k2−x的解为正数,则k的取值范围是()A.k>−8且k≠−2B.−8<k<0C.k<4且k≠−2D.k>−8且k≠28. 如图,菱形ABCD的对角线AC,BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,S菱形ABCD=48,则OH的长为()A.8B.4C.6D.√139. 在抗击疫情网络知识竞赛中,为奖励成绩突出的学生,学校计划用200元钱购买A、B、C三种奖品,A种每个10元,B种每个20元,C种每个30元,在C种奖品不超过两个且钱全部用完的情况下,有多少种购买方案()A.15种B.12种C.14种D.16种10. 如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B重合),∠DAM=45∘,点F在射线AM上,且AF=√2BE,CF与AD相交于点G,连接EC、EF、EG.则下列结论:①∠ECF=45∘;②△AEG的周长为(1+√22)a;③BE2+DG2=EG2;④△EAF的面积的最大值是18a2;⑤当BE=13a时,G是线段AD的中点.其中正确的结论是()A.②④⑤B.①②③C.①④⑤D.①③④ 二、填空题(每题3分,满分30分)5G 信号的传播速度为300000000m/s ,将数据300000000用科学记数法表示为________.在函数y =√x−2中,自变量x 的取值范围是________.如图,Rt △ABC 和Rt △EDF 中,∠B =∠D ,在不添加任何辅助线的情况下,请你添加一个条件________,使Rt △ABC 和Rt △EDF 全等.一个盒子中装有标号为1、2、3、4、5的五个小球,这些球除了标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于6的概率为________.若关于x 的一元一次不等式组{x −1>02x −a <0 有2个整数解,则a 的取值范围是________.如图,AD 是△ABC 的外接圆⊙O 的直径,若∠BAD =40∘,则∠ACB =________∘.小明在手工制作课上,用面积为150πcm 2,半径为15cm 的扇形卡纸,围成一个圆锥侧面,则这个圆锥的底面半径为 10 cm .如图,在边长为4的正方形ABCD 中,将△ABD 沿射线BD 平移,得到△EGF ,连接EC 、GC .求EC +GC 的最小值为________.在矩形ABCD 中,AB =1,BC =a ,点E 在边BC 上,且BE =35a ,连接AE ,将△ABE 沿AE 折叠.若点B 的对应点B ′落在矩形ABCD 的边上,则折痕的长为________.如图,直线AM 的解析式为y =x +1与x 轴交于点M ,与y 轴交于点A ,以OA 为边作正方形ABCO ,点B 坐标为(1, 1).过点B 作EO 1⊥MA 交MA 于点E ,交x 轴于点O 1,过点O 1作x 轴的垂线交MA 于点A 1,以O 1A 1为边作正方形O 1A 1B 1C 1,点B 1的坐标为(5, 3).过点B 1作E 1O 2⊥MA 交MA 于E 1,交x 轴于点O 2,过点O 2作x 轴的垂线交MA 于点A 2.以O 2A 2为边作正方形O 2A 2B 2C 2.….则点B 2020的坐标________.三、解答题(满分60分)先化简,再求值:(2−x−1x+1)÷x 2+6x+9x 2−1,其中x =3tan 30∘−3.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△ABC 的三个顶点A(5, 2)、B(5, 5)、C(1, 1)均在格点上.(1)将△ABC 向左平移5个单位得到△A 1B 1C 1,并写出点A 1的坐标;(2)画出△A 1B 1C 1绕点C 1顺时针旋转90∘后得到的△A 2B 2C 1,并写出点A 2的坐标;(3)在(2)的条件下,求△A 1B 1C 1在旋转过程中扫过的面积(结果保留π).如图,已知二次函数y=−x2+bx+c的图象经过点A(−1, 0),B (3, 0),与y轴交于点C.(1)求抛物线的解析式;(2)抛物线上是否存在点P,使∠PAB=∠ABC,若存在请直接写出点P的坐标.若不存在,请说明理由.为了提高学生体质,战胜疫情,某中学组织全校学生宅家一分钟跳绳比赛,全校跳绳平均成绩是每分钟99次,某班班长统计了全班50名学生一分钟跳绳成绩,列出的频数分布直方图如图所示,(每个小组包括左端点,不包括右端点).求:((1))该班一分钟跳绳的平均次数至少是多少,是否超过全校的平均次数;(2)该班的一个学生说:“我的跳绳成绩是我班的中位数”请你给出该生跳绳成绩的所在范围;(3)从该班中任选一人,其跳绳次数超过全校平均数的概率是多少.为抗击疫情,支持武汉,某物流公司的快递车和货车每天往返于物流公司、武汉两地,快递车比货车多往返一趟,如图表示两车离物流公司的距离y(单位:千米)与快递车所用时间x(单位:时)的函数图象,已知货车比快递车早1小时出发,到达武汉后用2小时装卸货物,按原速、原路返回,货车比快递车最后一次返回物流公司晚1小时.(1)求ME的函数解析式;(2)求快递车第二次往返过程中,与货车相遇的时间.(3)求两车最后一次相遇时离武汉的距离.(直接写出答案)如图①,在Rt△ABC中,∠ACB=90∘,AC=BC,点D、E分别在AC、BC边上,DC=EC,连接DE、AE、BD,点M、N、P分别是AE、BD、AB的中点,连接PM、PN、MN.(1)BE与MN的数量关系是________.(2)将△DEC绕点C逆时针旋转到图②和图③的位置,判断BE与MN有怎样的数量关系?写出你的猜想,并利用图②或图③进行证明.某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克m元,售价每千克16元;乙种蔬菜进价每千克n元,售价每千克18元.(1)该超市购进甲种蔬菜15千克和乙种蔬菜20千克需要430元;购进甲种蔬菜10千克和乙种蔬菜8千克需要212元,求m,n的值.(2)该超市决定每天购进甲、乙两种蔬菜共100千克,且投入资金不少于1160元又不多于1168元,设购买甲种蔬菜x千克(x为正整数),求有哪几种购买方案.(3)在(2)的条件下,超市在获得的利润取得最大值时,决定售出的甲种蔬菜每千克捐出2a元,乙种蔬菜每千克捐出a元给当地福利院,若要保证捐款后的利润率不低于20%,求a的最大值.如图,在平面直角坐标系中,矩形ABCD的边AB长是x2−3x−18=0的根,连接BD,∠DBC=30∘,并过点C作CN⊥BD,垂足为N,动点P从B点以每秒2个单位长度的速度沿BD方向匀速运动到D点为止;点M沿线段DA以每秒√3个单位长度的速度由点D向点A匀速运动,到点A为止,点P与点M同时出发,设运动时间为t秒(t>0).(1)线段CN=________;(2)连接PM和MN,求△PMN的面积s与运动时间t的函数关系式;(3)在整个运动过程中,当△PMN是以PN为腰的等腰三角形时,直接写出点P的坐标.参考答案与试题解析2020年黑龙江省佳木斯市中考数学试卷一、选择题(每题3分,满分30分)1.【答案】此题暂无答案【考点】整式较混合轻算【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【考点】中心较称图腾【解析】此题暂无解析【解答】此题暂无解答3.【答案】此题暂无答案【考点】由三视正活断几何体【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【考点】众数算三平最数【解析】此题暂无解析【解答】此题暂无解答5.【答案】此题暂无答案【考点】根体判展式【解析】此题暂无解析【解答】此题暂无解答6.【答案】此题暂无答案【考点】等三三程形写建质与判定菱都资性质反比射函可铜象上误的坐标特征【解析】此题暂无解析【解答】此题暂无解答7.【答案】此题暂无答案【考点】分式明程稀解【解析】此题暂无解析【解答】此题暂无解答8.【答案】此题暂无答案【考点】菱较严面积菱都资性质直使三碳形望边扩的中线【解析】此题暂无解析【解答】此题暂无解答9.【答案】此题暂无答案【考点】二元一因方程似应用【解析】此题暂无解析【解答】此题暂无解答10.【答案】此题暂无答案【考点】二次常数换最值勾体定展全根三烛形做给质与判定正方来的性稳【解析】此题暂无解析【解答】此题暂无解答二、填空题(每题3分,满分30分)【答案】此题暂无答案【考点】科学较盛法含-表项较大的数【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】函数自变于的取旋范围【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】直角三角射全等从判定【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】列表法三树状图州【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】一元三次实等另组每整数解【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】三角形的常换圆与外心【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】扇形体积硫计算圆于凸计算【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】轴明称月去最键路线问题正方来的性稳平水因性质【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】相验极角家的锰质与判定矩来兴性质勾体定展翻折变换(折叠问题)【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】规律型:因字斯变化类一次常数图按上点入适标特点一次水体的性质相验极角家的锰质与判定规律型:三形的要化类规律型:点的坐较【解析】此题暂无解析【解答】此题暂无解答三、解答题(满分60分)【答案】此题暂无答案【考点】特殊角根三角函股值分式因化简优值【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】作图三腔转变换作图验流似变换扇形体积硫计算【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】二次使如综合题【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】频数(率)分布直方水加水正均数中位数概水常式【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】一次水根的应用【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】旋因末性质等腰于角三旋形三角形因位线十理【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】一三一臂感等散组的应用二元一因方程似应用二元一水使程组种应用—鉴其他问题二元一正构程组的置用——移程问题【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】四边正形合题【解析】此题暂无解析【解答】此题暂无解答。
黑龙江省佳木斯市中考数学试卷(解析版)一、填空题(每题3分,满分30分)1.“可燃冰”的开发成功,拉开了我国开发新能源的大门,目前发现我国南海“可燃冰”储存量达到800亿吨,将800亿吨用科学记数法可表示为8×1010吨.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:800亿=8×1010.故答案为:8×1010.2.在函数y=中,自变量x的取值范围是x≠1.【考点】E4:函数自变量的取值范围.【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣1≠0,解得x≠1.故答案为:x≠1.3.如图,BC∥EF,AC∥DF,添加一个条件AB=DE或BC=EF或AC=DF或AD=BE(只需添加一个即可),使得△ABC≌△DEF.【考点】KB:全等三角形的判定.【分析】本题要判定△ABC≌△DEF,易证∠A=∠EDF,∠ABC=∠E,故添加AB=DE、BC=EF或AC=DF根据ASA、AAS即可解题.【解答】解:∵BC∥EF,∴∠ABC=∠E,∵AC∥DF,∴∠A=∠EDF,∵在△ABC和△DEF中,,∴△ABC≌△DEF,同理,BC=EF或AC=DF也可证△ABC≌△DEF.故答案为AB=DE或BC=EF或AC=DF或AD=BE(只需添加一个即可).4.在一个不透明的袋子中装有除颜色外完全相同的3个白球、若干红球,从中随机摸取1个球,摸到红球的概率是,则这个袋子中有红球5个.【考点】X4:概率公式.【分析】设这个袋子中有红球x个,根据已知条件列方程即可得到结论.【解答】解:设这个袋子中有红球x个,∵摸到红球的概率是,∴=,∴x=5,故答案为:5.5.若关于x的一元一次不等式组无解,则a的取值范围是a≥2.【考点】CB:解一元一次不等式组.【分析】先求出各不等式的解集,再与已知解集相比较求出a的取值范围.【解答】解:由x﹣a>0得,x>a;由1﹣x>x﹣1得,x<2,∵此不等式组的解集是空集,∴a≥2.故答案为:a≥2.6.为了鼓励居民节约用水,某自来水公司采取分段计费,每月每户用水不超过10吨,每吨2.2元;超过10吨的部分,每吨加收1.3元.小明家4月份用水15吨,应交水费39.5元.【考点】1G:有理数的混合运算.【分析】先根据单价×数量=总价求出10吨的水费,再根据单价×数量=总价加上超过10吨的部分的水费,再把它们相加即可解答.【解答】解:2.2×10+(2.2+1.3)×(15﹣10)=22+3.5×5=22+17.5=39.5(元).答:应交水费39.5元.故答案为:39.5.7.如图,BD是⊙O的切线,B为切点,连接DO与⊙O交于点C,AB为⊙O的直径,连接CA,若∠D=30°,⊙O的半径为4,则图中阴影部分的面积为.【考点】MC:切线的性质;MO:扇形面积的计算.【分析】由条件可求得∠COA的度数,过O作OE⊥CA于点E,则可求得OE的长和CA的长,再利用S阴影=S扇形COA﹣S△COA可求得答案.【解答】解:如图,过O作OE⊥CA于点E,∵DB为⊙O的切线,∴∠DBA=90°,∵∠D=30°,∴∠BOC=60°,∴∠COA=120°,∵OC=OA=4,∴∠OAE=30°,∴OE=2,CA=2AE=4∴S阴影=S扇形COA﹣S△COA=﹣×2×4=π﹣4,故答案为:π﹣4.8.圆锥的底面半径为2cm,圆锥高为3cm,则此圆锥侧面展开图的周长为(2+4π)cm.【考点】MP:圆锥的计算.【分析】利用勾股定理易得圆锥的母线长,圆锥周长=弧长+2母线长.【解答】解:∵圆锥的底面半径是2,高是3,∴圆锥的母线长为:=,∴这个圆锥的侧面展开图的周长=2×+2π×2=2+4π.故答案为2+4π.9.如图,在△ABC中,AB=BC=8,AO=BO,点M是射线CO上的一个动点,∠AOC=60°,则当△ABM为直角三角形时,AM的长为4或4或4.【考点】KQ:勾股定理;KH:等腰三角形的性质.【分析】分三种情况讨论:①当M在AB下方且∠AMB=90°时,②当M在AB上方且∠AMB=90°时,③当∠ABM=90°时,分别根据含30°直角三角形的性质、直角三角形斜边的中线的性质或勾股定理,进行计算求解即可.【解答】解:如图1,当∠AMB=90°时,∵O是AB的中点,AB=8,∴OM=OB=4,又∵∠AOC=∠BOM=60°,∴△BOM是等边三角形,∴BM=BO=4,∴Rt△ABM中,AM==4;如图2,当∠AMB=90°时,∵O是AB的中点,AB=8,∴OM=OA=4,又∵∠AOC=60°,∴△AOM是等边三角形,∴AM=AO=4;如图3,当∠ABM=90°时,∵∠BOM=∠AOC=60°,∴∠BMO=30°,∴MO=2BO=2×4=8,∴Rt△BOM中,BM==4,∴Rt△ABM中,AM==4,综上所述,当△ABM为直角三角形时,AM的长为4或4或4.故答案为:4或4或4.10.如图,四条直线l1:y1=x,l2:y2=x,l3:y3=﹣x,l4:y4=﹣x,OA1=1,过点A1作A1A2⊥x轴,交l1于点A2,再过点A1作A1A2⊥l1交l2于点A2,再过点A2作A2A3⊥l3交y轴于点A3…,则点A2017坐标为[()2015,()2016] .【考点】D2:规律型:点的坐标.【分析】先利用各直线的解析式得到x轴、l1、l2、y轴、l3、l4依次相交为30的角,各点的位置是每12个一循环,由于2017=168×12+1,则可判定点A2016在x轴的正半轴上,再规律得到OA2016=()2015,然后表示出点A2017坐标.【解答】解:∵y1=x,l2:y2=x,l3:y3=﹣x,l4:y4=﹣x,∴x轴、l1、l2、y轴、l3、l4依次相交为30的角,∵2017=168×12+1,∴点A2016在x轴的正半轴上,∵OA2==,OA3=()2,OA4=()3,…OA2016=()2015,∴点A2017坐标为[()2015,()2016].故答案为[()2015,()2016].二、选择题(每题3分,满分30分)11.下列运算中,计算正确的是()A.(a2b)3=a5b3B.(3a2)3=27a6C.x6÷x2=x3D.(a+b)2=a2+b2【考点】4I:整式的混合运算.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a6b3,不符合题意;B、原式=27a6,符合题意;C、原式=x4,不符合题意;D、原式=a2+2ab+b2,不符合题意,故选B12.下列图形中,既是轴对称图形又是中心对称图形的是()A. B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】利用中心对称图形与轴对称图形性质判断即可.【解答】解:既是轴对称图形又是中心对称图形的是,故选A13.如图,是由若干个相同的小立方体搭成的几何体体俯视图和左视图.则小立方体的个数可能是()A.5或6 B.5或7 C.4或5或6 D.5或6或7【考点】U3:由三视图判断几何体.【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由左视图可得第二层最多和最少小立方体的个数,相加即可.【解答】解:由俯视图易得最底层有4个小立方体,由左视图易得第二层最多有3个小立方体和最少有1个小立方体,那么小立方体的个数可能是5个或6个或7个.故选D.14.某市4月份日平均气温统计图情况如图所示,则在日平均气温这组数据中,众数和中位数分别是()A.13,13 B.13,13.5 C.13,14 D.16,13【考点】W5:众数;W4:中位数.【分析】根据条形统计图得到各数据的权,然后根据众数和中位数的定义求解.【解答】解:这组数据中,13出现了10次,出现次数最多,所以众数为13,第15个数和第16个数都是14,所以中位数是14.故选C.15.如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是()A.B.C. D.【考点】E6:函数的图象.【分析】根据特殊点的实际意义即可求出答案.【解答】解:先注甲时水未达连接地方是,乙水池中的水面高度没变化;当甲池中水到达连接的地方,乙水池中水面上升比较快;当两水池水面不持平时,乙水池的水面持续增长较慢,最后两池水面持平后继续快速上升,故选:D.16.反比例函数y=图象上三个点的坐标为(x1,y1)、(x2,y2)、(x3,y3),若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y1<y3<y2【考点】G6:反比例函数图象上点的坐标特征.【分析】先根据反比例函数的解析式判断出函数图象所在的象限及其增减性,再根据x1<x2<0<x3即可得出结论.【解答】解:∵反比例函数y=中,k=3>0,∴此函数图象的两个分支分别位于第一三象限,且在每一象限内y随x的增大而减小.∵x1<x2<0<x3,∴(x1,y1)、(x2,y2)在第三象限,(x3,y3)在第一象限,∴y2<y1<0<y3.故选B.17.已知关于x的分式方程=的解是非负数,那么a的取值范围是()A.a>1 B.a≥1 C.a≥1且a≠9 D.a≤1【考点】B2:分式方程的解;C6:解一元一次不等式.【分析】根据分式方程的解法即可求出a的取值范围;【解答】解:3(3x﹣a)=x﹣3,9x﹣3a=x﹣3,8x=3a﹣3∴x=,由于该分式方程有解,令x=代入x﹣3≠0,∴a≠9,∵该方程的解是非负数解,∴≥0,∴a≥1,∴a的范围为:a≥1且a≠9,故选(C)18.如图,在矩形ABCD中,AD=4,∠DAC=30°,点P、E分别在AC、AD上,则PE+PD的最小值是()A.2 B.2 C.4 D.【考点】PA:轴对称﹣最短路线问题;LB:矩形的性质.【分析】作D关于直线AC的对称点D′,过D′作D′E⊥AD于E,则D′E=PE+PD的最小值,解直角三角形得到即可得到结论.【解答】解:作D关于直线AC的对称点D′,过D′作D′E⊥AD于E,则D′E=PE+PD的最小值,∵四边形ABCD是矩形,∴∠ADC=90°,∵AD=4,∠DAC=30°,∴CD=,∵DD′⊥AC,∴∠CDD′=30°,∴∠ADD′=60°,∴DD′=4,∴D′E=2,故选B.19.“双11”促销活动中,小芳的妈妈计划用1000元在唯品会购买价格分别为80元和120元的两种商品,则可供小芳妈妈选择的购买方案有()A.4种 B.5种 C.6种 D.7种【考点】95:二元一次方程的应用.【分析】设购买80元的商品数量为x,购买120元的商品数量为y,根据总费用是1000元列出方程,求得正整数x、y的值即可.【解答】解:设购买80元的商品数量为x,购买120元的商品数量为y,依题意得:80x+120y=1000,整理,得y=.因为x 是正整数,所以当x=2时,y=7.当x=5时,y=5.当x=8时,y=3.当x=11时,y=1.即有4种购买方案.故选:A .20.如图,在边长为4的正方形ABCD 中,E 、F 是AD 边上的两个动点,且AE=FD ,连接BE 、CF 、BD ,CF 与BD 交于点G ,连接AG 交BE 于点H ,连接DH ,下列结论正确的个数是( )①△ABG ∽△FDG ②HD 平分∠EHG ③AG ⊥BE ④S △HDG :S △HBG =tan ∠DAG ⑤线段DH 的最小值是2﹣2.A .2B .3C .4D .5【考点】S9:相似三角形的判定与性质;KD :全等三角形的判定与性质;LE :正方形的性质;T7:解直角三角形.【分析】首先证明△ABE ≌△DCF ,△ADG ≌△CDG (SAS ),△AGB ≌△CGB ,利用全等三角形的性质,等高模型、三边关系一一判断即可.【解答】解:∵四边形ABCD 是正方形,∴AB=CD ,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°,在△ABE 和△DCF 中,,∴△ABE ≌△DCF (SAS ),∴∠ABE=∠DCF ,在△ADG 和△CDG 中,, ∴△ADG ≌△CDG (SAS ),∴∠DAG=∠DCF ,∴∠ABE=∠DAG ,∵∠DAG +∠BAH=90°,∴∠BAE +∠BAH=90°,∴∠AHB=90°,∴AG ⊥BE ,故③正确,同法可证:△AGB ≌△CGB ,∵DF ∥CB ,∴△CBG ∽△FDG ,∴△ABG ∽△FDG ,故①正确,∵S △HDG :S △HBG =DG :BG=DF :BC=DF :CD=tan ∠FCD ,又∵∠DAG=∠FCD ,∴S △HDG :S △HBG =tan ∠FCD ,tan ∠DAG ,故④正确取AB 的中点O ,连接OD 、OH ,∵正方形的边长为4,∴AO=OH=×4=2,由勾股定理得,OD==2,由三角形的三边关系得,O 、D 、H 三点共线时,DH 最小,DH 最小=2﹣2.无法证明DH 平分∠EHG ,故②错误,故①③④⑤正确,故选C .三、解答题(满分60分)21.先化简,再求值:÷﹣,其中a=1+2cos60°.【考点】6D:分式的化简求值;T5:特殊角的三角函数值.【分析】根据分式的除法和减法可以化简题目中的式子,然后将a的值代入即可解答本题.【解答】解:÷﹣===,当a=1+2cos60°=1+2×=1+1=2时,原式=.22.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2)请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1的坐标.(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,并写出A2的坐标.(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,并写出A3的坐标.【考点】R8:作图﹣旋转变换;P7:作图﹣轴对称变换.【分析】根据题意画出相应的三角形,确定出所求点坐标即可.【解答】解:(1)画出△ABC关于y轴对称的△A1B1C1,如图所示,此时A1的坐标为(﹣2,2);(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,如图所示,此时A2的坐标为(4,0);(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,如图所示,此时A3的坐标为(﹣4,0).23.如图,Rt△AOB的直角边OA在x轴上,OA=2,AB=1,将Rt△AOB绕点O逆时针旋转90°得到Rt△COD,抛物线y=﹣x2+bx+c经过B、D两点.(1)求二次函数的解析式;(2)连接BD,点P是抛物线上一点,直线OP把△BOD的周长分成相等的两部分,求点P的坐标.【考点】H8:待定系数法求二次函数解析式;H5:二次函数图象上点的坐标特征;R7:坐标与图形变化﹣旋转.【分析】(1)由旋转性质可得CD=AB=1、OA=OC=2,从而得出点B、D坐标,代入解析式即可得出答案;(2)由直线OP把△BOD的周长分成相等的两部分且OB=OD,知DQ=BQ,即点Q为BD的中点,从而得出点Q坐标,求得直线OP解析式,代入抛物线解析式可得点P坐标.【解答】解:(1)∵Rt△AOB绕点O逆时针旋转90°得到Rt△COD,∴CD=AB=1、OA=OC=2,则点B(2,1)、D(﹣1,2),代入解析式,得:,解得:,∴二次函数的解析式为y=﹣x2+x+;(2)如图,∵直线OP把△BOD的周长分成相等的两部分,且OB=OD,∴DQ=BQ,即点Q为BD的中点,∴点Q坐标为(,),设直线OP解析式为y=kx,将点Q坐标代入,得:k=,解得:k=3,∴直线OP的解析式为y=3x,代入y=﹣x2+x+,得:﹣x2+x+=3x,解得:x=1或x=﹣4(舍),当x=1时,y=3,∴点P坐标为(1,3).24.我市某中学为了了解孩子们对《中国诗词大会》,《挑战不可能》,《最强大脑》,《超级演说家》,《地理中国》五种电视节目的喜爱程度,随机在七、八、九年级抽取了部分学生进行调查(每人只能选择一种喜爱的电视节目),并将获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据两幅统计图中的信息回答下列问题:(1)本次调查中共抽取了200名学生.(2)补全条形统计图.(3)在扇形统计图中,喜爱《地理中国》节目的人数所在的扇形的圆心角是36度.(4)若该学校有2000人,请你估计该学校喜欢《最强大脑》节目的学生人数是多少人?.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据题意列式计算即可;(2)求得喜爱《挑战不可能》节目的人数,将条形统计图补充完整即可;(3)用360°×喜爱《地理中国》节目的人数占总人数的百分数即可得到结论;(4)直接利用样本估计总体的方法求解即可求得答案.【解答】解:(1)30÷15%=200名,答:本次调查中共抽取了200名学生;故答案为:200;(2)喜爱《挑战不可能》节目的人数=200﹣20﹣60﹣40﹣30=50名,补全条形统计图如图所示;(3)喜爱《地理中国》节目的人数所在的扇形的圆心角是360°×=36度;故答案为:36;(4)2000×=600名,答:该学校喜欢《最强大脑》节目的学生人数是600人.25.在甲、乙两城市之间有一服务区,一辆客车从甲地驶往乙地,一辆货车从乙地驶往甲地.两车同时出发,匀速行驶,客车、货车离服务区的距离y1(千米),y2(千米)与行驶的时间x (小时)的函数关系图象如图1所示.(1)甲、乙两地相距480千米.(2)求出发3小时后,货车离服务区的路程y2(千米)与行驶时间x(小时)之间的函数关系式.(3)在客车和货车出发的同时,有一辆邮政车从服务区匀速去甲地取货后返回乙地(取货的时间忽略不计),邮政车离服务区的距离y3(千米)与行驶时间x(小时)之间的函数关系图线如图2中的虚线所示,直接写出在行驶的过程中,经过多长时间邮政车与客车和货车的距离相等?【考点】FH:一次函数的应用.【分析】(1)根据图1,根据客车、货车离服务区的初始距离可得甲乙两地距离;(2)根据图象中的数据可以求得3小时后,货车离服务区的路程y2与行驶时间x之间的函数关系式;(3)分两种情况讨论,当邮政车去甲地的途中会有某个时间邮政车与客车和货车的距离相等;当邮政车从甲地返回乙地时,货车与客车相遇时,邮政车与客车和货车的距离相等.【解答】解:(1)360+120=480(千米)故答案为:480;(2)设3小时后,货车离服务区的路程y2与行驶时间x之间的函数关系式为y2=kx+b,由图象可得,货车的速度为:120÷3=40千米/时,则点B的横坐标为:3+360÷40=12,∴点P的坐标为(12,360),,得,即3小时后,货车离服务区的路程y2与行驶时间x之间的函数关系式为y2=40x﹣120;6=60千米/时,(3)v客=360÷v邮=360×2÷8=90千米/时,设当邮政车去甲地的途中时,经过t小时邮政车与客车和货车的距离相等,120+(90﹣40)t=360﹣(60+90)tt=1.2(小时);设当邮政车从甲地返回乙地时,经过t小时邮政车与客车和货车的距离相等,40t+60t=480解得t=4.8,综上所述,经过1.2或4.8小时邮政车与客车和货车的距离相等.26.已知:△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°.连接AD,BC,点H为BC中点,连接OH.(1)如图1所示,易证:OH=AD且OH⊥AD(不需证明)(2)将△COD绕点O旋转到图2,图3所示位置时,线段OH与AD又有怎样的关系,并选择一个图形证明你的结论.【考点】R2:旋转的性质;KD:全等三角形的判定与性质;KW:等腰直角三角形.【分析】(1)只要证明△AOD≌△BOC,即可解决问题;(2)①如图2中,结论:OH=AD,OH⊥AD.延长OH到E,使得HE=OH,连接BE,由△BEO ≌△ODA即可解决问题;②如图3中,结论不变.延长OH到E,使得HE=OH,连接BE,延长EO交AD于G.由△BEO ≌△ODA即可解决问题;【解答】(1)证明:如图1中,∵△OAB与△OCD为等腰直角三角形,∠AOB=∠COD=90°,∴OC=OD,OA=OB,∵在△AOD与△BOC中,,∴△AOD≌△BOC(SAS),∴∠ADO=∠BCO,∠OAD=∠OBC,∵点H为线段BC的中点,∴OH=HB,∴∠OBH=∠HOB=∠OAD,又因为∠OAD+∠ADO=90°,所以∠ADO+∠BOH=90°,所以OH⊥AD(2)解:①结论:OH=AD,OH⊥AD,如图2中,延长OH到E,使得HE=OH,连接BE,易证△BEO≌△ODA∴OE=AD∴OH=OE=AD由△BEO≌△ODA,知∠EOB=∠DAO∴∠DAO+∠AOH=∠EOB+∠AOH=90°,∴OH⊥AD.②如图3中,结论不变.延长OH到E,使得HE=OH,连接BE,延长EO交AD于G.易证△BEO≌△ODA∴OE=AD∴OH=OE=AD由△BEO≌△ODA,知∠EOB=∠DAO∴∠DAO+∠AOF=∠EOB+∠AOG=90°,∴∠AGO=90°∴OH⊥AD.27.为了推动“龙江经济带”建设,我省某蔬菜企业决定通过加大种植面积、增加种植种类,促进经济发展.2017年春,预计种植西红柿、马铃薯、青椒共100公顷(三种蔬菜的种植面积均为整数),青椒的种植面积是西红柿种植面积的2倍,经预算,种植西红柿的利润可达1万元/公顷,青椒1.5万元/公顷,马铃薯2万元/公顷,设种植西红柿x公顷,总利润为y万元.(1)求总利润y(万元)与种植西红柿的面积x(公顷)之间的关系式.(2)若预计总利润不低于180万元,西红柿的种植面积不低于8公顷,有多少种种植方案?(3)在(2)的前提下,该企业决定投资不超过获得最大利润的在冬季同时建造A、B两种类型的温室大棚,开辟新的经济增长点,经测算,投资A种类型的大棚5万元/个,B种类型的大棚8万元/个,请直接写出有哪几种建造方案?【考点】FH:一次函数的应用;CE:一元一次不等式组的应用.【分析】(1)根据总利润=三种蔬菜的利润之和,计算即可;(2)由题意,列出不等式组即可解决问题;(3)由题意,列出二元一次不等式,求出整数解即可;【解答】解:(1)由题意y=x+1.5×2x+2=﹣2x+200.(2)由题意﹣2x+200≥180,解得x≤10,∵x≥8,∴8≤x≤10.∵x为整数,∴x=8,9,10.∴有3种种植方案,方案一:种植西红柿8公顷、马铃薯76公顷、青椒16公顷.方案二:种植西红柿9公顷、马铃薯73公顷、青椒18公顷.方案三:种植西红柿10公顷、马铃薯70公顷、青椒20公顷.(3)∵y=﹣2x+200,﹣2<0,∴x=8时,利润最大,最大利润为184万元.设投资A种类型的大棚a个,B种类型的大棚b个,由题意5a+8b≤×184,∴5a+8b≤23,∴a=1,b=1或2,a=2,b=1,a=3,b=1,∴可以投资A种类型的大棚1个,B种类型的大棚1个,或投资A种类型的大棚1个,B种类型的大棚2个,或投资A种类型的大棚2个,B种类型的大棚1个,或投资A种类型的大棚3个,B种类型的大棚1个.28.如图,矩形AOCB的顶点A、C分别位于x轴和y轴的正半轴上,线段OA、OC的长度满足方程|x﹣15|+=0(OA>OC),直线y=kx+b分别与x轴、y轴交于M、N两点,将△BCN 沿直线BN折叠,点C恰好落在直线MN上的点D处,且tan∠CBD=(1)求点B的坐标;(2)求直线BN的解析式;(3)将直线BN以每秒1个单位长度的速度沿y轴向下平移,求直线BN扫过矩形AOCB的面积S关于运动的时间t(0<t≤13)的函数关系式.【考点】FI:一次函数综合题.【分析】(1)由非负数的性质可求得x、y的值,则可求得B点坐标;(2)过D作EF⊥OA于点E,交CB于点F,由条件可求得D点坐标,且可求得=,结合DE∥ON,利用平行线分线段成比例可求得OM和ON的长,则可求得N点坐标,利用待定系数法可求得直线BN的解析式;(3)设直线BN平移后交y轴于点N′,交AB于点B′,当点N′在x轴上方时,可知S即为▱BNN′B′的面积,当N′在y轴的负半轴上时,可用t表示出直线B′N′的解析式,设交x轴于点G,可用t表示出G点坐标,由S=S四边形BNN′B′﹣S△OGN′,可分别得到S与t的函数关系式.【解答】解:(1)∵|x﹣15|+=0,∴x=15,y=13,∴OA=BC=15,AB=OC=13,∴B(15,13);(2)如图1,过D作EF⊥OA于点E,交CB于点F,由折叠的性质可知BD=BC=15,∠BDN=∠BCN=90°,∵tan∠CBD=,∴=,且BF2+DF2=BD2=152,解得BF=12,DF=9,∴CF=OE=15﹣12=3,DE=EF﹣DF=13﹣9=4,∵∠CND+∠CBD=360°﹣90°﹣90°=180°,且∠ONM+∠CND=180°,∴∠ONM=∠CBD,∴=,∵DE∥ON,∴==,且OE=3,∴=,解得OM=6,∴ON=8,即N(0,8),把N、B的坐标代入y=kx+b可得,解得,∴直线BN的解析式为y=x+8;(3)设直线BN平移后交y轴于点N′,交AB于点B′,当点N′在x轴上方,即0<t≤8时,如图2,由题意可知四边形BNN′B′为平行四边形,且NN′=t,∴S=NN′•OA=15t;当点N′在y轴负半轴上,即8<t≤13时,设直线B′N′交x轴于点G,如图3,∵NN′=t,∴可设直线B′N′解析式为y=x+8﹣t,令y=0,可得x=3t﹣24,∴OG=24,∵ON=8,NN′=t,∴ON′=t﹣8,∴S=S四边形BNN′B′﹣S△OGN′=15t﹣(t﹣8)(3t﹣24)=﹣t2+39t﹣96;综上可知S与t的函数关系式为S=.。
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是()A.32OBCD=B.32αβ=C.1232SS=D.1232CC=2.反比例函数y=ax(a>0,a为常数)和y=2x在第一象限内的图象如图所示,点M在y=ax的图象上,MC⊥x轴于点C,交y=2x的图象于点A;MD⊥y轴于点D,交y=2x的图象于点B,当点M在y=ax的图象上运动时,以下结论:①S△ODB=S△OCA;②四边形OAMB的面积不变;③当点A是MC的中点时,则点B是MD的中点.其中正确结论的个数是()A.0 B.1 C.2 D.33.已知一次函数y=﹣2x+3,当0≤x≤5时,函数y的最大值是()A.0 B.3 C.﹣3 D.﹣74.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为弧BD的中点,若∠DAB=50°,则∠ABC的大小是()A.55°B.60°C.65°D.70°A.30°B.35°C.40°D.45°6.正方形ABCD在直角坐标系中的位置如图所示,将正方形ABCD绕点A按顺时针方向旋转180°后,C 点的坐标是( )A.(2,0) B.(3,0) C.(2,-1) D.(2,1)7.若关于x的不等式组255332xxxx a+⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a的取值范围( )A.1162a-<-B.116a2-<<-C.1162a-<-D.1162a--8.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是()A.110 B.158 C.168 D.1789.在半径等于5 cm的圆内有长为53cm的弦,则此弦所对的圆周角为A.60°B.120°C.60°或120°D.30°或120°10.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为()A.5.6×10﹣1B.5.6×10﹣2C.5.6×10﹣3D.0.56×10﹣1二、填空题(本题包括8个小题)11.不等式组5243xx+>⎧⎨-≥⎩的最小整数解是_____.12.如图,在平行四边形ABCD中,过对角线AC与BD的交点O作AC的垂线交于点E,连接CE,若AB=4,BC=6,则△CDE的周长是______.13.甲乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是_____(填“甲”或“乙”). 14.如图,直线4y x =+与双曲线ky x=(k≠0)相交于A (﹣1,a )、B 两点,在y 轴上找一点P ,当PA+PB 的值最小时,点P 的坐标为_________.15.如果一个正多边形每一个内角都等于144°,那么这个正多边形的边数是____.16.如图,⊙M 的半径为2,圆心M (3,4),点P 是⊙M 上的任意一点,PA ⊥PB ,且PA 、PB 与x 轴分别交于A 、B 两点,若点A 、点B 关于原点O 对称,则AB 的最小值为_____.17.中国古代的数学专著《九章算术》有方程组问题“五只雀,六只燕,共重1斤(等于16两),雀重燕轻.互换其中一只,恰好一样重.”设每只雀、燕的重量各为x 两,y 两,则根据题意,可得方程组为___. 18.甲,乙两家汽车销售公司根据近几年的销售量分别制作了如图所示的统计图,从2014~2018年,这两家公司中销售量增长较快的是_____公司(填“甲”或“乙”).三、解答题(本题包括8个小题)19.(6分)某小学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:补全条形统计图;求扇形统计图扇形D的圆心角的度数;若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?20.(6分)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是(填方案一,方案二,或方案三),则B点坐标是,求出你所选方案中的抛物线的表达式;因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.21.(6分)某市扶贫办在精准扶贫工作中,组织30辆汽车装运花椒、核桃、甘蓝向外地销售.按计划30辆车都要装运,每辆汽车只能装运同一种产品,且必须装满,根据下表提供的信息,解答以下问题:产品名称核桃花椒甘蓝每辆汽车运载量(吨)10 6 4每吨土特产利润(万元)0.7 0.8 0.5若装运核桃的汽车为x辆,装运甘蓝的车辆数是装运核桃车辆数的2倍多1,假设30辆车装运的三种产品的总利润为y万元.求y与x之间的函数关系式;若装花椒的汽车不超过8辆,求总利润最大时,装运各种产品的车辆数及总利润最大值.22.(8分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?23.(8分)如图,已知正方形ABCD,E是AB延长线上一点,F是DC延长线上一点,且满足BF=EF,将线段EF绕点F顺时针旋转90°得FG,过点B作FG的平行线,交DA的延长线于点N,连接NG.求证:BE=2CF;试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明.24.(10分)如图,小明今年国庆节到青城山游玩,乘坐缆车,当登山缆车的吊箱经过点A到达点B时,它经过了200m,缆车行驶的路线与水平夹角∠α=16°,当缆车继续由点B到达点D时,它又走过了200m,缆车由点B到点D的行驶路线与水平面夹角∠β=42°,求缆车从点A到点D垂直上升的距离.(结果保留整数)(参考数据:sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)25.(10分)如图,在Rt△ABC中,CD,CE分别是斜边AB上的高,中线,BC=a,AC=b.若a=3,b=4,求DE的长;直接写出:CD=(用含a,b的代数式表示);若b=3,tan∠DCE=13,求a的值.26.(12分)某地区教育部门为了解初中数学课堂中学生参与情况,并按“主动质疑、独立思考、专注听讲、讲解题目”四个项目进行评价.检测小组随机抽查部分学校若干名学生,并将抽查学生的课堂参与情况绘制成如图所示的扇形统计图和条形统计图(均不完整).请根据统计图中的信息解答下列问题:本次抽查的样本容量是;在扇形统计图中,“主动质疑”对应的圆心角为度;将条形统计图补充完整;如果该地区初中学生共有60000名,那么在课堂中能“独立思考”的学生约有多少人?参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.D 【解析】A 选项,在△OAB ∽△OCD 中,OB 和CD 不是对应边,因此它们的比值不一定等于相似比,所以A 选项不一定成立;B 选项,在△OAB ∽△OCD 中,∠A 和∠C 是对应角,因此αβ=,所以B 选项不成立; C 选项,因为相似三角形的面积比等于相似比的平方,所以C 选项不成立;D 选项,因为相似三角形的周长比等于相似比,所以D 选项一定成立. 故选D. 2.D 【解析】 【分析】根据反比例函数的性质和比例系数的几何意义逐项分析可得出解. 【详解】①由于A 、B 在同一反比例函数y=2x图象上,由反比例系数的几何意义可得S △ODB =S △OCA =1,正确; ②由于矩形OCMD 、△ODB 、△OCA 为定值,则四边形MAOB 的面积不会发生变化,正确; ③连接OM ,点A 是MC 的中点,则S △ODM =S △OCM =2a,因S △ODB =S △OCA =1,所以△OBD 和△OBM 面积相等,点B 一定是MD 的中点.正确; 故答案选D .考点:反比例系数的几何意义. 3.B【解析】【分析】由于一次函数y=-2x+3中k=-2<0由此可以确定y 随x 的变化而变化的情况,即确定函数的增减性,然后利用解析式即可求出自变量在0≤x≤5范围内函数值的最大值.∴y随x的增大而减小,∴在0≤x≤5范围内,x=0时,函数值最大﹣2×0+3=3,故选B.【点睛】本题考查了一次函数y=kx+b的图象的性质:①k>0,y随x的增大而增大;②k<0,y随x的增大而减小.4.C【解析】连接OC,因为点C为弧BD的中点,所以∠BOC=∠DAB=50°,因为OC=OB,所以∠ABC=∠OCB=65°,故选C.5.B【解析】分析:根据平行线的性质和三角形的外角性质解答即可.详解:如图,∵AB∥CD,∠1=45°,∴∠4=∠1=45°,∵∠3=80°,∴∠2=∠3-∠4=80°-45°=35°,故选B.点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答.6.B【解析】试题分析:正方形ABCD绕点A顺时针方向旋转180°后,C点的对应点与C一定关于A对称,A是对称点连线的中点,据此即可求解.试题解析:AC=2,则正方形ABCD 绕点A 顺时针方向旋转180°后C 的对应点设是C′,则AC′=AC=2, 则OC′=3,故C′的坐标是(3,0). 故选B .考点:坐标与图形变化-旋转. 7.A 【解析】 【分析】分别解两个不等式得到得x <20和x >3-2a ,由于不等式组只有5个整数解,则不等式组的解集为3-2a <x <20,且整数解为15、16、17、18、19,得到14≤3-2a <15,然后再解关于a 的不等式组即可. 【详解】255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩①② 解①得x <20 解②得x >3-2a ,∵不等式组只有5个整数解, ∴不等式组的解集为3-2a <x <20, ∴14≤3-2a <15,1162a ∴-<-故选:A 【点睛】本题主要考查对不等式的性质,解一元一次不等式,一元一次不等式组的整数解等知识点的理解和掌握,能求出不等式14≤3-2a <15是解此题的关键. 8.B 【解析】根据排列规律,10下面的数是12,10右面的数是14, ∵8=2×4−0,22=4×6−2,44=6×8−4, ∴m=12×14−10=158. 故选C. 9.C 【解析】根据题意画出相应的图形,由OD⊥AB,利用垂径定理得到D为AB的中点,由AB的长求出AD与BD的长,且得出OD为角平分线,在Rt△AOD中,利用锐角三角函数定义及特殊角的三角函数值求出∠AOD 的度数,进而确定出∠AOB的度数,利用同弧所对的圆心角等于所对圆周角的2倍,即可求出弦AB所对圆周角的度数.【详解】如图所示,∵OD⊥AB,∴D为AB的中点,即532在Rt△AOD中,OA=5,53 2∴sin∠AOD=53325,又∵∠AOD为锐角,∴∠AOD=60°,∴∠AOB=120°,∴∠ACB=12∠AOB=60°,又∵圆内接四边形AEBC对角互补,∴∠AEB=120°,则此弦所对的圆周角为60°或120°.故选C.【点睛】此题考查了垂径定理,圆周角定理,特殊角的三角函数值,以及锐角三角函数定义,熟练掌握垂径定理是解本题的关键.10.B【解析】【详解】0.056用科学记数法表示为:0.056=-25.610,故选B.二、填空题(本题包括8个小题)【解析】分析:先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.详解:5243xx+⎧⎨-≥⎩>①②.∵解不等式①得:x>-3,解不等式②得:x≤1,∴不等式组的解集为-3<x≤1,∴不等式组的最小整数解是-1,故答案为:-1.点睛:本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.12.1【解析】【分析】由平行四边形ABCD的对角线相交于点O,OE⊥AC,根据线段垂直平分线的性质,可得AE=CE,又由平行四边形ABCD的AB+BC=AD+CD=1,继而可得结论.【详解】∵四边形ABCD是平行四边形,∴OA=OC,AB=CD,AD=BC.∵AB=4,BC=6,∴AD+CD=1.∵OE⊥AC,∴AE=CE,∴△CDE的周长为:CD+CE+DE=CD+CE+AE=AD+CD=1.故答案为1.【点睛】本题考查了平行四边形的性质,线段的垂直平分线的性质定理等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.13.甲.【解析】乙所得环数的平均数为:0159105++++=5,S2=1n[21x x(-)+22x x(-)+23x x(-)+…+2nx x(-)]=15[205(-)+215(-)+255(-)+295(-)+2105(-)]=16.4,甲的方差<乙的方差,所以甲较稳定. 故答案为甲.点睛:要比较成绩稳定即比方差大小,方差越大,越不稳定;方差越小,越稳定.14.(0,52).【解析】试题分析:把点A坐标代入y=x+4得a=3,即A(﹣1,3),把点A坐标代入双曲线的解析式得3=﹣k,即k=﹣3,联立两函数解析式得:,解得:,,即点B坐标为:(﹣3,1),作出点A关于y轴的对称点C,连接BC,与y轴的交点即为点P,使得PA+PB的值最小,则点C坐标为:(1,3),设直线BC的解析式为:y=ax+b,把B、C的坐标代入得:,解得:,所以函数解析式为:y=x+52,则与y轴的交点为:(0,52).考点:反比例函数与一次函数的交点问题;轴对称-最短路线问题.15.1【解析】【分析】设正多边形的边数为n,然后根据多边形的内角和公式列方程求解即可.【详解】解:设正多边形的边数为n,由题意得,()2180nn-︒=144°,解得n=1.故答案为1.【点睛】本题考查了多边形的内角与外角,熟记公式并准确列出方程是解题的关键.16.6【解析】【分析】点P在以O为圆心OA为半径的圆上,P是两个圆的交点,当⊙O与⊙M外切时,AB最小,根据条件求出AO即可求解;【详解】解:点P在以O为圆心OA为半径的圆上,∴P是两个圆的交点,当⊙O 与⊙M 外切时,AB 最小,∵⊙M 的半径为2,圆心M (3,4),∴PM =5,∴OA =3,∴AB =6,故答案为6;【点睛】本题考查圆与圆的位置关系;能够将问题转化为两圆外切时AB 最小是解题的关键.17.561645x y x y y x+=⎧⎨+=+⎩ 【解析】设每只雀、燕的重量各为x 两,y 两,由题意得:5616{45x y x y y x+++== 故答案是:5616{45x y x y y x +++==或5616{34x y x y+== . 18.甲【解析】【分析】根据甲,乙两公司折线统计图中2014年、2018年的销售量,计算即可得到增长量;根据两个统计图中甲,乙两公司销售增长量即可确定答案.【详解】解:从折线统计图中可以看出:甲公司2014年的销售量约为100辆,2018年约为600辆,则从2014~2018年甲公司增长了500辆; 乙公司2014年的销售量为100辆,2018年的销售量为400辆,则从2014~2018年,乙公司中销售量增长了300辆.所以这两家公司中销售量增长较快的是甲公司,故答案为:甲.【点睛】本题考查了折线统计图的相关知识,由统计图得到关键信息是解题的关键;三、解答题(本题包括8个小题)19.(1)补图见解析;(2)27°;(3)1800名【解析】【分析】(1)根据A 类的人数是10,所占的百分比是25%即可求得总人数,然后根据百分比的意义求得B 类的人数;(2)用360°乘以对应的比例即可求解;(3)用总人数乘以对应的百分比即可求解.【详解】(1)抽取的总人数是:10÷25%=40(人), 在B 类的人数是:40×30%=12(人).;(2)扇形统计图扇形D 的圆心角的度数是:360×340=27°; (3)能在1.5小时内完成家庭作业的人数是:2000×(25%+30%+35%)=1800(人).考点:条形统计图、扇形统计图.20. (1) 方案1; B (5,0); 1(5)(5)5y x x =-+-;(2) 3.2m.【解析】试题分析:(1)根据抛物线在坐标系的位置,可用待定系数法求抛物线的解析式.(2)把x=3代入抛物线的解析式,即可得到结论.试题解析:解:方案1:(1)点B 的坐标为(5,0),设抛物线的解析式为:(5)(5)y a x x =+-.由题意可以得到抛物线的顶点为(0,5),代入解析式可得:15a =-,∴抛物线的解析式为:1(5)(5)5y x x =-+-; (2)由题意:把3x =代入1(5)(5)5y x x =-+-,解得:165y ==3.2,∴水面上涨的高度为3.2m . 方案2:(1)点B 的坐标为(10,0).设抛物线的解析式为:(10)y ax x =-.由题意可以得到抛物线的顶点为(5,5),代入解析式可得:15a =-,∴抛物线的解析式为:1(10)5y x x =--; (2)由题意:把2x =代入1(10)5y x x =--解得:165y ==3.2,∴水面上涨的高度为3.2m . 方案3:(1)点B 的坐标为(5, 5-),由题意可以得到抛物线的顶点为(0,0).设抛物线的解析式为:2y ax =,把点B 的坐标(5, 5-),代入解析式可得:15a =-, ∴抛物线的解析式为:21y x 5=-;(2)由题意:把3x =代入21y x 5=-解得:95y =-= 1.8-,∴水面上涨的高度为5 1.8-=3.2m . 21. (1)y=﹣3.4x+141.1;(1)当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元.【解析】【分析】(1)根据题意可以得装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30﹣x ﹣(1x+1)=(12﹣3x )辆,从而可以得到y 与x 的函数关系式;(1)根据装花椒的汽车不超过8辆,可以求得x 的取值范围,从而可以得到y 的最大值,从而可以得到总利润最大时,装运各种产品的车辆数.【详解】(1)若装运核桃的汽车为x 辆,则装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30﹣x ﹣(1x+1)=(12﹣3x )辆,根据题意得:y=10×0.7x+4×0.5(1x+1)+6×0.8(12﹣3x )=﹣3.4x+141.1.(1)根据题意得:()29382130x x x -≤⎧⎨++≤⎩, 解得:7≤x≤293, ∵x 为整数,∴7≤x≤2.∵10.6>0,∴y 随x 增大而减小,∴当x=7时,y 取最大值,最大值=﹣3.4×7+141.1=117.4,此时:1x+1=12,12﹣3x=1.答:当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元.【点睛】本题考查了一次函数的应用,解题的关键是熟练的掌握一次函数的应用.22.(1)y=﹣20x+1600;(2)当每盒售价定为60元时,每天销售的利润P (元)最大,最大利润是8000元;(3)超市每天至少销售粽子440盒.【解析】试题分析:(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y (盒)与每盒售价x (元)之间的函数关系式;(2)根据利润=1盒粽子所获得的利润×销售量列式整理,再根据二次函数的最值问题解答;(3)先由(2)中所求得的P 与x 的函数关系式,根据这种粽子的每盒售价不得高于58元,且每天销售粽子的利润不低于6000元,求出x 的取值范围,再根据(1)中所求得的销售量y (盒)与每盒售价x (元)之间的函数关系式即可求解.试题解析:(1)由题意得,y =70020(45)x --=201600x -+;(2)P=(40)(201600)x x --+=220240064000x x -+-=220(60)8000x --+,∵x≥45,a=﹣20<0,∴当x=60时,P 最大值=8000元,即当每盒售价定为60元时,每天销售的利润P (元)最大,最大利润是8000元;(3)由题意,得220(60)8000x --+=6000,解得150x =,270x =,∵抛物线P=220(60)8000x --+的开口向下,∴当50≤x≤70时,每天销售粽子的利润不低于6000元的利润,又∵x≤58,∴50≤x≤58,∵在201600y x =-+中,20k =-<0,∴y 随x 的增大而减小,∴当x=58时,y 最小值=﹣20×58+1600=440,即超市每天至少销售粽子440盒.考点:二次函数的应用.23.(1)见解析;(2)四边形BFGN 是菱形,理由见解析.【解析】【分析】(1)过F 作FH ⊥BE 于点H ,可证明四边形BCFH 为矩形,可得到BH =CF ,且H 为BE 中点,可得BE =2CF ;(2)由条件可证明△ABN ≌△HFE ,可得BN =EF ,可得到BN =GF ,且BN ∥FG ,可证得四边形BFGN 为菱形.【详解】(1)证明:过F 作FH ⊥BE 于H 点,在四边形BHFC 中,∠BHF =∠CBH =∠BCF =90°,所以四边形BHFC 为矩形,∴CF =BH ,∵BF =EF ,FH ⊥BE ,∴H 为BE 中点,∴BE =2BH ,∴BE =2CF ;(2)四边形BFGN 是菱形.证明:∵将线段EF 绕点F 顺时针旋转90°得FG ,∴EF =GF ,∠GFE =90°,∴∠EFH +∠BFH +∠GFB =90°∵BN ∥FG ,∴∠NBF +∠GFB =180°,∴∠NBA +∠ABC +∠CBF +∠GFB =180°,∵∠ABC =90°,∴∠NBA +∠CBF +∠GFB =180°−90°=90°,由BHFC 是矩形可得BC ∥HF ,∴∠BFH =∠CBF ,∴∠EFH =90°−∠GFB−∠BFH =90°−∠GFB−∠CBF =∠NBA ,由BHFC 是矩形可得HF =BC ,∵BC =AB ,∴HF =AB ,在△ABN 和△HFE 中,NAB EHF 90AB HF NBA EFH ∠∠︒⎧⎪⎨⎪∠∠⎩====,∴△ABN ≌△HFE ,∴NB =EF ,∵EF =GF ,∴NB =GF ,又∵NB ∥GF ,∴NBFG 是平行四边形,∵EF =BF ,∴NB =BF ,∴平行四边NBFG 是菱形.点睛:本题主要考查正方形的性质及全等三角形的判定和性质,矩形的判定与性质,菱形的判定等,作出辅助线是解决(1)的关键.在(2)中证得△ABN ≌△HFE 是解题的关键.24.缆车垂直上升了186 m .【解析】【分析】在Rt ABC △中,sin 200sin1654BC AB α=⋅=⨯︒≈米,在Rt BDF 中,sin 200sin42132DF BD β=⋅=⨯︒≈,即可求出缆车从点A 到点D 垂直上升的距离.【详解】 解:在Rt ABC △中,斜边AB=200米,∠α=16°,sin 200sin1654BC AB α=⋅=⨯︒≈(m ), 在Rt BDF 中,斜边BD=200米,∠β=42°,sin 200sin42132DF BD β=⋅=⨯︒≈,因此缆车垂直上升的距离应该是BC+DF=186(米).答:缆车垂直上升了186米.【点睛】本题考查了解直角三角形的应用-坡度坡角问题,锐角三角函数的定义,结合图形理解题意是解决问题的关键.25.(1)710;(2)22ab a b +;(3)101-. 【解析】【分析】(1)求出BE ,BD 即可解决问题.(2)利用勾股定理,面积法求高CD 即可.(3)根据CD =3DE ,构建方程即可解决问题.【详解】解:(1)在Rt △ABC 中,∵∠ACB =91°,a =3,b =4,∴2235,cos 5BC AB a b B AC ∴=+===. ∵CD ,CE 是斜边AB 上的高,中线,∴∠BDC =91°,15BE AB 22==. ∴在Rt △BCD 中, 39cos 355BD BC B =⋅=⨯= 5972510DE BE BD ∴=-=-=(2)在Rt △ABC 中,∵∠ACB =91°,BC =a ,AC =b , 2222AB BC AC a b ∴=+=+ABC 11S AB CD AC BC 22=⋅=⋅ 2222AC BC ab a b CD AB a b⋅+∴===+故答案为:22ab a b +. (3)在Rt △BCD 中,22222cos BD BC B a a b a b =⋅=⋅=++,∴222222222122DE BE BD a b a b a b=-=+-=++, 又1tan 3DE DCE CD ∠==, ∴CD =3DE ,即22222232a b a b =⨯++.∵b =3,∴2a =9﹣a 2,即a 2+2a ﹣9=1.由求根公式得110a =-±(负值舍去),即所求a 的值是101-.【点睛】本题考查解直角三角形的应用,直角三角形斜边中线的性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.26. (1)560;(2)54;(3)补图见解析;(4)18000人【解析】【详解】(1)本次调查的样本容量为224÷40%=560(人);(2)“主动质疑”所在的扇形的圆心角的度数是:360∘×84560=54º;(3)“讲解题目”的人数是:560−84−168−224=84(人).(4)60000×168560=18000(人),答:在课堂中能“独立思考”的学生约有18000人.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.一元二次方程x2-2x=0的解是()A.x1=0,x2=2 B.x1=1,x2=2 C.x1=0,x2=-2 D.x1=1,x2=-22.某工程队开挖一条480米的隧道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x米,那么求x时所列方程正确的是()A.480480420x x-=-B.480480204x x-=+C.480480420x x-=+D.480480204x x-=-3.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是()A.一次性购买数量不超过10本时,销售价格为20元/本B.a=520C.一次性购买10本以上时,超过10本的那部分书的价格打八折D.一次性购买20本比分两次购买且每次购买10本少花80元4.如图所示,在方格纸上建立的平面直角坐标系中,将△ABC绕点O按顺时针方向旋转90°,得到△A′B′O,则点A′的坐标为()A.(3 ,1)B.(3 ,2)C.(2 ,3)D.(1 ,3)5.如图,矩形ABCD 的边AB=1,BE 平分∠ABC,交AD 于点E,若点E 是AD 的中点,以点B 为圆心,BE 长为半径画弧,交BC 于点F,则图中阴影部分的面积是()A .2-4π B .324π- C .2-8π D .324π- 6.如图,在平行线l 1、l 2之间放置一块直角三角板,三角板的锐角顶点A ,B 分别在直线l 1、l 2上,若∠l=65°,则∠2的度数是( )A .25°B .35°C .45°D .65°7.A 种饮料比B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是( ) A .2(x -1)+3x=13 B .2(x+1)+3x=13 C .2x+3(x+1)=13D .2x+3(x -1)=138.如右图,⊿ABC 内接于⊙O ,若∠OAB=28°则∠C 的大小为( )A .62°B .56°C .60°D .28°9.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h 与时间t 之间的关系的图象是( )A .B .C .D .10.某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是( )A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10 %二、填空题(本题包括8个小题)11.如图,把△ABC绕点C顺时针旋转得到△A'B'C',此时A′B′⊥AC于D,已知∠A=50°,则∠B′CB的度数是_____°.12.某社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m1)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是_____m1.13.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是.14.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,某班的学生成绩统计如下:成绩(分)60 70 80 90 100人数 4 8 12 11 5则该办学生成绩的众数和中位数分别是()A .70分,80分B .80分,80分C .90分,80分D .80分,90分15.如果一个正多边形每一个内角都等于144°,那么这个正多边形的边数是____.16.在△ABC 中,AB=13cm ,AC=10cm ,BC 边上的高为11cm ,则△ABC 的面积为______cm 1. 17.已知a <0,那么|2a ﹣2a|可化简为_____.18.已知同一个反比例函数图象上的两点()111P x ,y 、()222P x ,y ,若21x x 2=+,且21111y y 2=+,则这个反比例函数的解析式为______. 三、解答题(本题包括8个小题)19.(6分)如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A (2,2),B (4,0),C (4,﹣4).请在图中,画出△ABC 向左平移6个单位长度后得到的△A 1B 1C 1; 以点O 为位似中心,将△ABC 缩小为原来的12,得到△A 2B 2C 2,请在图中y 轴右侧,画出△A 2B 2C 2,并求出∠A 2C 2B 2的正弦值.20.(6分)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,每件商品每降价1元,商场平均每天可多售出2件.若某天该商品每件降价3元,当天可获利多少元?设每件商品降价x 元,则商场日销售量增加____件,每件商品,盈利______元(用含x 的代数式表示);在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?21.(6分)已知关于x 的一元二次方程 2(1)(4)30m x m x -+--=(m 为实数且1m ≠).求证:此方程总有两个实数根;如果此方程的两个实数根都是整数,求正整数...m 的值.22.(8分)俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y 本,销售单价为x 元.请直接写出y 与x 之间的函数关系式和自变量x 的取值范围;当每本足球纪念册销售单价是多少元时,商店每天获利2400元?将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w 元最大?最大利润是多少元?23.(8分)如图,直线y =2x +6与反比例函数y =kx(k >0)的图像交于点A(1,m),与x 轴交于点B ,平行于x 轴的直线y =n(0<n <6)交反比例函数的图像于点M ,交AB 于点N ,连接BM.求m 的值和反比例函数的表达式;直线y =n 沿y 轴方向平移,当n 为何值时,△BMN 的面积最大?24.(10分)已知P 是⊙O 外一点,PO 交⊙O 于点C ,OC=CP=2,弦AB ⊥OC ,∠AOC 的度数为60°,连接PB .求BC 的长;求证:PB 是⊙O 的切线.25.(10分)如图,已知二次函数212y x bx c =-++的图象经过()2,0A ,()0,6B -两点. 求这个二次函数的解析式;设该二次函数的对称轴与x 轴交于点C ,连接BA ,BC ,求ABC ∆的面积.26.(12分)列方程解应用题:某市今年进行水网升级,1月1日起调整居民用水价格,每立方米水费上涨13,小丽家去年12月的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m 3,求该市今年居民用水的价格.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.A【解析】试题分析:原方程变形为:x(x-1)=0x1=0,x1=1.故选A.考点:解一元二次方程-因式分解法.2.C【解析】【分析】本题的关键描述语是:“提前1天完成任务”;等量关系为:原计划用时−实际用时=1.【详解】解:原计划用时为:480x,实际用时为:48020x+.所列方程为:480480420x x-=+,故选C.【点睛】本题考查列分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.3.D【解析】【分析】A、根据单价=总价÷数量,即可求出一次性购买数量不超过10本时,销售单价,A选项正确;C、根据单价=总价÷数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其÷前十本的单价即可得出C正确;B、根据总价=200+超过10本的那部分书的数量×16即可求出a值,B正确;D,求出一次性购买20本书的总价,将其与400相减即可得出D错误.此题得解.【详解】解:A、∵200÷10=20(元/本),∴一次性购买数量不超过10本时,销售价格为20元/本,A选项正确;C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,∴一次性购买10本以上时,超过10本的那部分书的价格打八折,C选项正确;B、∵200+16×(30﹣10)=520(元),。
佳木斯市2020版中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2019七下·中山期中) 121的平方根是()A .B . 11C .D .2. (2分)利用因式分解简便计算57×99+44×99-99正确的是()A . 99×(57+44)=99×101=9999B . 99×(57+44-1)=99×100=9900C . 99×(57+44+1)=99×102=10096D . 99×(57+44-99)=99×2=1983. (2分)(2018·泸州) 下列计算,结果等于a4的是()A . a+3aB . a5-aC . (a2)2D . a8÷a24. (2分)(2018·泸州) 如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A .B .C .D .5. (2分) (2018·泸州) 如图,直线a∥b,直线分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A . 50°B . 70°C . 80°D . 110°6. (2分)(2018·泸州) 某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:年龄1314151617人数12231则这些学生年龄的众数和中位数分别是()A . 16,15B . 16,14C . 15,15D . 14,157. (2分)(2018·泸州) 如图,的对角线AC,BD相交于点O,是AB中点,且AE+EO=4,则的周长为()A . 20B . 16C . 12D . 88. (2分)(2018·泸州) “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A . 9B . 6C . 4D . 39. (2分)(2018·泸州) 已知关于x的一元二次方程x2-2x+k-1=0有两个不相等的实数根,则实数的取值范围是()A . k≤2B . k≤0C . k<2D . k<010. (2分)(2018·泸州) 如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A .B .C .D .11. (2分)在平面直角坐标系内,以原点O为圆心,1为半径作圆,点P在直线y= 上运动,过点P作该圆的一条切线,切点为A,则PA的最小值为()A . 3B . 2C .D .12. (2分)(2018·泸州) 已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且-2≤x≤1时,y的最大值为9,则a的值为()A . 1或B . - 或C .D . 1二、填空题 (共4题;共4分)13. (1分) (2019·石景山模拟) 如果m2﹣m﹣3=0,那么代数式的值是________.14. (1分)(2011·泰州) 一个多项式与m2+m﹣2的和是m2﹣2m.这个多项式是________.15. (1分)把多项式2mx2﹣2m分解因式的结果是________.16. (1分) (2019·会宁模拟) 如图,作出边长为1的菱形ABCD,∠DAB=60°,连接对角线AC,以AC为边作第二个菱形ACC1D1 ,使∠D1AC=60°,连接AC1 ,再以AC1为边作第三个菱形ACC2D2 ,使∠D2AC1=60°;…按此规律所作的第2019个菱形的边长为________.三、解答题 (共9题;共80分)17. (5分) (2017七下·洪泽期中) 因式分解;(1) 2a2﹣2;(2) m2﹣12mn+36n2 .18. (5分)(2018·泸州) 如图,EF=BC,DF=AC,DA=EB.求证:∠F=∠C.19. (5分)(2018·泸州) 化简:.20. (15分)(2018·泸州) 为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.21. (10分)(2018·泸州) 某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?22. (5分)(2018·泸州) 如图,甲建筑物AD,乙建筑物BC的水平距离为90m,且乙建筑物的高度是甲建筑物高度的6倍,从E(A,E,B在同一水平线上)点测得D点的仰角为30°,测得C点的仰角为60°,求这两座建筑物顶端C、D间的距离(计算结果用根号表示,不取近似值).23. (10分)(2018·泸州) 一次函数y=kx+b的图象经过点A(-2,12),B(8,-3).(1)求该一次函数的解析式;(2)如图,该一次函数的图象与反比例函数的图象相交于点C(x1 , y1),D(x2,y2),与轴交于点E,且CD=CE,求m的值.24. (10分) (2018·泸州) 如图,已知AB,CD是的直径,过点C作的切线交AB的延长线于点P,的弦DE交AB于点F,且DF=EF.(1)求证:CO2=OF·OP;(2)连接EB交CD于点G,过点G作GH⊥AB于点H,若PC= ,PB=4,求GH的长.25. (15分)(2018·泸州) 如图,已知二次函数的图象经过点A(4,0),与y轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.(1)求a的值和直线AB的解析式;(2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S1 , S2 ,若S1=4S2 ,求m的值;(3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱周长取最大值时,求点G的坐标.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共9题;共80分)17-1、17-2、18-1、19-1、20-1、20-2、20-3、21-1、21-2、22-1、23-1、23-2、24-1、24-2、25-1、25-2、25-3、。
黑龙江省佳木斯市2020版中考数学试卷B卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)从﹣3,﹣1,1,5,6五个数中任取两个数相乘,若所得积中的最大值为a,最小值为b,则的值为()A . ﹣B . ﹣2C . ﹣D . ﹣102. (2分)(2018·河南模拟) 右图是由6个小正方体搭建而成的几何体,它的俯视图是()A .B .C .D .3. (2分)下列各式计算正确的是()A . 2+b=2bB . -=C . (2a2)3=8a5D . a6÷a4=a24. (2分) (2018七上·大庆期中) 对于图中标记的各角,下列条件能够推理得到a∥b的是()A . ∠1=∠2B . ∠2=∠4C . ∠3=∠4D . ∠1+∠4=180°5. (2分)剪纸是中国的民间艺术.剪纸方法很多,如图是一种剪纸方法的图示(先将纸折叠,然后再剪,展开后即得到图案):如图所示的四副图案,不能用上述方法剪出的是()A .B .C .D .6. (2分)(2016·黔东南) 小明在某商店购买商品A、B共两次,这两次购买商品A、B的数量和费用如表:购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物4393第二次购物66162若小丽需要购买3个商品A和2个商品B,则她要花费()A . 64元B . 65元C . 66元D . 67元二、填空题 (共8题;共8分)7. (1分) (2018七上·宁波期中) ________.8. (1分) (2019七上·萧山月考) “x的与y的差”用代数式可以表示为 ________.9. (1分) (2019八下·乌兰浩特期中) 已知,则 =________10. (1分)关于x的方程kx2﹣4x﹣ =0有实数根,则k的取值范围是________.11. (1分) (2016八上·海盐期中) 等腰直角三角形ABC中,∠BAC=90°,BD平分∠ABC交AC于点D,若AB+AD=8cm,则底边BC上的高为________ cm.12. (1分)(2019·包河模拟) 菱形中,,,点是对角线所在直线上一点,且,直线交直线于点,则 ________13. (1分) (2018九上·开封期中) 如图,在⊙O中,=,∠AOB与∠COD的关系是________.14. (1分) (2017八下·濮阳期中) 如图,在△ABC中,CA=CB,AD⊥BC,BE⊥AC,AB=5,AD=4,则AE=________.三、解答题 (共12题;共116分)15. (15分)去括号:(1)-(3a2-4b-5ab+2b2);(2)-3(2m-3n-m2);(3) 3x+[4y-(7z+3)].16. (5分) (2017九上·汉阳期中) 如图,正方形ABCD中,E为BC边上一点,F为BA延长线上一点,且CE=AF.连接DE、DF.求证:DE=DF.17. (5分) (2018九上·建平期末) 在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.18. (5分)如图,已知正比例函数y=x与反比例函数y=(k>0)的图象交于A、B两点,且点A的横坐标为4.(1)求k的值;(2)根据图象直接写出正比例函数值小于反比例函数值时x的取值范围;(3)过原点O的另一条直线l交双曲线y=(k>0)于P、Q两点(P点在第一象限),若由点A、P、B、Q为顶点组成的四边形面积为24,求点P的坐标.19. (10分)(2019·兰坪模拟) 某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2015年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)实际每年绿化面积为多少万平方米?(2)为加大创建力度,市政府决定从2018年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?20. (13分)(2013·海南) 如图,在正方形网格中,△ABC各顶点都在格点上,点A,C的坐标分别为(﹣5,1)、(﹣1,4),结合所给的平面直角坐标系解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△ABC关于原点O对称的△A2B2C2;(3)点C1的坐标是________;点C2的坐标是________;过C、C1、C2三点的圆的圆弧的长是________(保留π).21. (10分) (2016九上·广饶期中) 如图,小山的顶部是一块平地,在这块平地上有一高压输电的铁架,小山的斜坡的坡度i=1:,斜坡BD的长是50米,在山坡的坡底B处测得铁架顶端A的仰角为45°,在山坡的坡顶D处测得铁架顶端A的仰角为60°.(1)求小山的高度;(2)求铁架的高度.(≈1.73,精确到0.1米)22. (1分)(2019·滨城模拟) 某校篮球班21名同学的身高如下表:身高/cm180185187190201人数/名46542则该校篮球班21名同学身高的中位数是________cm.23. (12分)(2018·伊春) 某工厂甲、乙两车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙车间各自加工零件总数为y(件),与甲车间加工时间x(天),y与x之间的关系如图(1)所示.由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(件)与甲车间加工时间x(天)的关系如图(2)所示.(1)甲车间每天加工零件为________件,图中d值为________.(2)求出乙车间在引入新设备后加工零件的数量y与x之间的函数关系式.(3)甲车间加工多长时间时,两车间加工零件总数为1000件?24. (10分)(2019·徽县模拟) 如图,在四边形ABCD中,AB∥CD,且AB=2CD,E,F分别是AB,BC的中点,EF与BD交于点H.(1)求证:四边形DEBC是平行四边形;(2)若BD=9,求DH的长.25. (20分)(2017·新泰模拟) 如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(﹣3,0)、(0,4),抛物线y= x2+bx+c经过点B,且顶点在直线x= 上.(1)求抛物线对应的函数关系式;(2)若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)在(2)的条件下,连接BD,已知对称轴上存在一点P使得△PBD的周长最小,求出P点的坐标;(4)在(2)、(3)的条件下,若点M是线段OB上的一个动点(点M与点O、B不重合),过点M作∥BD交x 轴于点N,连接PM、PN,设OM的长为t,△PMN的面积为S,求S和t的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M点的坐标;若不存在,说明理由.26. (10分)(2020·蔡甸模拟) 在锐角△ABC中,边BC长为18,高AD长为12(1)如图,矩形EFCH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K,求的值;(2)设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值.参考答案一、选择题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共8题;共8分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共12题;共116分)15-1、15-2、15-3、16-1、17-1、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、23-1、23-2、23-3、24-1、24-2、25-1、25-2、25-3、26-1、26-2、。
黑龙江省佳木斯市2020版中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2017七上·台州期中) |a|=﹣a,则a一定是()A . 负数B . 正数C . 零或负数D . 非负数2. (2分)一个长方体的长、宽、高分别为x,2x,3x﹣4,则它的体积等于()A . 3x3﹣8x2B . 6x3_4C . ﹣2x3﹣8x2D . 6x3﹣8x23. (2分) (2017九上·柳江期中) 一元二次方程的解是()A . x=0B . =2C . ,D . x=24. (2分)一个物体由多个完全相同的小正方体组成,它的三视图如图所示,那么组成这个物体的小正方体的个数为()A . 2个B . 3个C . 5个D . 10个5. (2分)(2011·南宁) 函数的图象是()A .B .C .D .6. (2分)为了考察某市初中3500名毕业生的数学成绩,从中抽取20本试卷,每本30份,在这个问题中,样本容量是()A . 3500B . 20C . 30D . 6007. (2分) (2015八下·武冈期中) 下列条件中,能判定四边形为平行四边形的是()A . 对角线相互垂直B . 对角线互相平分C . 一组对角相等D . 一组对边相等8. (2分)若△ABC的面积是8cm2 ,则它的三条中位线围成的三角形的面积是()A . 2cm2B . 4cm2C . 6cm2D . 无法确定二、填空题 (共10题;共19分)9. (2分) (2017八上·常州期末) 36的平方根是________,81的算术平方根是________.10. (1分)因式分解:ma+mb+mc=________ .11. (1分)不等式3+2x>5的解集是________.12. (1分)已知m=,n=,则代数式(m+2n)﹣(m﹣2n)的值为________13. (1分) (2017八上·金牛期末) 在平面直角坐标系内,一个点的坐标为(2,﹣3),则它关于x轴对称的点的坐标是________.14. (9分) (2019九下·长春开学考) 某校“两会”知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验.①收集数据:分别记录甲、乙两名学生10次测验成绩(单位:分)次数成绩学生12345678910甲74848983868186848686乙82738176818781909296②整理数据:两组数据的平均数、中位数、众数、方差如下表所示:统计量学生平均数中位数众数方差甲83.9______8615.05乙83.981.5______46.92③分析数据:根据甲、乙两名学生10次测验成绩绘制折线统计图:④得出结论:结合上述统计全过程,回答下列问题:(1)补全②中的表格.(2)判断甲、乙两名学生中,________(填甲或乙)的成绩比较稳定,说明判断依据:________.(3)如果你是决策者,从甲、乙两名学生中选择一人代表学校参加知识竞赛,你会选择________(填“甲”或“乙),理由是:________.15. (1分) (2020七下·天台月考) 如图直线AB∥CD,∠A=115°,∠E=80°,则∠CDE的度数为________.16. (1分)如图,Rt△ABC中,∠C=90°,AC=BC=4,点D是线段AB的中点,分别以点A,B为圆心,AD为半径画弧,分别交AC,BC于点E,F.则阴影部分面积为________ (结果保留π).17. (1分)如图,直线y=mx﹣4m(m<0)与x,y轴分别相交于A,B两点,将△AOB绕点O逆时针转90°得到△COD,E为AB中点,F为CD中点,连接EF,G为EF中点,连接OG.若OG=,则m的值为________ .18. (1分)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有________(填序号).三、解答题 (共10题;共97分)19. (10分) (2019八上·海珠期末) 计算(1)(x+1)2﹣(x+1)(x﹣1)(2)﹣x﹣220. (10分) (2020七下·新昌期末) 解下列方程(组):(1)(2)21. (5分)(2020·吉林模拟) 有甲、乙两个不透明的盒子,甲盒中有三个小球,分别标有数字1、2、3,乙盒中有两个小球,分别标有数字4、5.每个小球除数字不同外其余均相同.小亮从甲盒中随机摸出一个小球,小丽从乙盒中随机摸出一个小球.用画树状图(或列表)的方法,求摸出的两个小球上的数字之积大于10的概率.22. (7分)(2011·常州) 某中学为了解本校学生对球类运动的爱好情况,采用抽样的方法,从足球、篮球、排球、其它等四个方面调查了若干名学生,并绘制成“折线统计图”与“扇形统计图”.请你根据图中提供的部分信息解答下列问题:(1)在这次调查活动中,一共调查了________名学生;(2)“足球”所在扇形的圆心角是________度;(3)补全折线统计图.23. (10分) (2019八下·临河期末) 如图1,在△ABC中,D是BC边上一点,E是AD的中点,过点A作BC 的平行线交CE的延长线于F ,且AF=BD ,连接BF .(1)求证:点D是线段BC的中点;(2)如图2,若AB=AC=13, AF=BD=5,求四边形AFBD的面积.24. (10分)(2018·建湖模拟) 如图,在□ABCD 中,∠ADB=90°,点 E 为 AB 边的中点,点 F 为CD 边的中点.(1)求证:四边形 DEBF 是菱形;(2)当∠A 等于多少度时,四边形 DEBF 是正方形?并说明你的理由.25. (10分)(2017·陕西模拟) 某书店为了迎接2017年4月23日的“世界读书日”,计划购进A、B两类图书进行销售,若购进A,B两类图书共1000本,其中购进A类图书的单价为16元/本,购进B类图书所需费用y (元)与购买数量x(本)之间存在如图所示的函数关系.(1)求y与x之间的函数关系式;(2)若该书店购进A类图书400本,则购进A、B两类图书共需要多少元?26. (15分) (2019八下·如皋期中) 如图,矩形ABCD中,点P是线段AD上的一个动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ ;(2)若AD=8cm,AB=6cm,点P从点A出发,以的速度向点D 运动(不与D重合).设点P运动的时间为t秒,请用t表示PD的长;(3)当t为何值时,四边形PBQD是菱形?27. (10分) (2018九上·点军期中) 已知x1 , x2 是关于x的一元二次方程x2-2(m+1)x+m2+5=0的两实数根.(1)若(x1-1)(x2 -1)=28,求m的值;(2)已知等腰△ABC的一边长为7,若x1 , x2恰好是△ABC另外两边的边长,求这个三角形的周长.28. (10分) (2017八上·夏津期中) 在△ABC中,AB=CB,∠ABC=90°,E为CB延长线上一点,点F在AB上,且AE=CF.(1)求证:Rt△ABE≌Rt△CBF;(2)若∠CAE=60°,求∠ACF的度数.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共10题;共19分)9-1、10-1、11-1、12-1、13-1、14-1、14-2、14-3、15-1、16-1、17-1、18-1、三、解答题 (共10题;共97分) 19-1、19-2、20-1、20-2、21-1、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、26-3、27-1、27-2、28-1、28-2、。
2024年黑龙江龙东地区中考数学真题试卷(鹤岗、佳木斯、鸡西、伊春、七台河适用)一、选择题(每小题3分,共30分)1.下列计算正确的是()A.326a a a ⋅=B.()527a a =C.()339328a b a b -=- D.()()22a b a b a b -++=-2.下列图形既是轴对称图形又是中心对称图形的是()A. B.C. D.3.由一些大小相同的小正方体搭成的几何体的主视图和左视图如图,则搭成该几何体的小正方体的个数最少是()A.3B.4C.5D.64.一组数据2,3,3,4,则这组数据的方差为()A.1B.0.8C.0.6D.0.55.关于x 的一元二次方程()22420m x x -++=有两个实数根,则m 的取值范围是()A.4m ≤B.4m ≥C.4m ≥-且2m ≠D.4m ≤且2m ≠6.已知关于x 的分式方程2333x xkx -=--无解,则k 的值为()A.2k =或1k =- B.2k =- C.2k =或1k = D.1k =-7.国家“双减”政策实施后,某班开展了主题为“书香满校园”的读书活动.班级决定为在活动中表现突出的同学购买笔记本和碳素笔进行奖励(两种奖品都买),其中笔记本每本3元,碳素笔每支2元,共花费28元,则共有几种购买方案()A.5B.4C.3D.28.如图,双曲线()120y x x=>经过A,B 两点,连接OA ,AB ,过点B 作BD y ⊥轴,垂足为D,BD 交OA 于点E,且E 为AO 的中点,则AEB △的面积是()A.4.5B.3.5C.3D.2.59.如图,菱形ABCD 中,点O 是BD 的中点,AM BC ⊥,垂足为M ,AM 交BD 于点N ,2OM =,8BD =,则MN 的长为()A. B.455C.355D.10.如图,在正方形ABCD 中,点H 在AD 边上(不与点A,D 重合),90BHF ∠=︒,HF 交正方形外角的平分线DF 于点F,连接AC 交BH 于点M,连接BF 交AC 于点G,交CD 于点N,连接BD .则下列结论:①45HBF ∠=︒;②点G 是BF 的中点;③若点H 是AD 的中点,则10sin10NBC ∠=;④BN =;⑤若12AH D H =,则112BND AHM S S =△△,其中正确的结论是()A.①②③④B.①③⑤C.①②④⑤D.①②③④⑤二、填空题(每小题3分,共30分)11.国家统计局公布数据显示,2023年我国粮食总产量是13908亿斤,将13908亿用科学记数法表示为________.12.在函数32y x =+中,自变量x 的取值范围是________.13.已知菱形ABCD 中对角线AC BD 、相交于点O ,添加条件_________________可使菱形ABCD 成为正方形.14.七年一班要从2名男生和3名女生中选择两名学生参加朗诵比赛,恰好选择1名男生和1名女生的概率是________.15.关于x 的不等式组420102x x a -≥⎧⎪⎨->⎪⎩恰有3个整数解,则a 的取值范围是________.16.如图,ABC ∆内接于O ,AD 是直径,若25B ∠=︒,则CAD ∠________︒.17.若圆锥的底面半径为3,侧面积为36π,则这个圆锥侧面展开图的圆心角是________︒.18.如图,在Rt ABC △中,90ACB ∠=︒,1tan 2BAC ∠=,2BC =,1AD =,线段AD 绕点A 旋转,点P 为CD 的中点,则BP 的最大值是________.19.矩形ABCD 中,3AB =,4BC =,将AB 沿过点A 的一条直线折叠,折痕交直线BC 于点P (点P 不与点B 重合),点B 的对称点落在矩形对角线所在的直线上,则PC 长为________.20.如图,在平面直角坐标系中,正方形OMNP 顶点M 的坐标为()3,0,OAB 是等边三角形,点B 坐标是()1,0,OAB 在正方形OMNP 内部紧靠正方形OMNP 的边(方向为O M N P O M →→→→→→ )做无滑动滚动,第一次滚动后,点A 的对应点记为1A ,1A 的坐标是()2,0;第二次滚动后,1A 的对应点记为2A ,2A 的坐标是()2,0;第三次滚动后,2A 的对应点记为3A ,3A 的坐标是1322⎛⎫- ⎪ ⎪⎝⎭;如此下去,……,则2024A 的坐标是________.三、解答题(满分60分)21.先化简,再求值:22222111m m m m m m ⎛⎫-+÷- ⎪-+⎝⎭,其中cos60m =︒.22.如图,在正方形网格中,每个小正方形的边长都是1个单位长度,在平面直角坐标系中,ABC 的三个顶点坐标分别为()1,1A -,()2,3B -,()5,2C -.(1)画出ABC 关于y 轴对称的111A B C △,并写出点1B 的坐标(2)画出ABC 绕点A 逆时针旋转90︒后得到的22AB C ,并写出点2B 的坐标(3)在(2)的条件下,求点B 旋转到点2B 的过程中所经过的路径长(结果保留π)23.如图,抛物线2y x bx c =-++与x 轴交于A ,B 两点,与y 轴交于点C ,其中()1,0B ,()0,3C .(1)求抛物线的解析式.(2)在第二象限的抛物线上是否存在一点P ,使得APC △的面积最大.若存在,请直接写出点P 坐标和APC △的面积最大值;若不存在,请说明理由.24.为贯彻落实教育部办公厅关于“保障学生每天校内、校外各一小时体育活动时间”的要求,某学校要求学生每天坚持体育锻炼.学校从全体男生中随机抽取了部分学生,调查他们的立定跳远成绩,整理如下不完整的频数分布表和统计图,结合下图解答下列问题:组别分组(cm )频数A 50100x <≤3B 100150x <≤m C 150200x <≤20D 200250x <≤14E250300x <≤5(1)频数分布表中m =_______,扇形统计图中n =_______.(2)本次调查立定跳远成绩的中位数落在_________组别.(3)该校有600名男生,若立定跳远成绩大于200cm 为合格,请估计该校立定跳远成绩合格的男生有多少人?25.甲、乙两货车分别从相距225km 的A,B 两地同时出发,甲货车从A 地出发途经配货站时,停下来卸货,半小时后继续驶往B 地,乙货车沿同一条公路从B 地驶往A 地,但乙货车到达配货站时接到紧急任务立即原路原速返回B 地,结果比甲货车晚半小时到达B 地.如图是甲、乙两货车距A 地的距离()km y 与行驶时间()h x 之间的函数图象,结合图象回答下列问题:(1)甲货车到达配货站之前的速度是_________km/h ,乙货车的速度是________km/h (2)求甲货车在配货站卸货后驶往B 地的过程中,甲货车距A 地的距离()km y 与行驶时间()h x 之间的函数解析式(3)直接写出甲、乙两货车在行驶的过程中,出发多长时间甲、乙两货车与配货站的距离相等.26.已知ABC ∆是等腰三角形,AB AC =,12MAN BAC ∠=∠,MAN ∠在BAC ∠的内部,点M,N在BC 上,点M 在点N 的左侧,探究线段BM NC MN 、、之间的数量关系.(1)如图①,当90BAC ∠=︒时,探究如下:由90BAC ∠=︒,AB AC =可知,将ACN △绕点A 顺时针旋转90︒,得到ABP ,则CN BP =且90PBM ∠=︒,连接PM ,易证AMP AMN △≌△,可得MP MN =,在Rt PBM △中,222BM BP MP +=,则有222BM NC MN +=.(2)当60BAC ∠=︒时,如图②:当120BAC ∠=︒时,如图③,分别写出线段BM NC MN 、、之间的数量关系,并选择图②或图③进行证明.27.为了增强学生的体质,某学校倡导学生在大课间开展踢毽子活动,需购买甲、乙两种品牌毽子.已知购买甲种品牌毽子10个和乙种品牌毽子5个共需200元;购买甲种品牌毽子15个和乙种品牌毽子10个共需325元.(1)购买一个甲种品牌毽子和一个乙种品牌毽子各需要多少元?(2)若购买甲乙两种品牌毽子共花费1000元,甲种品牌毽子数量不低于乙种品牌毽子数量的5倍且不超过乙种品牌毽子数量的16倍,则有几种购买方案?(3)若商家每售出一个甲种品牌毽子利润是5元,每售出一个乙种品牌毽子利润是4元,在(2)的条件下,学校如何购买毽子商家获得利润最大?最大利润是多少元?28.如图,在平面直角坐标系中,等边三角形OAB 的边OB 在x 轴上,点A 在第一象限,OA 的长度是一元二次方程2560x x --=的根,动点P 从点O 出发以每秒2个单位长度的速度沿折线OA AB -运动,动点Q 从点O 出发以每秒3个单位长度的速度沿折线OB BA -运动,P ,Q 两点同时出发,相遇时停止运动.设运动时间为t 秒(0 3.6t <<),OPQ △的面积为S .(1)求点A 的坐标(2)求S 与t 的函数关系式(3)在(2)的条件下,当S =时,点M 在y 轴上,坐标平面内是否存在点N ,使得以点O ,P ,M ,N 为顶点的四边形是菱形.若存在,直接写出点N 的坐标;若不存在,说明理由.2024年黑龙江龙东地区中考数学真题试卷答案一、选择题.1.【答案】C 2.【答案】B 3.【答案】B 4.【答案】D 5.【答案】D 6.【答案】A 7.【答案】B 8.【答案】A【解析】如图,过点A 作AF BD ⊥,垂足为F设12,A a a ⎛⎫ ⎪⎝⎭,0a >∵BD y ⊥轴,AF BD ⊥∴AF y ∥轴,DF a =∴AFE ODE ∽∴AF AE EFOD OE DE==∵E 为AO 的中点∴AE OE=∴1AF AE EFOD OE DE===∴AF OD =,EF DE =∴1122EF DE DF a ===,162A AF OD y a===∵BOD y =∴6B y OD a==∴2B x a =∴2B BD x a==∴32BE BD DE a =-=∴11639 4.52222ABE S AF BE a a =⨯⨯=⨯⨯== 故选:A .9.【答案】C【解析】解:连接AC ,如图∵菱形ABCD 中,AC 与BD 互相垂直平分又∵点O 是BD 的中点∴A,O,C 三点在同一直线上∴OA OC=∵2OM =,AM BC⊥∴2OA OC OM ===∵8BD =∴142OB OD BD ===∴BC ===,21tan 42OC OBC OB ===∠∵90ACM MAC ∠+∠=︒,90ACM OBC ∠+∠=︒∴MAC OBC∠=∠∴5sin sin5OC MAC OBC BC ∠=∠==∴sin 5MC AC MAC =∠=∴55BM BC MC =-==∴1tan 525MN BM OBC =∠==故选:C .10.【答案】A【解析】连接DG ,如图∵四边形ABCD 是正方形∴45BDC BAC ADB ∠=∠=∠=︒,BD AB=90BAD ADC ∠=∠=︒,AC 垂直平分BD ∴90CDP ∠=︒∵DF 平分CDP∠∴1452CDF CDP CDB ∠=∠=︒=∠∴90BDF CDF CDB ∠=∠+∠=︒∵90BHF BDF∠=︒=∠∴点B,H,D,F 四点共圆∴45HFB HDB ∠=∠=︒,DHF DBF∠=∠∴18045HBF HFB FHB ∠=︒-∠-∠=︒,故①正确∵AC 垂直平分BD∴BG DG=∴BDG DBG∠=∠∵90BDF ∠=︒∴90BDG GDF DBG DFG∠+∠=︒=∠+∠∴GDF DFG∠=∠∴DG FG=∴DG FG BG==∴点G 是BF 的中点,故②正确∵90BHF BAH∠=︒=∠∴90AHB DHF AHB ABH∠+∠=︒=∠+∠∴DHF ABH∠=∠∵DHF DBF∠=∠∴ABH DBF∠=∠又∵45BAC DBC ∠=∠=︒∴ABM DBN∽∴2BN BD BM AB ==∴2BN BM =,故④正确∴212ABM DBN S AB S BD ⎛⎫== ⎪⎝⎭ 若12AH D H =,则()1122AH HD AD AH ==-∴3AH AD=∴13=AH AD ,即13H H A A BC AD ==∵AD BC∥∴AHM CBM∽∴13HM AH BM BC ==∴13AHM ABM S HM S BM == ∴3ABM AHMS S = ∵12ABM DBN S S = ∴26BND ABM AHM S S S == △,故⑤错误如图,③若点H 是AD 的中点,设2AD =,即2AB BC AD ===∴112AH AD ==∴BH ==同理可证明AHM CBM∽∴12HM AH BM BC ==∴32HM BM BH BM BM +==∴23BM BH ==∵BN =∴BN ==∵2BC =∴在Rt BNC △中,23NC ==10sin 10NC NBC BN ∠==,故③正确则正确的有:①②③④故选:A .二、填空题.11.【答案】121.390810⨯12.【答案】3x ≥13.【答案】AC BD =或AB BC⊥14.【答案】3515.【答案】102a -≤<16.【答案】6517.【答案】90【解析】根据圆锥侧面积公式:πS rl =,可得π336πl ⨯⨯=解得:12l =2π1236π360n ⨯∴=解得90n =∴侧面展开图的圆心角是90︒.故答案为:90.18.【答案】12【解析】解:取AC 的中点M,连接PM ,BM .∵90ACB ∠=︒,1tan 2BAC ∠=,2BC =∴124tan 2BC AC BAC ==÷=∠∴122AM CM AC ===∴BM ===∵P,M 分别是CD AC 、的中点∴1122PM AD ==.如图,当AD 在AC 下方时,如果B,P,M 三点共线,则BP 有最大值最大值为12BM MP +=+,故答案为:12+.19.【答案】52或72或10【解析】解:①点B 的对称点落在矩形对角线BD 上,如图1∵在矩形ABCD 中,3AB CD ==,4BC AD ==由折叠性质可知:BB AP'⊥∴BAP BPA BPA CBD∠+∠=∠+∠∴=BAP CBD∠∠∴3tan =tan =4CD BAP CBD BC ∠∠=∴39tan 642BP AB BAP =∠=⨯=∴97822PC BC BP =-=-=②点B 的对称点B '落在矩形对角线AC 上,如图2∵在矩形ABCD 中,3AB CD ==,4BC AD ==,90B Ð=°∴2222345AC AB BC =+=+=∴4cos 5BC ACB AC ∠==由折叠性质可知:=90ABP AB P '∠=∠︒,3AB AB '==∴532B C AC AB ''=-=-=∴452cos 52B C PC ACB '==÷=∠③点B 的对称点B '落在矩形对角线CA 延长线上,如图3∵在矩形ABCD 中,3AB CD ==,4BC AD ==,90B Ð=°∴2222345AC AB BC =+=+=∴4cos 5BC ACB AC ∠==由折叠性质可知:=90ABP AB P '∠=∠︒,3AB AB '==∴538B C AC AB ''=+=+=∴4810cos 5B C PC ACB '==÷=∠综上所述:则PC 长为52或72或10.故答案为:52或72或10.20.【答案】()1,3解: 正方形OMNP 顶点M 的坐标为()3,03OM MN NP OP ∴==== OAB 是等边三角形,点B 坐标是()1,0∴等边三角形高为32由题知1A 的坐标是()2,02A 的坐标是()2,03A 的坐标是313,22⎛⎫- ⎪ ⎪⎝⎭继续滚动有,4A 的坐标是()3,25A 的坐标是()3,26A 的坐标是5,322⎛⎫- ⎪ ⎪⎝⎭7A 的坐标是()1,38A 的坐标是()1,39A 的坐标是35,22⎛⎫ ⎪ ⎪⎝⎭10A 的坐标是()0,111A 的坐标是()0,112A 的坐标是13,22⎛⎫ ⎪ ⎪⎝⎭13A 的坐标是()2,0; 不断循环,循环规律为以1A ,2A , ,12A ,12个为一组 2024121688÷= ∴2024A 的坐标与8A 的坐标一样为()1,3故答案为:()1,3.三、解答题.21.【答案】1m -+,1222.【答案】(1)作图见解析,()12,3B (2)作图见解析,()23,0B -(3)5π2【小问1详解】解:如图,111A B C △为所求;点1B 的坐标为()2,3【小问2详解】如图,22AB C 为所求;()23,0B -【小问3详解】22125AB =+=点B 旋转到点2B 的过程中所经过的路径长90551802π=.23.【答案】(1)223y x x =--+(2)存在,点P 的坐标是315,24P ⎛⎫- ⎪⎝⎭,APC △的面积最大值是278【小问1详解】解:将()1,0B ,()0,3C 代入2y x bx c =-++得103b c c -++=⎧⎨=⎩解得:23b c =-⎧⎨=⎩223y x x ∴=--+【小问2详解】解:对于223y x x =--+,令0,y =则2230,x x --+=解得,123,1x x =-=∴()3,0A -∴3,OA =∵()0,3C ∴3OC =过点P 作PE x ⊥轴于点E,如图设()2,23P x x x --+,且点P 在第二象限∴,3,OE x AE x =-=+∴APC APE AOCPCOE S S S S =+- 梯形()111222AE PE OC PE OE OA OC =⨯++⨯-⨯()()()()2211132332333222x x x x x x =+--++--+--⨯⨯23327228x ⎛⎫=-++ ⎪⎝⎭∵302-<∴S 有最大值∴当32x =-时,S 有最大值,最大值为278,此时点P 的坐标为315,24⎛⎫- ⎪⎝⎭24.【答案】(1)8,40(2)C (3)估计该校立定跳远成绩合格的男生有228人【小问1详解】解:被抽取的学生数为:36%50÷=(人)故503201458m =----=(人)%205040%n =÷=,即40n =故答案为:8,40解:把这组数据从小到大排列,第25和第26个数据的平均数为这组数据的中位数382526+<< ,5142526+<<∴把这组数据从小到大排列,第25和第26个数据都在C 组故本次调查立定跳远成绩的中位数落在C 组答案为:C【小问3详解】解:14560022850+⨯=(人)答:该校立定跳远成绩合格的男生有228人.25.【答案】(1)30,40(2)EF 的函数解析式是()802154 5.5y x x =-≤≤(3)经过1.5h 或45h 14或5h 甲、乙两货车与配货站的距离相等【小问1详解】解:由图象可知甲货车到达配货站路程为105km,所用时间为3.5h,所以甲货车到达配货站之前的速度是105 3.5=30÷(km/h )∴乙货车到达配货站路程为225105=120(km)-,到达配货站时接到紧急任务立即原路原速返回B 地,总路程为240km,总时间是6h∴乙货车速度240640km /h=÷=故答案为:30;40【小问2详解】甲货车从A 地出发途经配货站时,停下来卸货,半小时后继续驶往B 地,由图象可知(4,105)E 和点(5.5,225)F 设(4 5.5)EF y kx b x =+≤≤∴41055.5225k b k b +=⎧⎨+=⎩解得:21580b k =-⎧⎨=⎩∴甲货车距A 地的距离()km y 与行驶时间()h x 之间的函数解析式()802154 5.5y x x =-≤≤设甲货车出发h x ,甲、乙两货车与配货站的距离相等①两车到达配货站之前:1053012040x x-=-解得:32x =②乙货车到达配货站时开始返回,甲货车未到达配货站:1053040120x x -=-解得:4514x =③甲货车在配货站卸货后驶往B 地时:0802151054012x x =---解得:5x =答:经过1.5h 或45h 14或5h 甲、乙两货车与配货站的距离相等.26.【答案】图②的结论是:222BM NC BM NC MN ++⋅=;图③的结论是:222BM NC BM NC MN +-⋅=;证明见解析【详解】解:图②的结论是:222BM NC BM NC MN ++⋅=证明:∵,60,AB AC BAC =∠=︒∴ABC 是等边三角形∴60ABC ACB ∠=∠=︒以点B 为顶点在ABC 外作60ABK ∠=︒,在BK 上截取BQ CN =,连接QA QM 、,过点Q 作QH BC ⊥,垂足为HAB AC = ,C ABQ ∠=∠,CN BQ=ACN ABQ∴△≌△AN AQ ∴=,CAN QAB∠=∠又30CAN BAM ∠+∠=︒30BAM QAB ∴∠+∠=︒即QAM MAN∠=∠又AM AM= AQM ANM∴△≌△MN QM∴=∵60,60,ABQ ABC ∠=︒∠=︒∴60QBH ∠=︒∴30,BQH ∠=︒12B BH Q ∴=,32QH BQ =∴12HM BM BH BM BQ =+=+在Rt QHM △中,可得:222QH HM QM +=即222122BQ BM BQ QM ⎛⎫⎛⎫++= ⎪ ⎪ ⎪⎝⎭⎝⎭整理得222BM BQ B Q M M B Q ⋅++=222NC B M N N B M M C ∴=⋅++图③的结论是:222BM NC BM NC MN +-⋅=证明:以点B 为顶点在ABC 外作30ABK ∠=︒,在BK 上截取BQ CN =,连接QA QM 、,过点Q 作QH BC ⊥,垂足为HAB AC = ,C ABQ ∠=∠,CN BQ=ACN ABQ∴△≌△AN AQ ∴=,CAN QAB∠=∠又60CAN BAM ∠+∠=︒60BAM QAB ∴∠+∠=︒即QAM MAN∠=∠又AM AM= AQM ANM∴△≌△MN QM∴=在Rt BQH 中,60QBH ∠=︒,30BQH ∠=︒12B BH Q ∴=,32QH BQ =12HM BM BH BM BQ =-=-在Rt QHM △中,可得:222QH HM QM +=即222122BQ BM BQ QM ⎛⎫⎛⎫+-= ⎪ ⎪ ⎪⎝⎭⎝⎭整理得222BM BQ B Q M M B Q ⋅+-=222NC B M N N B M M C ∴=⋅+-27.【答案】(1)购买一个甲种品牌毽子需15元,购买一个乙种品牌毽子需10元(2)共有3种购买方案(3)学校购买甲种品牌毽子60个,购买乙种品牌毽子10个,商家获得利润最大,最大利润是340元【小问1详解】解:设购买一个甲种品牌毽子需a 元,购买一个乙种品牌毽子需b 元.由题意得:1052001510325a b a b +=⎧⎨+=⎩解得:1510a b =⎧⎨=⎩答:购买一个甲种品牌毽子需15元,购买一个乙种品牌毽子需10元【小问2详解】解:设购买甲种品牌毽子x 个,购买乙种品牌毽子1000153100102x x -⎛⎫=- ⎪⎝⎭个.由题意得:3510023161002x x x x ⎧⎛⎫≥- ⎪⎪⎪⎝⎭⎨⎛⎫⎪≤- ⎪⎪⎝⎭⎩解得:14586417x ≤≤x 和31002x ⎛⎫-⎪⎝⎭均为正整数60x ∴=,62,643100102x -=,7,4∴共有3种购买方案.【小问3详解】设商家获得总利润为y 元3541002y x x ⎛⎫=+- ⎪⎝⎭400y x =-+10k =-< y ∴随x 的增大而减小∴当60x =时,340y =最大答:学校购买甲种品牌毽子60个,购买乙种品牌毽子10个,商家获得利润最大,最大利润是340元.28.【答案】(1)点A的坐标为(A (2)()())2202233 3.6t S t t ⎧<≤⎪⎪⎪=-+<≤⎨⎪⎪+<<⎪⎩(3)存在,(12,4N +,()24N -,(3N -,4N ⎛ ⎝【小问1详解】解:2560x x --=,解得16x =,21x =-OA 的长度是2560x x --=的根6OA ∴=∵OAB 是等边三角形∴6,60OA OB AC OAB AOB ABO ===∠=∠=∠=︒过点A 作AC x ⊥轴,垂足为C在Rt AOC 中,60,AOC ∠=︒∴30,OAC ∠=︒116322OC OA ∴==⨯=∴AC ===∴点A 的坐标为(A 【小问2详解】解:当02t <≤时.过P 作PD x ⊥轴,垂足为点D∴2OP t =,3OQ t=30OPD ∴∠=︒∴,OD t =∴()222223PD OP OD t t t =-=-=2113333222t S OQ PD t ∴=⨯⨯=⨯⨯=当23t <≤时,过Q 作QE OA ⊥,垂足为点E∵60,A ∠=︒∴30,AQE ∠=︒又123,AQ t =-∴13622AE AQ t ==-223332AQ AE QE =-又2OP t =,21333263363222S t t t t ⎛⎫∴=⨯⨯=+ ⎪ ⎪⎝⎭当3 3.6t <<时,过O 作OF AB ⊥,垂足为F∴()1823185PQ t t t=-+=-同理可得,132BF OB ==∴2233OF OB BF =-=()11533185327322S t t ∴=⨯⨯-=-+综上所述()()()223302233632321532733 3.62t t S t t t t t ⎧<≤⎪⎪⎪=-+<≤⎨⎪⎪-+<<⎪⎩【小问3详解】解:当233263t =时,解得,2,t =∴224OP =⨯=过点P 作PG x ⊥轴于点G,则12,2OG OP ==∴2222423,PG OP OG =--∴点P 的坐标为(2,当OP 为边时,将OP 沿y 轴向下平移4个单位得()2,4N -,此时()0,4M -,四边形POMN是菱形将OP 沿y 轴向上平移4个单位得()2,4N ,此时()0,4M ,四边形POMN 是菱形;如图作点P 关于y 轴的对称点(2,N -,当(0,M 时,四边形PMNO 是菱形当OP 为对角线时,设OP 的中点为T,过点T 作TM OP ⊥,交y 轴于点M,延长MT 到N ,使,TN TM =连接ON ,过点N 作NH x ⊥轴于点H ,则30,MOT NOT HON ∠=∠=∠=︒2,OT =∴2,ON TN =∴222ON OT TN =+,即222122ON ON ⎛⎫=+ ⎪⎝⎭解得,ON =∴NH =2,OH =∴N ⎛ ⎝当2+=解得,2t =,不符合题意,此情况不存在当+=时,解得,4235t =<,不符合题意,此情况不存在综上,点N 的坐标为(12,4N +,()22,4N ,(32,N -,4N ⎛ ⎝。
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.51 C.69 D.722.如图,点P是菱形ABCD的对角线AC上的一个动点,过点P垂直于AC的直线交菱形ABCD的边于M、N两点.设AC=2,BD=1,AP=x,△AMN的面积为y,则y关于x的函数图象大致形状是( )A.B.C.D.3.已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是()A.20cm2 B.20πcm2C.10πcm2D.5πcm24.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A.0.7米B.1.5米C.2.2米D.2.4米5.如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE=165°,则∠B的度数为()A.15°B.55°C.65°D.75°6.某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x元,则下列所列方程正确的是()A.2003503x x=-B.2003503x x=+C.2003503x x=+D.2003503x x=-7.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差8.如图,在平面直角坐标系中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B、C在反比例函数y=2x(x>0)的图象上,则△OAB的面积等于()A.2 B.3 C. 4 D.6 9.已知,C是线段AB的黄金分割点,AC<BC,若AB=2,则BC=()A.3﹣5B.12(5+1)C.5﹣1 D.12(5﹣1)10.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定二、填空题(本题包括8个小题)11.如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=_____.12.如图,数轴上点A所表示的实数是________________.13.在数轴上与2-所对应的点相距4个单位长度的点表示的数是______.14.关于x的分式方程3111mx x+=--的解为正数,则m的取值范围是___________.15.如图,在平面直角坐标系中有一正方形AOBC,反比例函数kyx=经过正方形AOBC对角线的交点,半径为(422-的圆内切于△ABC,则k的值为________.16.如图,直线y =k 1x +b 与双曲线2k y=x交于A 、B 两点,其横坐标分别为1和5,则不等式k 1x <2k x +b 的解集是 ▲ .17.如图,一根直立于水平地面的木杆AB 在灯光下形成影子AC (AC >AB ),当木杆绕点A 按逆时针方向旋转,直至到达地面时,影子的长度发生变化.已知AE =5m ,在旋转过程中,影长的最大值为5m ,最小值3m ,且影长最大时,木杆与光线垂直,则路灯EF 的高度为_____ m .18.关于x 的一元二次方程2kx x+1=0 有两个不相等的实数根,则k 的取值范围是 ▲ .三、解答题(本题包括8个小题)19.(6分)如图,某地方政府决定在相距50km 的A 、B 两站之间的公路旁E 点,修建一个土特产加工基地,且使C 、D 两村到E 点的距离相等,已知DA ⊥AB 于A ,CB ⊥AB 于B ,DA=30km ,CB=20km ,那么基地E 应建在离A 站多少千米的地方?20.(6分)如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,点E 在⊙O 外,∠EAC=∠D=60°.求∠ABC的度数;求证:AE是⊙O的切线;当BC=4时,求劣弧AC的长.21.(6分)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:本次接受调查的跳水运动员人数为,图①中m的值为;求统计的这组跳水运动员年龄数据的平均数、众数和中位数.22.(8分)现有一次函数y=mx+n和二次函数y=mx2+nx+1,其中m≠0,若二次函数y=mx2+nx+1经过点(2,0),(3,1),试分别求出两个函数的解析式.若一次函数y=mx+n经过点(2,0),且图象经过第一、三象限.二次函数y=mx2+nx+1经过点(a,y1)和(a+1,y2),且y1>y2,请求出a的取值范围.若二次函数y=mx2+nx+1的顶点坐标为A(h,k)(h≠0),同时二次函数y=x2+x+1也经过A点,已知﹣1<h<1,请求出m的取值范围.23.(8分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=mx的图象的两个交点.求反比例函数和一次函数的解析式;求直线AB与x轴的交点C的坐标及△AOB的面积;直接写出一次函数的值小于反比例函数值的x的取值范围.24.(10分)列方程解应用题八年级学生去距学校10 km的博物馆参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.25.(10分)在平面直角坐标系中,抛物线y=(x﹣h)2+k的对称轴是直线x=1.若抛物线与x轴交于原点,求k的值;当﹣1<x<0时,抛物线与x轴有且只有一个公共点,求k的取值范围.26.(12分)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于12EF长为半径作圆弧,两条圆弧交于点P,连接AP,交CD于点M,若∠ACD=110°,求∠CMA的度数______.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.D【解析】设第一个数为x,则第二个数为x+7,第三个数为x+1.列出三个数的和的方程,再根据选项解出x,看是否存在.解:设第一个数为x,则第二个数为x+7,第三个数为x+1故三个数的和为x+x+7+x+1=3x+21当x=16时,3x+21=69;当x=10时,3x+21=51;当x=2时,3x+21=2.故任意圈出一竖列上相邻的三个数的和不可能是3.故选D.“点睛“此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.2.C【解析】△AMN的面积=AP×MN,通过题干已知条件,用x分别表示出AP、MN,根据所得的函数,利用其图象,可分两种情况解答:(1)0<x≤1;(2)1<x<2;解:(1)当0<x≤1时,如图,在菱形ABCD中,AC=2,BD=1,AO=1,且AC⊥BD;∵MN⊥AC,∴MN∥BD;∴△AMN∽△ABD,∴=,即,=,MN=x;∴y=AP×MN=x2(0<x≤1),∵>0,∴函数图象开口向上;(2)当1<x<2,如图,同理证得,△CDB∽△CNM,=,即=,MN=2-x;∴y=AP×MN=x×(2-x),y=-x2+x;∵-<0,∴函数图象开口向下;综上答案C的图象大致符合.故选C.本题考查了二次函数的图象,考查了学生从图象中读取信息的数形结合能力,体现了分类讨论的思想.3.C【解析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入,圆锥的侧面积=2π×2×5÷2=10π.故答案为C4.C【解析】【分析】在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.【详解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选C.【点睛】本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.5.D【解析】【分析】根据邻补角定义可得∠ADE=15°,由平行线的性质可得∠A=∠ADE=15°,再根据三角形内角和定理即可求得∠B=75°.【详解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故选D.【点睛】本题考查了平行线的性质、三角形内角和定理等,熟练掌握平行线的性质以及三角形内角和定理是解题的关键.6.B【解析】试题分析:设每个笔记本的价格为x元,根据“用200元购买笔记本的数量与用350元购买笔袋的数量相同”这一等量关系列出方程即可.考点:由实际问题抽象出分式方程7.D【解析】【详解】解:A.原来数据的平均数是2,添加数字2后平均数仍为2,故A与要求不符;B.原来数据的中位数是2,添加数字2后中位数仍为2,故B与要求不符;C.原来数据的众数是2,添加数字2后众数仍为2,故C与要求不符;D.原来数据的方差=222 (12)2(22)(32)4-+⨯-+-=12,添加数字2后的方差=222(12)3(22)(32)5-+⨯-+-=25, 故方差发生了变化.故选D . 8.B【解析】【详解】作BD ⊥x 轴于D ,CE ⊥x 轴于E ,∴BD ∥CE ,∴CE AE AC BD AD AB==, ∵OC 是△OAB 的中线, ∴12CE AE AC BD AD AB ===, 设CE=x ,则BD=2x ,∴C 的横坐标为2x,B 的横坐标为1x , ∴OD=1x ,OE=2x, ∴DE=OE-OD=2x ﹣1x =1x, ∴AE=DE=1x, ∴OA=OE+AE=213x x x+=, ∴S △OAB =12OA•BD=12×32x x ⨯=1. 故选B.点睛:本题是反比例函数与几何的综合题,熟知反比例函数的图象上点的特征和相似三角形的判定和性质是解题的关键.9.C【解析】【分析】根据黄金分割点的定义,知BC 为较长线段;则BC=12AB ,代入数据即可得出BC 的值. 【详解】 解:由于C 为线段AB=2的黄金分割点,且AC <BC ,BC 为较长线段;则..【点睛】本题考查了黄金分割,应该识记黄金分割的公式:较短的线段=原线段的 35倍,较长的线段=原线段的 12倍. 10.B【解析】试题分析:先求出△=42﹣4×3×(﹣5)=76>0,即可判定方程有两个不相等的实数根.故答案选B. 考点:一元二次方程根的判别式.二、填空题(本题包括8个小题)11.【解析】【分析】首先连接BD ,由AB 是⊙O 的直径,可得∠C=∠D=90°,然后由∠BAC=60°,弦AD 平分∠BAC ,求得∠BAD 的度数,又由AD=6,求得AB 的长,继而求得答案.【详解】解:连接BD ,∵AB 是⊙O 的直径,∴∠C=∠D=90°,∵∠BAC=60°,弦AD 平分∠BAC , ∴∠BAD=12∠BAC=30°, ∴在Rt △ABD 中,AB=ADcos30︒, ∴在Rt △ABC 中,12故答案为23.1251【解析】【分析】 A 点到-1的距离等于直角三角形斜边的长度,应用勾股定理求解出直角三角形斜边长度即可. 【详解】22125+=A 点到-15则A 点所表示的数为:﹣5【点睛】本题考查了利用勾股定理求解数轴上点所表示的数.13.2或﹣1【解析】解:当该点在﹣2的右边时,由题意可知:该点所表示的数为2,当该点在﹣2的左边时,由题意可知:该点所表示的数为﹣1.故答案为2或﹣1.点睛:本题考查数轴,涉及有理数的加减运算、分类讨论的思想.14.2?m >且3m ≠.【解析】【分析】方程两边同乘以x-1,化为整数方程,求得x ,再列不等式得出m 的取值范围.【详解】 方程两边同乘以x-1,得,m-1=x-1,解得x=m-2,∵分式方程3111m x x+=--的解为正数, ∴x=m-2>0且x-1≠0,即m-2>0且m-2-1≠0,∴m >2且m≠1,故答案为m >2且m≠1.15.1【解析】试题解析:设正方形对角线交点为D,过点D作DM⊥AO于点M,DN⊥BO于点N;设圆心为Q,切点为H、E,连接QH、QE.∵在正方形AOBC中,反比例函数y=k经过正方形AOBC对角线的交点,x∴AD=BD=DO=CD,NO=DN,HQ=QE,HC=CE,QH⊥AC,QE⊥BC,∠ACB=90°,∴四边形HQEC是正方形,∵半径为(2)的圆内切于△ABC,∴DO=CD,∵HQ2+HC2=QC2,∴2HQ2=QC2=2×(2)2,∴QC22(2-1)2,∴2-1,∴2-1+(2)2,∴2,∵NO2+DN2=DO2=(2)2=8,∴2NO2=8,∴NO2=1,∴DN×NO=1,即:xy=k=1.【点睛】此题主要考查了正方形的性质以及三角形内切圆的性质以及待定系数法求反比例函数解析式,根据已知求出CD的长度,进而得出DN×NO=1是解决问题的关键.16.-2<x<-1或x>1.【解析】不等式的图象解法,平移的性质,反比例函数与一次函数的交点问题,对称的性质. 不等式k 1x <2k x +b 的解集即k 1x -b <2k x的解集,根据不等式与直线和双曲线解析式的关系,可以理解为直线y =k 1x -b 在双曲线2k y=x下方的自变量x 的取值范围即可.而直线y =k 1x -b 的图象可以由y =k 1x +b 向下平移2b 个单位得到,如图所示.根据函数2k y=x 图象的对称性可得:直线y =k 1x -b 和y =k 1x +b 与双曲线2k y=x的交点坐标关于原点对称. 由关于原点对称的坐标点性质,直线y =k 1x -b 图象与双曲线2k y=x图象交点A′、B′的横坐标为A 、B 两点横坐标的相反数,即为-1,-2.∴由图知,当-2<x <-1或x >1时,直线y =k 1x -b 图象在双曲线2k y=x 图象下方. ∴不等式k 1x <2k x+b 的解集是-2<x <-1或x >1. 17.7.5【解析】试题解析:当旋转到达地面时,为最短影长,等于AB ,∵最小值3m ,∴AB=3m ,∵影长最大时,木杆与光线垂直,即AC=5m ,∴BC=4,又可得△CAB ∽△CFE ,∴BC AB EC EF=, ∵AE=5m , ∴4310EF =,解得:EF=7.5m.故答案为7.5.点睛:相似三角形的性质:相似三角形的对应边成比例.18.k<14且k≠1.【解析】根据一元二次方程kx2-x+1=1有两个不相等的实数根,知△=b2-4ac>1,然后据此列出关于k的方程,解方程,结合一元二次方程的定义即可求解:∵2kx x+1=0-有两个不相等的实数根,∴△=1-4k>1,且k≠1,解得,k<14且k≠1.三、解答题(本题包括8个小题)19.20千米【解析】【分析】由勾股定理两直角边的平方和等于斜边的平方即可求,即在直角三角形DAE和直角三角形CBE中利用斜边相等两次利用勾股定理得到AD2+AE2=BE2+BC2,设AE为x,则BE=10﹣x,将DA=8,CB=2代入关系式即可求得.【详解】解:设基地E应建在离A站x千米的地方.则BE=(50﹣x)千米在Rt△ADE中,根据勾股定理得:AD2+AE2=DE2∴302+x2=DE2在Rt△CBE中,根据勾股定理得:CB2+BE2=CE2∴202+(50﹣x)2=CE2又∵C、D两村到E点的距离相等.∴DE=CE∴DE2=CE2∴302+x2=202+(50﹣x)2解得x=20∴基地E应建在离A站20千米的地方.考点:勾股定理的应用.20.(1)60°;(2)证明略;(3)8 3π【解析】(1)根据∠ABC与∠D都是劣弧AC所对的圆周角,利用圆周角定理可证出∠ABC=∠D=60°;(2)根据AB是⊙O的直径,利用直径所对的圆周角是直角得到∠ACB=90°,结合∠ABC=60°求得∠BAC=30°,从而推出∠BAE=90°,即OA⊥AE,可得AE是⊙O的切线;(3)连结OC,证出△OBC是等边三角形,算出∠BOC=60°且⊙O的半径等于4,可得劣弧AC所对的圆心角∠AOC=120°,再由弧长公式加以计算,可得劣弧AC的长.【详解】(1)∵∠ABC与∠D都是弧AC所对的圆周角,∴∠ABC=∠D=60°;(2)∵AB是⊙O的直径,∴∠ACB=90°.∴∠BAC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,∴AE是⊙O的切线;(3)如图,连接OC,∵OB=OC,∠ABC=60°,∴△OBC是等边三角形,∴OB=BC=4,∠BOC=60°,∴∠AOC=120°,∴劣弧AC的长为120180Rπ=1204180π=83π.【点睛】本题考查了切线长定理及弧长公式,熟练掌握定理及公式是解题的关键.21.(1)40人;1;(2)平均数是15;众数16;中位数15.【解析】【分析】(1)用13岁年龄的人数除以13岁年龄的人数所占的百分比,即可得本次接受调查的跳水运动员人数;用16岁年龄的人数除以本次接受调查的跳水运动员人数即可求得m的值;(2)根据统计图中给出的信息,结合求平均数、众数、中位数的方法求解即可.解:(1)4÷10%=40(人),m=100-27.5-25-7.5-10=1;故答案为40,1.(2)观察条形统计图, ∵1341410151116121731540x ⨯+⨯+⨯+⨯+⨯==, ∴这组数据的平均数为15;∵在这组数据中,16出现了12次,出现的次数最多,∴这组数据的众数为16;∵将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有15+15=152, ∴这组数据的中位数为15.【点睛】本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键.22.(1)y =x ﹣2,y=12-x 2+32+1;(2)a <12;(3)m <﹣2或m >1. 【解析】【分析】(1)直接将点代入函数解析式,用待定系数法即可求解函数解析式;(2)点(2,1)代入一次函数解析式,得到n =−2m ,利用m 与n 的关系能求出二次函数对称轴x =1,由一次函数经过一、三象限可得m >1,确定二次函数开口向上,此时当 y 1>y 2,只需让a 到对称轴的距离比a +1到对称轴的距离大即可求a 的范围.(3)将A (h ,k )分别代入两个二次函数解析式,再结合对称抽得h =n 2m-,将得到的三个关系联立即可得到11h m =-+,再由题中已知−1<h <1,利用h 的范围求出m 的范围. 【详解】 (1)将点(2,1),(3,1),代入一次函数y =mx+n 中,0213m n m n=+⎧⎨=+⎩, 解得12m n =⎧⎨=-⎩, ∴一次函数的解析式是y =x ﹣2,再将点(2,1),(3,1),代入二次函数y =mx 2+nx+1,04211931m n m n =++⎧⎨=++⎩, 解得1232m n ⎧=-⎪⎪⎨⎪=⎪⎩, ∴二次函数的解析式是213122y x =-++. (2)∵一次函数y =mx+n 经过点(2,1),∴n =﹣2m ,∵二次函数y =mx 2+nx+1的对称轴是x =n 2m -, ∴对称轴为x =1,又∵一次函数y =mx+n 图象经过第一、三象限,∴m >1,∵y 1>y 2,∴1﹣a >1+a ﹣1,∴a <12. (3)∵y =mx 2+nx+1的顶点坐标为A (h ,k ),∴k =mh 2+nh+1,且h =n 2m-, 又∵二次函数y =x 2+x+1也经过A 点,∴k =h 2+h+1,∴mh 2+nh+1=h 2+h+1, ∴11h m =-+, 又∵﹣1<h <1,∴m <﹣2或m >1.【点睛】本题考点:点与函数的关系;二次函数的对称轴与函数值关系;待定系数法求函数解析式;不等式的解法;数形结合思想是解决二次函数问题的有效方法.23.(1)y =﹣x ﹣2;(2)C (﹣2,0),△AOB=6,,(3)﹣4<x <0或x >2.【解析】【分析】(1)先把B点坐标代入代入y=mx,求出m得到反比例函数解析式,再利用反比例函数解析式确定A点坐标,然后利用待定系数法求一次函数解析式;(2)根据x轴上点的坐标特征确定C点坐标,然后根据三角形面积公式和△AOB的面积=S△AOC+S△BOC 进行计算;(3)观察函数图象得到当﹣4<x<0或x>2时,一次函数图象都在反比例函数图象下方.【详解】解:∵B(2,﹣4)在反比例函数y=mx的图象上,∴m=2×(﹣4)=﹣8,∴反比例函数解析式为:y=﹣8x,把A(﹣4,n)代入y=﹣8x,得﹣4n=﹣8,解得n=2,则A点坐标为(﹣4,2).把A(﹣4,2),B(2,﹣4)分别代入y=kx+b,得4224k bk b-+=⎧⎨+=-⎩,解得12kb=-⎧⎨=-⎩,∴一次函数的解析式为y=﹣x﹣2;(2)∵y=﹣x﹣2,∴当﹣x﹣2=0时,x=﹣2,∴点C的坐标为:(﹣2,0),△AOB的面积=△AOC的面积+△COB的面积=12×2×2+12×2×4=6;(3)由图象可知,当﹣4<x<0或x>2时,一次函数的值小于反比例函数的值.【点睛】本题考查的是一次函数与反比例函数的交点问题以及待定系数法的运用,灵活运用待定系数法是解题的关键,注意数形结合思想的正确运用.24.15/km h【解析】试题分析:设骑车学生的速度为xkm/h,利用时间关系列方程解应用题,一定要检验.试题解析:解:设骑车学生的速度为xkm/h,由题意得1010123x x -= , 解得 x 15=.经检验x 15=是原方程的解.答: 骑车学生的速度为15km/h .25.(1)k =﹣1;(2)当﹣4<k <﹣1时,抛物线与x 轴有且只有一个公共点.【解析】【分析】(1)由抛物线的对称轴直线可得h ,然后再由抛物线交于原点代入求出k 即可;(2)先根据抛物线与x 轴有公共点求出k 的取值范围,然后再根据抛物线的对称轴及当﹣1<x <2时,抛物线与x 轴有且只有一个公共点,进一步求出k 的取值范围即可.【详解】解:(1)∵抛物线y =(x ﹣h )2+k 的对称轴是直线x =1,∴h =1,把原点坐标代入y =(x ﹣1)2+k ,得,(2﹣1)2+k =2,解得k =﹣1;(2)∵抛物线y =(x ﹣1)2+k 与x 轴有公共点,∴对于方程(x ﹣1)2+k =2,判别式b 2﹣4ac =﹣4k≥2,∴k≤2.当x =﹣1时,y =4+k ;当x =2时,y =1+k ,∵抛物线的对称轴为x =1,且当﹣1<x <2时,抛物线与x 轴有且只有一个公共点,∴4+k >2且1+k <2,解得﹣4<k <﹣1,综上,当﹣4<k <﹣1时,抛物线与x 轴有且只有一个公共点.【点睛】抛物线与一元二次方程的综合是本题的考点,熟练掌握抛物线的性质是解题的关键.26.∠CMA =35°.【解析】【分析】根据两直线平行,同旁内角互补得出70CAB ∠=︒,再根据AM 是CAB ∠的平分线,即可得出MAB ∠的度数,再由两直线平行,内错角相等即可得出结论.【详解】∵AB ∥CD ,∴∠ACD+∠CAB=180°.又∵∠ACD=110°,∴∠CAB=70°,由作法知,AM 是CAB ∠的平分线,∴1352MAB CAB ∠=∠=︒. 又∵AB ∥CD ,∴∠CMA=∠BAM=35°.【点睛】 本题考查了角平分线的作法和意义,平行线的性质等知识解决问题.解题时注意:两直线平行,内错角相等.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为()A.140°B.160°C.170°D.150°2.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=1.那么在计算6×7时,左、右手伸出的手指数应该分别为()A.1,2 B.1,3C.4,2 D.4,33.如图,线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C的坐标分别为()A.(4,4)B.(3,3)C.(3,1)D.(4,1)4.下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有()个.A.4 B.3 C.2 D.15.实数a、b、c在数轴上的位置如图所示,则代数式|c﹣a|﹣|a+b|的值等于()A.c+b B.b﹣c C.c﹣2a+b D.c﹣2a﹣b6.已知y 关于x 的函数图象如图所示,则当y <0时,自变量x 的取值范围是( )A .x <0B .﹣1<x <1或x >2C .x >﹣1D .x <﹣1或1<x <27.如图,在▱ABCD 中,对角线AC 的垂直平分线分别交AD 、BC 于点E 、F ,连接CE ,若△CED 的周长为6,则▱ABCD 的周长为( )A .6B .12C .18D .248.如图,A,B 两点分别位于一个池塘的两端,小聪想用绳子测量A,B 间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B 的点C,找到AC,BC 的中点D,E,并且测出DE 的长为10m,则A,B 间的距离为( )A .15mB .25mC .30mD .20m9.将2001×1999变形正确的是( ) A .20002﹣1B .20002+1C .20002+2×2000+1D .20002﹣2×2000+110.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( )A .144(1﹣x )2=100B .100(1﹣x )2=144C .144(1+x )2=100D .100(1+x )2=144 二、填空题(本题包括8个小题)11.如果正比例函数3)y k x =-(的图像经过第一、三象限,那么k 的取值范围是 __. 12.有五张分别印有等边三角形、正方形、正五边形、矩形、正六边形图案的卡片(这些卡片除图案不同外,其余均相同).现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为_____.13.设△ABC 的面积为1,如图①,将边BC 、AC 分别2等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 1;如图②将边BC 、AC 分别3等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 2;…,依此类推,则S n 可表示为________.(用含n 的代数式表示,其中n 为正整数)14.当x = __________时,二次函数226y x x =-+ 有最小值___________.15.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____. 16.在△ABC 中,∠C =30°,∠A ﹣∠B =30°,则∠A =_____.17.如图,一组平行横格线,其相邻横格线间的距离都相等,已知点A 、B 、C 、D 、O 都在横格线上,且线段AD ,BC 交于点O ,则AB :CD 等于______.18.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),…那么点A 4n+1(n 为自然数)的坐标为 (用n 表示)三、解答题(本题包括8个小题)19.(6分)如图,P 是半圆弧AB 上一动点,连接PA 、PB ,过圆心O 作OC //BP 交PA 于点C ,连接CB.已知AB 6cm =,设O ,C 两点间的距离为xcm ,B ,C 两点间的距离为ycm . 小东根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行探究. 下面是小东的探究过程,请补充完整:()1通过取点、画图、测量,得到了x 与y 的几组值,如下表:x /cm0 0.511.52 2.53 y /cm33.1 3.54.05.36(说明:补全表格时相关数据保留一位小数)()2建立直角坐标系,描出以补全后的表中各对应值为坐标的点,画出该函数的图象;()3结合画出的函数图象,解决问题:直接写出OBC周长C的取值范围是______.20.(6分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.第一批饮料进货单价多少元?若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?21.(6分)某市扶贫办在精准扶贫工作中,组织30辆汽车装运花椒、核桃、甘蓝向外地销售.按计划30辆车都要装运,每辆汽车只能装运同一种产品,且必须装满,根据下表提供的信息,解答以下问题:产品名称核桃花椒甘蓝每辆汽车运载量(吨)10 6 4每吨土特产利润(万元)0.7 0.8 0.5若装运核桃的汽车为x辆,装运甘蓝的车辆数是装运核桃车辆数的2倍多1,假设30辆车装运的三种产品的总利润为y万元.求y与x之间的函数关系式;若装花椒的汽车不超过8辆,求总利润最大时,装运各种产品的车辆数及总利润最大值.22.(8分)如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.23.(8分)某汽车厂计划半年内每月生产汽车20辆,由于另有任务,每月上班人数不一定相等,实每月生产量与计划量相比情况如下表(增加为正,减少为负)生产量最多的一天比生产量最少的一天多生产多少辆?半年内总生产量是多少?比计划多了还是少了,增加或减少多少?24.(10分)某市A ,B 两个蔬菜基地得知四川C ,D 两个灾民安置点分别急需蔬菜240t 和260t 的消息后,决定调运蔬菜支援灾区,已知A 蔬菜基地有蔬菜200t ,B 蔬菜基地有蔬菜300t ,现将这些蔬菜全部调运C ,D 两个灾区安置点.从A 地运往C ,D 两处的费用分别为每吨20元和25元,从B 地运往C ,D 两处的费用分别为每吨15元和18元.设从B 地运往C 处的蔬菜为x 吨.请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x 的值; C D 总计/t A 200 B x 300 总计/t240260500(2)设A ,B 两个蔬菜基地的总运费为w 元,求出w 与x 之间的函数关系式,并求总运费最小的调运方案;经过抢修,从B 地到C 处的路况得到进一步改善,缩短了运输时间,运费每吨减少m 元(m >0),其余线路的运费不变,试讨论总运费最小的调动方案. 25.(10分)观察下列等式:第1个等式:1111a 11323==⨯-⨯(); 第2个等式:21111a 35235==⨯-⨯(); 第3个等式:31111a 57257==⨯-⨯(); 第4个等式:41111a 79279==⨯-⨯(); …请解答下列问题:按以上规律列出第5个等式:a 5= = ;用含有n 的代数式表示第n 个等式:a n = = (n 为正整数);求a 1+a 2+a 3+a 4+…+a 100的值.26.(12分)在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据: 摸球的次数n 100 200 300 500 800 1000 3000 摸到白球的次数m651241783024815991803(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)假如你摸一次,你摸到白球的概率P(白球)=;试估算盒子里黑、白两种颜色的球各有多少只?参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.B【解析】试题分析:根据∠AOD=20°可得:∠AOC=70°,根据题意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°.考点:角度的计算2.A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30,30+4×3=42,故选A.点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.3.A【解析】【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出C点坐标.【详解】∵以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,∴A点与C点是对应点,∵C点的对应点A的坐标为(2,2),位似比为1:2,∴点C的坐标为:(4,4)故选A.【点睛】本题考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.4.C。
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,将木条a ,b 与c 钉在一起,∠1=70°,∠2=50°,要使木条a 与b 平行,木条a 旋转的度数至少是( )A .10°B .20°C .50°D .70°2.已知二次函数y =ax 2+bx+c (a≠0)的图象如图所示,则下列结论: ① abc <0;② 2a +b =0; ③ b 2-4ac <0;④ 9a+3b+c >0; ⑤ c+8a <0.正确的结论有( ).A .1个B .2个C .3个D .4个3.-4的绝对值是( )A .4B .14C .-4D .14- 4.某品牌的饮水机接通电源就进入自动程序:开机加热到水温100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min )成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y (℃)和时间x (min )的关系如图所示,水温从100℃降到35℃所用的时间是( )A .27分钟B .20分钟C .13分钟D .7分钟 5.学完分式运算后,老师出了一道题“计算:23224x x x x +-++-”. 小明的做法:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----; 小亮的做法:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-;小芳的做法:原式3231311 2(2)(2)222x x x xx x x x x x+-++-=-=-== ++-+++.其中正确的是()A.小明B.小亮C.小芳D.没有正确的6.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为40km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法不正确的是( )A.甲的速度是10km/h B.乙的速度是20km/hC.乙出发13h后与甲相遇D.甲比乙晚到B地2h7.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃8.下列各运算中,计算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a29.一个几何体的三视图如图所示,则该几何体的表面积是()A.24+2πB.16+4πC.16+8πD.16+12π10.计算:9115()515÷⨯-得()A.-95B.-1125C.-15D.1125二、填空题(本题包括8个小题)11.科技改变生活,手机导航极大方便了人们的出行.如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶6千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C.小明发现古镇C恰好在A地的正北方向,则B、C两地的距离是_____千米.12.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,则树高_____________米(结果保留根号).13.写出一个大于3且小于4的无理数:___________.14.不等式组5243x x +>⎧⎨-≥⎩的最小整数解是_____. 15.在△ABC 中,若∠A ,∠B 满足|cosA -12|+(sinB -22)2=0,则∠C =_________. 16.若不等式组130x a bx ->⎧⎨+≥⎩的解集是﹣1<x≤1,则a =_____,b =_____. 17.如果一个正多边形的中心角为72°,那么这个正多边形的边数是 .18.如图,利用标杆BE 测量建筑物的高度,已知标杆BE 高1.2m ,测得 1.6,12.4AB m BC m ==,则建筑物CD 的高是__________m .三、解答题(本题包括8个小题)19.(6分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x/(元/千克)50 60 70 销售量y/千克 100 80 60(1)求y 与x 之间的函数表达式;设商品每天的总利润为W(元),求W 与x 之间的函数表达式(利润=收入-成本);试说明(2)中总利润W 随售价x 的变化而变化的情况,并指出售价为多少时获得最大利润,最大利润是多少?20.(6分)水龙头关闭不紧会造成滴水,小明用可以显示水量的容器做图①所示的试验,并根据试验数据绘制出图②所示的容器内盛水量W(L)与滴水时间t(h)的函数关系图象,请结合图象解答下列问题:容器内原有水多少?求W与t之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升?图①图②21.(6分)如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B,求证:AC•CD=CP•BP;若AB=10,BC=12,当PD∥AB时,求BP的长.22.(8分)已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判定△ABC的形状.23.(8分)解不等式组2233134x xx x+≤+⎧⎪+⎨<⎪⎩(),并把解集在数轴上表示出来.24.(10分)某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.2014年这种礼盒的进价是多少元/盒?若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?25.(10分)尺规作图:校园有两条路OA、OB,在交叉路口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置P.(不写画图过程,保留作图痕迹)26.(12分)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE,已知∠BAC=30°,EF⊥AB,垂足为F,连接DF试说明AC=EF;求证:四边形ADFE是平行四边形.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.B【解析】【分析】要使木条a 与b 平行,那么∠1=∠2,从而可求出木条a 至少旋转的度数.【详解】解:∵要使木条a 与b 平行,∴∠1=∠2,∴当∠1需变为50 º,∴木条a 至少旋转:70º-50º=20º.故选B.【点睛】本题考查了旋转的性质及平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.2.C【解析】【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:抛物线开口向下,得:a <0;抛物线的对称轴为x=-2b a=1,则b=-2a ,2a+b=0,b=-2a ,故b >0;抛物线交y 轴于正半轴,得:c >0.∴abc <0, ①正确;2a+b=0,②正确;由图知:抛物线与x 轴有两个不同的交点,则△=b 2-4ac >0,故③错误;由对称性可知,抛物线与x 轴的正半轴的交点横坐标是x=3,所以当x=3时,y= 9a+3b+c=0,故④错误; 观察图象得当x=-2时,y <0,即4a-2b+c<0∵b=-2a,∴4a+4a+c<0即8a+c<0,故⑤正确.正确的结论有①②⑤,故选:C【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的表达式求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.3.A【解析】【分析】根据绝对值的概念计算即可.(绝对值是指一个数在坐标轴上所对应点到原点的距离叫做这个数的绝对值.)【详解】根据绝对值的概念可得-4的绝对值为4.【点睛】错因分析:容易题.选错的原因是对实数的相关概念没有掌握,与倒数、相反数的概念混淆.4.C【解析】【分析】先利用待定系数法求函数解析式,然后将y=35代入,从而求解.【详解】解:设反比例函数关系式为:kyx=,将(7,100)代入,得k=700,∴700yx=,将y=35代入700yx =,解得20x;∴水温从100℃降到35℃所用的时间是:20-7=13,故选C.【点睛】本题考查反比例函数的应用,利用数形结合思想解题是关键.5.C【解析】试题解析:23224x x x x +-++- =()()32222x x x x x +--++- =3122x x x +-++ =3-12x x ++ =22x x ++ =1.所以正确的应是小芳.故选C .6.B【解析】由图可知,甲用4小时走完全程40km ,可得速度为10km/h ;乙比甲晚出发一小时,用1小时走完全程,可得速度为40km/h .故选B7.B【解析】试题分析:由题意知,“-”代表零下,因此-3℃表示气温为零下3℃.故选B.考点:负数的意义8.D【解析】【分析】根据同底数幂的除法、积的乘方、完全平方公式、单项式乘法的法则逐项计算即可得.【详解】A 、原式=a 9,故A 选项错误,不符合题意;B 、原式=27a 6,故B 选项错误,不符合题意;C 、原式=a 2﹣2ab+b 2,故C 选项错误,不符合题意;D 、原式=6a 2,故D 选项正确,符合题意,故选D .【点睛】本题考查了同底数幂的除法、积的乘方、完全平方公式、单项式乘法等运算,熟练掌握各运算的运算法则是解本题的关键.9.D【解析】【分析】根据三视图知该几何体是一个半径为2、高为4的圆柱体的纵向一半,据此求解可得. 【详解】 该几何体的表面积为2×12•π•22+4×4+12×2π•2×4=12π+16, 故选:D .【点睛】本题主要考查由三视图判断几何体,解题的关键是根据三视图得出几何体的形状及圆柱体的有关计算. 10.B【解析】【分析】同级运算从左向右依次计算,计算过程中注意正负符号的变化.【详解】 919111551551515⎛⎫⎛⎫÷⨯-=⨯⨯-= ⎪ ⎪⎝⎭⎝⎭-1125 故选B.【点睛】本题考查的是有理数的混合运算,熟练掌握运算法则是解题的关键.二、填空题(本题包括8个小题)11.36【解析】【分析】作BE ⊥AC 于E ,根据正弦的定义求出BE ,再根据正弦的定义计算即可.【详解】解:作BE ⊥AC 于E ,在Rt △ABE 中,sin ∠BAC =BE AB , ∴BE =AB•sin ∠BAC =3633= 由题意得,∠C =45°,∴BC =BE sin C =233362÷=(千米), 故答案为36.【点睛】 本题考查的是解直角三角形的应用-方向角问题,掌握方向角的概念、熟记锐角三角函数的定义是解题的关键.12.43【解析】设出树高,利用所给角的正切值分别表示出两次影子的长,然后作差建立方程即可.解:如图所示,在RtABC 中,tan ∠ACB=AB BC,∴BC=0tan tan 60AB x ACB =∠, 同理:BD=0tan 30x , ∵两次测量的影长相差8米,∴00tan 30tan 60x x -=8, ∴3 故答案为3.“点睛”本题考查了平行投影的应用,太阳光线下物体影子的长短不仅与物体有关,而且与时间有关,不同时间随着光线方向的变化,影子的方向也在变化,解此类题,一定要看清方向.解题关键是根据三角函数的几何意义得出各线段的比例关系,从而得出答案.1310π,等,答案不唯一.【解析】【详解】本题考查无理数的概念.无限不循环小数叫做无理数.介于3和4之间的无理数有无穷多个,因为2239,416==,故而9和1610,11,12,,15都是无理数.14.-1【解析】 分析:先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.详解:5243xx+⎧⎨-≥⎩>①②.∵解不等式①得:x>-3,解不等式②得:x≤1,∴不等式组的解集为-3<x≤1,∴不等式组的最小整数解是-1,故答案为:-1.点睛:本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.15.75°【解析】【分析】根据绝对值及偶次方的非负性,可得出cosA及sinB的值,从而得出∠A及∠B的度数,利用三角形的内角和定理可得出∠C的度数.【详解】∵|cosA-12|+(sinB-2)2=0,∴cosA=12,,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=75°,故答案为:75°.【点睛】本题考查了特殊角的三角函数值及非负数的性质,解答本题的关键是得出cosA及sinB 的值,另外要求我们熟练掌握一些特殊角的三角函数值.16.-2 -3【解析】【分析】先求出每个不等式的解集, 再求出不等式组的解集, 即可得出关于a、b的方程, 求出即可.【详解】解:由题意得:1?30? x abx->⎧⎨+≥⎩①②解不等式① 得: x>1+a ,解不等式②得:x≤3 b -不等式组的解集为: 1+a<x≤3 b -不等式组的解集是﹣1<x≤1,∴..1+a=-1, 3b -=1, 解得:a=-2,b=-3故答案为: -2, -3.【点睛】本题主要考查解含参数的不等式组.17.5【解析】试题分析:中心角的度数=360n ︒36072n︒︒=,5n = 考点:正多边形中心角的概念.18.10.5【解析】【分析】先证△AEB ∽△ABC ,再利用相似的性质即可求出答案.【详解】解:由题可知,BE ⊥AC ,DC ⊥AC∵BE//DC ,∴△AEB ∽△ADC ,∴BE AB CD AC=, 即:1.2 1.61.612.4CD =+, ∴CD =10.5(m ).故答案为10.5.【点睛】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键.三、解答题(本题包括8个小题)19. (1)y =-2x +200(4080)x ≤≤ (2)W =-2x 2+280x -8 000(3)售价为70元时,获得最大利润,这时最大利润为1 800元.【解析】【分析】(1)用待定系数法求一次函数的表达式;(2)利用利润的定义,求与之间的函数表达式;(3)利用二次函数的性质求极值.【详解】解:(1)设y kx b =+,由题意,得501006080k b k b +=⎧⎨+=⎩,解得2200k b =-⎧⎨=⎩,∴所求函数表达式为2200y x =-+. (2)2(40)(2200)22808000W x x x x =--+=-+-.(3)22228080002(70)1800W x x x =-+-=--+,其中4080x ≤≤,∵20-<,∴当时,随的增大而增大,当7080x <≤时,随的增大而减小,当售价为70元时,获得最大利润,这时最大利润为1800元.考点: 二次函数的实际应用.20.(1)0.3 L ;(2)在这种滴水状态下一天的滴水量为9.6 L.【解析】【分析】(1)根据点()0,0.3的实际意义可得;(2)设W 与t 之间的函数关系式为W kt b =+,待定系数法求解可得,计算出24t =时W 的值,再减去容器内原有的水量即可.【详解】(1)由图象可知,容器内原有水0.3 L.(2)由图象可知W 与t 之间的函数图象经过点(0,0.3),故设函数关系式为W =kt +0.3.又因为函数图象经过点(1.5,0.9),代入函数关系式,得1.5k +0.3=0.9,解得k =0.4.故W 与t 之间的函数关系式为W =0.4t +0.3.当t =24时,W =0.4×24+0.3=9.9(L ),9.9-0.3=9.6(L ),即在这种滴水状态下一天的滴水量为9.6 L.【点睛】本题考查了一次函数的应用,关键是利用待定系数法正确求出一次函数的解析式.21.(1)证明见解析;(2)253. 【解析】(2)易证∠APD=∠B=∠C ,从而可证到△ABP ∽△PCD ,即可得到BP AB CD CP=,即AB•CD=CP•BP ,由AB=AC 即可得到AC•CD=CP•BP ;(2)由PD ∥AB 可得∠APD=∠BAP ,即可得到∠BAP=∠C ,从而可证到△BAP ∽△BCA ,然后运用相似三角形的性质即可求出BP 的长.解:(1)∵AB=AC ,∴∠B=∠C .∵∠APD=∠B ,∴∠APD=∠B=∠C .∵∠APC=∠BAP+∠B ,∠APC=∠APD+∠DPC ,∴∠BAP=∠DPC ,∴△ABP ∽△PCD , ∴BP AB CD CP=, ∴AB•CD=CP•BP .∵AB=AC ,∴AC•CD=CP•BP ;(2)∵PD ∥AB ,∴∠APD=∠BAP .∵∠APD=∠C ,∴∠BAP=∠C .∵∠B=∠B ,∴△BAP ∽△BCA , ∴BA BP BC BA=. ∵AB=10,BC=12, ∴101210BP =, ∴BP=253. “点睛”本题主要考查了相似三角形的判定与性质、等腰三角形的性质、平行线的性质、三角形外角的性质等知识,把证明AC•CD=CP•BP 转化为证明AB•CD=CP•BP 是解决第(1)小题的关键,证到∠BAP=∠C 进而得到△BAP ∽△BCA 是解决第(2)小题的关键.22.等腰直角三角形【解析】【分析】首先把等式的左右两边分解因式,再考虑等式成立的条件,从而判断△ABC 的形状.【详解】解:∵a 2c 2-b 2c 2=a 4-b 4,∴a 4-b 4-a 2c 2+b 2c 2=0,∴(a 4-b 4)-(a 2c 2-b 2c 2)=0,∴(a 2+b 2)(a 2-b 2)-c 2(a 2-b 2)=0,∴(a 2+b 2-c 2)(a 2-b 2)=0得:a 2+b 2=c 2或a=b ,或者a 2+b 2=c 2且a=b ,即△ABC 为直角三角形或等腰三角形或等腰直角三角形.考点:勾股定理的逆定理.23.不等式组的解集为13x ≤<,在数轴上表示见解析.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【详解】由2(x+2)≤3x+3,可得:x≥1,由134x x+<,可得:x<3,则不等式组的解为:1≤x<3,不等式组的解集在数轴上表示如图所示:【点睛】本题考查了一元一次不等式组,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.24.(1)35元/盒;(2)20%.【解析】【详解】试题分析:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据2014年花3500元与2016年花2400元购进的礼盒数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设年增长率为m,根据数量=总价÷单价求出2014年的购进数量,再根据2014年的销售利润×(1+增长率)2=2016年的销售利润,即可得出关于m的一元二次方程,解之即可得出结论.试题解析:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据题意得:3500240011x x=-,解得:x=35,经检验,x=35是原方程的解.答:2014年这种礼盒的进价是35元/盒.(2)设年增长率为m,2014年的销售数量为3500÷35=100(盒).根据题意得:(60﹣35)×100(1+a)2=(60﹣35+11)×100,解得:a=0.2=20%或a=﹣2.2(不合题意,舍去).答:年增长率为20%.考点:一元二次方程的应用;分式方程的应用;增长率问题.25.见解析.【解析】分别作线段CD的垂直平分线和∠AOB的角平分线,它们的交点即为点P.【详解】如图,点P为所作.【点睛】本题考查了作图−应用与设计作图,熟知角平分线的性质与线段垂直平分线的性质是解答此题的关键.26.证明见解析.【解析】【分析】(1)一方面Rt△ABC中,由∠BAC=30°可以得到AB=2BC,另一方面△ABE是等边三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,从而可证明△AFE≌△BCA,再根据全等三角形的性质即可证明AC=EF.(2)根据(1)知道EF=AC,而△ACD是等边三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形.【详解】证明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC.又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF.∴AF=BC.∵在Rt△AFE和Rt△BCA中,AF=BC,AE=BA,∴△AFE≌△BCA(HL).∴AC=EF.(2)∵△ACD是等边三角形,∴∠DAC=60°,AC=AD.∴∠DAB=∠DAC+∠BAC=90°.∴EF∥AD.∵AC=EF,AC=AD,∴EF=AD.∴四边形ADFE是平行四边形.考点:1.全等三角形的判定与性质;2.等边三角形的性质;3.平行四边形的判定.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在Rt△ABC中,∠ACB=90°,BC=12,AC=5,分别以点A,B为圆心,大于线段AB长度的一半为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连接CD,则△ACD的周长为()A.13 B.17 C.18 D.252.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是( )A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同C.左、右两个几何体的俯视图不相同D.左、右两个几何体的三视图不相同3.甲、乙、丙三家超市为了促销同一种定价为m元的商品,甲超市连续两次降价20%;乙超市一次性降价40%;丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品,最划算的超市是( ) A.甲B.乙C.丙D.都一样4.在半径等于5 cm的圆内有长为53cm的弦,则此弦所对的圆周角为A.60°B.120°C.60°或120°D.30°或120°5.如图,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10m,则A,B间的距离为()A.15m B.25m C.30m D.20m6.如图是某个几何体的展开图,该几何体是()A .三棱柱B .圆锥C .四棱柱D .圆柱7.函数228y x x m =--+的图象上有两点()11,A x y ,()22,B x y ,若122x x <<-,则( )A .12y y <B .12y y >C .12 y y =D .1y 、2y 的大小不确定8.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径AC 是( )A .13寸B .20寸C .26寸D .28寸9.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,AE =AF ,AC 与EF 相交于点G ,下列结论:①AC垂直平分EF ;②BE+DF =EF ;③当∠DAF =15°时,△AEF 为等边三角形;④当∠EAF =60°时,S △ABE =12S △CEF ,其中正确的是( )A .①③B .②④C .①③④D .②③④10.据中国电子商务研究中心() 发布2017《年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为( )A .81159.5610⨯元B .1011.595610⨯元C .111.1595610⨯元D .81.1595610⨯元二、填空题(本题包括8个小题)11.如图,在△ABC 中,AB=BC ,∠ABC=110°,AB 的垂直平分线DE 交AC 于点D ,连接BD,则∠ABD=___________°.12.已知a +b =1,那么a 2-b 2+2b =________.13.对于实数p q ,,我们用符号min{}p q ,表示p q ,两数中较小的数,如min{1,2}1=.因此,{}min 2,3--= ________;若{}22min (1)1x x -=,,则x =________.14.计算1x x +﹣11x +的结果为_____. 15.如图,在矩形纸片ABCD 中,AB =2cm ,点E 在BC 上,且AE =CE .若将纸片沿AE 折叠,点B 恰好与AC 上的点B 1重合,则AC =_____cm .16.如图,在平行四边形纸片上做随机扎针实验,则针头扎在阴影区域的概率为__________.17.请写出一个比2大且比4小的无理数:________.18.如图,边长为的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为三、解答题(本题包括8个小题)19.(6分)先化简,再求值:(x+2y )(x ﹣2y )+(20xy 3﹣8x 2y 2)÷4xy ,其中x =2018,y =1.20.(6分)如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上,已知纸板的两条直角边DE=0.4m ,EF=0.2m ,测得边DF 离地面的高度AC=1.5m ,CD=8m ,求树高.21.(6分)如图,已知AB 是圆O 的直径,F 是圆O 上一点,∠BAF 的平分线交⊙O 于点E ,交⊙O 的切线BC 于点C ,过点E 作ED ⊥AF ,交AF 的延长线于点D .求证:DE 是⊙O 的切线;若DE =3,CE =2. ①求BC AE的值;②若点G 为AE 上一点,求OG+12EG 最小值. 22.(8分)如图,已知平行四边形OBDC 的对角线相交于点E ,其中O (0,0),B (3,4),C (m ,0),反比例函数y=kx (k≠0)的图象经过点B .求反比例函数的解析式;若点E 恰好落在反比例函数y=k x 上,求平行四边形OBDC 的面积.23.(8分)进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:通过这段对话,请你求出该地驻军原来每天加固的米数.24.(10分)如图,男生楼在女生楼的左侧,两楼高度均为90m ,楼间距为AB ,冬至日正午,太阳光线与水平面所成的角为32.3,女生楼在男生楼墙面上的影高为CA ;春分日正午,太阳光线与水平面所成的角为55.7,女生楼在男生楼墙面上的影高为DA ,已知42CD m =.()1求楼间距AB ;()2若男生楼共30层,层高均为3m ,请通过计算说明多少层以下会受到挡光的影响?(参考数据:sin32.30.53≈,cos32.30.85≈,tan32.30.63≈,sin55.70.83≈,cos55.70.56≈,tan55.7 1.47)≈25.(10分)《九章算术》中有这样一道题,原文如下:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?大意为:今有甲、乙二人,不知其钱包里有多少钱.若乙把其一半的钱给甲,则甲的钱数为50;若甲把其23的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?请解答上述问题.26.(12分)某商场计划购进A、B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.C【解析】在Rt△ABC中,∠ACB=90°,BC=12,AC=5,根据勾股定理求得AB=13.根据题意可知,EF为线段AB的垂直平分线,在Rt△ABC中,根据直角三角形斜边的中线等于斜边的一半可得CD=AD=12AB,所以△ACD的直接利用已知几何体分别得出三视图进而分析得出答案.【详解】A、左、右两个几何体的主视图为:,故此选项错误;B、左、右两个几何体的左视图为:,故此选项正确;C、左、右两个几何体的俯视图为:,故此选项错误;D、由以上可得,此选项错误;故选B.【点睛】此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键.3.B【解析】【分析】根据各超市降价的百分比分别计算出此商品降价后的价格,再进行比较即可得出结论.【详解】解:降价后三家超市的售价是:甲为(1-20%)2m=0.64m,乙为(1-40%)m=0.6m,丙为(1-30%)(1-10%)m=0.63m,此题考查了列代数式,解题的关键是根据题目中的数量关系列出代数式,并对代数式比较大小.4.C【解析】【分析】根据题意画出相应的图形,由OD⊥AB,利用垂径定理得到D为AB的中点,由AB的长求出AD与BD的长,且得出OD为角平分线,在Rt△AOD中,利用锐角三角函数定义及特殊角的三角函数值求出∠AOD 的度数,进而确定出∠AOB的度数,利用同弧所对的圆心角等于所对圆周角的2倍,即可求出弦AB所对圆周角的度数.【详解】如图所示,∵OD⊥AB,∴D为AB的中点,即532在Rt△AOD中,OA=5,53 2∴sin∠AOD=5332=52,又∵∠AOD为锐角,∴∠AOD=60°,∴∠AOB=120°,∴∠ACB=12∠AOB=60°,又∵圆内接四边形AEBC对角互补,∴∠AEB=120°,则此弦所对的圆周角为60°或120°.故选C.【点睛】5.D【解析】【分析】根据三角形的中位线定理即可得到结果.【详解】解:由题意得AB=2DE=20cm,故选D.【点睛】本题考查的是三角形的中位线,解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.6.A【解析】【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【详解】解:观察图形可知,这个几何体是三棱柱.故选A.【点睛】本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键..7.A【解析】【分析】根据x1、x1与对称轴的大小关系,判断y1、y1的大小关系.【详解】解:∵y=-1x1-8x+m,∴此函数的对称轴为:x=-b2a =-()-82-2⨯=-1,∵x1<x1<-1,两点都在对称轴左侧,a<0,∴对称轴左侧y随x的增大而增大,∴y1<y1.故选A.题关键.8.C【解析】分析:设⊙O 的半径为r .在Rt △ADO 中,AD=5,OD=r-1,OA=r ,则有r 2=52+(r-1)2,解方程即可. 详解:设⊙O 的半径为r .在Rt △ADO 中,AD=5,OD=r-1,OA=r ,则有r 2=52+(r-1)2,解得r=13,∴⊙O 的直径为26寸,故选C .点睛:本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题9.C【解析】【分析】①通过条件可以得出△ABE ≌△ADF ,从而得出∠BAE=∠DAF ,BE=DF ,由正方形的性质就可以得出EC=FC ,就可以得出AC 垂直平分EF ,②设BC=a ,CE=y ,由勾股定理就可以得出EF 与x 、y 的关系,表示出BE 与EF ,即可判断BE+DF 与EF 关系不确定;③当∠DAF=15°时,可计算出∠EAF=60°,即可判断△EAF 为等边三角形,④当∠EAF=60°时,设EC=x ,BE=y ,由勾股定理就可以得出x 与y 的关系,表示出BE 与EF ,利用三角形的面积公式分别表示出S △CEF 和S △ABE ,再通过比较大小就可以得出结论.【详解】①四边形ABCD 是正方形,∴AB ═AD ,∠B=∠D=90°.在Rt △ABE 和Rt △ADF 中,AE AF AB AD =⎧⎨=⎩, ∴Rt △ABE ≌Rt △ADF (HL ),∴BE=DF∵BC=CD ,∴BC-BE=CD-DF ,即CE=CF ,。
黑龙江省佳木斯市2019-2020学年中考数学教学质量调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图所示的四个图案是四国冬季奥林匹克运动会会徽图案上的一部分图形,其中为轴对称图形的是()A.B.C.D.2.已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数y=6x的图象上,则y1、y2、y3的大小关系是( )A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y23.如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则∠C与∠D的大小关系为()A.∠C>∠D B.∠C<∠D C.∠C=∠D D.无法确定4.下列计算错误的是()A.a•a=a2B.2a+a=3a C.(a3)2=a5D.a3÷a﹣1=a45.计算12-+的值()A.1 B.1-C.3 D.3-6.-4的绝对值是()A.4 B.14C.-4 D.14-7.如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,MN2=y,则y关于x 的函数图象大致为A.B.C.D.8.不等式的最小整数解是()A.-3 B.-2 C.-1 D.29.如图,向四个形状不同高同为h的水瓶中注水,注满为止.如果注水量V(升)与水深h(厘米)的函数关系图象如图所示,那么水瓶的形状是()A.B.C.D.10.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.611.如图,在△ABC中,CD⊥AB于点D,E,F分别为AC,BC的中点,AB=10,BC=8,DE=4.5,则△DEF的周长是()A.9.5 B.13.5 C.14.5 D.1712.已知抛物线y=(x﹣1a)(x﹣11a)(a为正整数)与x轴交于M a、N a两点,以M a N a表示这两点间的距离,则M1N1+M2N2+…+M2018N2018的值是()A.20162017B.20172018C.20182019D.20192020二、填空题:(本大题共6个小题,每小题4分,共24分.)13.分解因式:a3﹣a=_____.14.关于x的一元二次方程x2﹣2kx+k2﹣k=0的两个实数根分别是x1、x2,且x12+x22=4,则x12﹣x1x2+x22的值是_____.15.一名模型赛车手遥控一辆赛车,先前进1m ,然后,原地逆时针方向旋转角a(0°<α<180°).被称为一次操作.若五次操作后,发现赛车回到出发点,则角α为16.分解因式:4a 2﹣1=_____.17.如图,矩形ABCD 中,AB =1,BC =2,点P 从点B 出发,沿B -C -D 向终点D 匀速运动,设点P 走过的路程为x ,△ABP 的面积为S ,能正确反映S 与x 之间函数关系的图象是( )A .B .C .D .18.在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有_____个.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AB 为⊙O 的直径,点D 、E 位于AB 两侧的半圆上,射线DC 切⊙O 于点D ,已知点E 是半圆弧AB 上的动点,点F 是射线DC 上的动点,连接DE 、AE ,DE 与AB 交于点P ,再连接FP 、FB ,且∠AED =45°.(1)求证:CD ∥AB ;(2)填空:①当∠DAE = 时,四边形ADFP 是菱形;②当∠DAE = 时,四边形BFDP 是正方形.20.(6分) (1)如图,四边形ABCD 为正方形,BF AE ⊥,那么BF 与AE 相等吗?为什么?(2)如图,在Rt ACB ∆中,BA BC =,90ABC ∠=︒,D 为BC 边的中点,BE AD ⊥于点E ,交AC 于F ,求:AF FC 的值(3)如图,Rt ACB ∆中,90ABC ∠=︒,D 为BC 边的中点,BE AD ⊥于点E ,交AC 于F ,若=3AB ,4BC =,求CF .21.(6分)如图,在△ABC中,BD平分∠ABC,AE⊥BD于点O,交BC于点E,AD∥BC,连接CD.(1)求证:AO=EO;(2)若AE是△ABC的中线,则四边形AECD是什么特殊四边形?证明你的结论.22.(8分)如图,⊙O的直径AD长为6,AB是弦,CD∥AB,∠A=30°,且CD=3.(1)求∠C的度数;(2)求证:BC是⊙O的切线.23.(8分)如图,某同学在测量建筑物AB的高度时,在地面的C处测得点A的仰角为30°,向前走60米到达D处,在D处测得点A的仰角为45°,求建筑物AB的高度.24.(10分)如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线点F.问:图中△APD与哪个三角形全等?并说明理由;求证:△APE∽△FPA;猜想:线段PC,PE,PF之间存在什么关系?并说明理由.25.(10分)如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD、BD、CD.(1)求证:AD=CD;(2)若AB=10,OE=3,求tan∠DBC的值.26.(12分)如图,已知点E,F分别是□ABCD的边BC,AD上的中点,且∠BAC=90°.(1)求证:四边形AECF是菱形;(2)若∠B=30°,BC=10,求菱形AECF面积.27.(12分)如图,四边形ABCD中,AC平分∠DAB,AC2=AB•AD,∠ADC=90°,E为AB的中点.(1)求证:△ADC∽△ACB;(2)CE与AD有怎样的位置关系?试说明理由;(3)若AD=4,AB=6,求ACAF的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据轴对称图形的概念求解.解:根据轴对称图形的概念,A、B、C都不是轴对称图形,D是轴对称图形.故选D.【点睛】本题主要考查轴对称图形,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形2.B【解析】【分析】分别把各点代入反比例函数的解析式,求出y1,y2,y3的值,再比较出其大小即可.【详解】∵点A(1,y1),B(2,y2),C(﹣3,y3)都在反比例函数y=6x的图象上,∴y1=61=6,y2=62=3,y3=63=-2,∵﹣2<3<6,∴y3<y2<y1,故选B.【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数值的大小比较,熟练掌握反比例函数图象上的点的坐标满足函数的解析式是解题的关键.3.A【解析】【分析】直接利用圆周角定理结合三角形的外角的性质即可得.【详解】连接BE,如图所示:∵∠ACB=∠AEB,∠AEB>∠D,∴∠C>∠D.【点睛】考查了圆周角定理以及三角形的外角,正确作出辅助线是解题关键.4.C【解析】【分析】【详解】解:A、a•a=a2,正确,不合题意;B、2a+a=3a,正确,不合题意;C、(a3)2=a6,故此选项错误,符合题意;D、a3÷a﹣1=a4,正确,不合题意;故选C.【点睛】本题考查幂的乘方与积的乘方;合并同类项;同底数幂的乘法;负整数指数幂.5.A【解析】【分析】根据有理数的加法法则进行计算即可.【详解】-+12=1故选:A.【点睛】本题主要考查有理数的加法,掌握有理数的加法法则是解题的关键.6.A【解析】【分析】根据绝对值的概念计算即可.(绝对值是指一个数在坐标轴上所对应点到原点的距离叫做这个数的绝对值.)【详解】根据绝对值的概念可得-4的绝对值为4.【点睛】错因分析:容易题.选错的原因是对实数的相关概念没有掌握,与倒数、相反数的概念混淆.7.B【解析】分析:分析y随x的变化而变化的趋势,应用排它法求解,而不一定要通过求解析式来解决:∵等边三角形ABC的边长为3,N为AC的三等分点,∴AN=1。
2020 年黑龙江省佳木斯市中考数学试卷一、选择题(每题3 分,满分30 分)1.(3 分)下列各运算中,计算正确的是( )A.a g2a 2aC.(x y)2 x 2 xy y22.(3 分)下列图标中是中心对称图形的是( )2 2 4 B.x 8 x2 x4D.(3x2 )39x6A.B.C.D.3.(3 分)如图,由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则所需的小正方体的个数最多是( )A.6 B.7 C.8 D.94.(3 分)一组从小到大排列的数据:x ,3,4,4,5(x 为正整数),唯一的众数是4,则该组数据的平均数是( )A.3.6 B.3.8 或3.2 C.3.6 或3.4 D.3.6 或3.2x (2k1)x k2k05.(3 分)已知关于x 的一元二次方程数k 的取值范围是( )2 2 有两个实数根x ,x1 ,则实214141 A.k B.k…C.k 4 D.k…且k 04k6.(3 分)如图,菱形ABCD 的两个顶点A ,C 在反比例函数y 的图象上,对角线xAC ,BD 的交点恰好是坐标原点O ,已知B (1,1) ,ABC 120,则k 的值是( )A .5B .4C .3D .2x k7.(3 分)已知关于 x 的分式方程4 的解为正数,则 k 的取值范围是 ( )x 2 2 xA . 8 kB . k 8 且 k 2C . k 8 且 k 2D . k 4 且 k 2 8.(3 分)如图,菱形 ABCD 的对角线 AC 、 BD 相交于点 O ,过点 D 作 DH AB 于点 H , 连接 OH ,若OA 6 , S 菱形ABCD48 ,则 OH 的长为 ( )A .4B .8C . 13D .69.(3 分)在抗击疫情网络知识竞赛中,为奖励成绩突出的学生,学校计划用 200 元钱购买A 、B 、C 三种奖品, A 种每个 10 元, B 种每个 20 元, C 种每个 30 元,在 C 种奖品不超过两个且钱全部用完的情况下,有多少种购买方案 ( ) A .12 种B .15 种C .16 种D .14 种10.(3 分)如图,正方形 ABCD 的边长为 a ,点 E 在边 AB 上运动(不与点 A , B 重合), DAM45,点 F 在射线 AM 上,且 AF2BE ,CF 与 AD 相交于点G ,连接 EC 、 EF 、EG .则下列结论:① ECF 45 ;② AEG 的周长为 (1 2)a ;2③ BE2DG 2 EG ;2 18 ④ EAF 的面积的最大值是 a 2;1⑤当 BE a 时,G 是线段 AD 的中点.3其中正确的结论是( )A.①②③B.②④⑤C.①③④D.①④⑤二、填空题(每题3 分,满分30 分)11.(3 分)5G 信号的传播速度为300000000m / s ,将数据300000000 用科学记数法表示为.112.(3 分)在函数y 中,自变量x 的取值范围是.x 213.(3 分)如图,Rt ABC 和Rt EDF 中, B D ,在不添加任何辅助线的情况下,请你添加一个条件,使Rt ABC 和Rt EDF 全等.14.(3 分)一个盒子中装有标号为1、2、3、4、5 的五个小球,这些球除了标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于6 的概率为.x 115.(3 分)若关于x 的一元一次不等式组有2 个整数解,则a 的取值范围2x a是.16.(3 分)如图,AD 是ABC 的外接圆e O 的直径,若BAD 40,则ACB .17.(3 分)小明在手工制作课上,用面积为150cm圆锥侧面,则这个圆锥的底面半径为cm .18.(3 分)如图,在边长为4 的正方形ABCD 中,将ABD 沿射线BD 平移,得到EGF ,2 ,半径为15cm 的扇形卡纸,围成一个连接EC 、GC .求EC GC 的最小值为.319.(3 分)在矩形ABCD 中,AB 1 ,BC a ,点E 在边BC 上,且B E a ,连接AE ,5将ABE 沿AE 折叠.若点B 的对应点B落在矩形ABCD 的边上,则折痕的长为.20.(3 分)如图,直线AM 的解析式为y x 1与x 轴交于点M ,与y 轴交于点A ,以OA为边作正方形ABCO ,点B 坐标为(1,1) .过点B 作EO MA 交MA 于点E ,交x 轴于点1O ,过点O 作x 轴的垂线交MA 于点A ,以O A 为边作正方形O A B C ,点B 的坐标为1 1 1 1 1 1 1 1 1 1(5,3) .过点B 作E O MA交MA 于E ,交x轴于点O ,过点O 作x轴的垂线交MA 于点1 12 1 22A .以O A 为边作正方形O ABC ..则点B2020 的坐标.2 2 2 2 2 2 2三、解答题(满分60 分)21.(5 分)先化简,再求值:(2 x 1 x 6x92) ,其中x 3 tan 303 .x 1 2x 122.(6 分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,ABC 的三个顶点A(5, 2) 、B(5,5) 、C(1,1) 均在格点上.(1)将ABC 向左平移5 个单位得到△A B C,并写出点A 的坐标;1 1 1 1(2)画出△A B C绕点C 顺时针旋转90后得到的△A B C ,并写出点A 的坐标;1 1 1 12 2 1 2(3)在(2)的条件下,求△A B C在旋转过程中扫过的面积(结果保留) .1 1 123.(6 分)如图,已知二次函数y x2 bx 的c 图象经过点A(1,0),B (3,0),与y 轴交于点C .(1)求抛物线的解析式;(2)抛物线上是否存在点P ,使PAB ABC ,若存在请直接写出点P 的坐标.若不存在,请说明理由.24.(7 分)为了提高学生体质,战胜疫情,某中学组织全校学生宅家一分钟跳绳比赛,全校跳绳平均成绩是每分钟99 次,某班班长统计了全班50 名学生一分钟跳绳成绩,列出的频数分布直方图如图所示,(每个小组包括左端点,不包括右端点).求:(1)该班一分钟跳绳的平均次数至少是多少,是否超过全校的平均次数;(2)该班的一个学生说:“我的跳绳成绩是我班的中位数”请你给出该生跳绳成绩的所在范围;(3)从该班中任选一人,其跳绳次数超过全校平均数的概率是多少.25.(8 分)为抗击疫情,支持武汉,某物流公司的快递车和货车每天往返于物流公司、武汉两地,快递车比货车多往返一趟,如图表示两车离物流公司的距离y (单位:千米)与快递车所用时间x (单位:时)的函数图象,已知货车比快递车早1 小时出发,到达武汉后用2 小时装卸货物,按原速、原路返回,货车比快递车最后一次返回物流公司晚1 小时.(1)求ME 的函数解析式;(2)求快递车第二次往返过程中,与货车相遇的时间.(3)求两车最后一次相遇时离武汉的距离.(直接写出答案)26.(8 分)如图①,在Rt ABC 中,ACB 90,AC BC ,点D 、E 分别在AC 、BC 边上,DC EC ,连接DE 、AE 、BD ,点M 、N 、P 分别是AE 、BD 、AB 的中点,连接PM 、PN 、MN .(1)BE 与MN 的数量关系是.(2)将DEC 绕点C 逆时针旋转到图②和图③的位置,判断BE 与MN 有怎样的数量关系?写出你的猜想,并利用图②或图③进行证明.27.(10 分)某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克m 元,售价每千克16 元;乙种蔬菜进价每千克n 元,售价每千克18 元.(1)该超市购进甲种蔬菜15 千克和乙种蔬菜20 千克需要430 元;购进甲种蔬菜10 千克和乙种蔬菜8 千克需要212 元,求m ,n 的值.(2)该超市决定每天购进甲、乙两种蔬菜共100 千克,且投入资金不少于1160 元又不多于1168 元,设购买甲种蔬菜x 千克(x 为正整数),求有哪几种购买方案.(3)在(2)的条件下,超市在获得的利润取得最大值时,决定售出的甲种蔬菜每千克捐出2a 元,乙种蔬菜每千克捐出a 元给当地福利院,若要保证捐款后的利润率不低于20% ,求a的最大值.228.(10 分)如图,在平面直角坐标系中,矩形ABCD 的边AB 长是x 3x 18 0 的根,连接BD ,DBC 30,并过点C 作CN BD ,垂足为N ,动点P 从B 点以每秒2 个单位长度的速度沿BD 方向匀速运动到D 点为止;点M 沿线段DA 以每秒 3 个单位长度的速度由点D 向点A 匀速运动,到点A 为止,点P 与点M 同时出发,设运动时间为t 秒(t 0) .(1)线段CN ;(2)连接PM 和MN ,求PMN 的面积s 与运动时间t 的函数关系式;(3)在整个运动过程中,当PMN 是以PN 为腰的等腰三角形时,直接写出点P 的坐标.2020 年黑龙江省佳木斯市中考数学试卷参考答案与试题解析一、选择题(每题 3 分,满分 30 分)1.(3 分)下列各运算中,计算正确的是 ( )A . a g 2 a2a C . (x y ) 2 x 2 xy y 2【解答】解: A 、 a g2 a 2aB 、 xxx ,故此选项错误;2 24 B . x 8x 2 x4 D . (3x 2 ) 39x 62 24 ,正确; 8 2 6C 、 (x y ) 2x 2 2xy y 2 ,故此选项错误;D 、 ( 3x 2 ) 327x ,6 故此选项错误;故选: A .2.(3 分)下列图标中是中心对称图形的是 ( )A .B .C .D .【解答】解: A .是轴对称图形,不是中心对称图形,故本选项不合题意;B .是中心对称图形,故本选项符合题意;C .是轴对称图形,不是中心对称图形,故本选项不合题意;D .是轴对称图形,不是中心对称图形,故本选项不合题意.故选: B .3.(3 分)如图,由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则所需的 小正方体的个数最多是 ( )A .6B .7C .8D .9【解答】解:综合主视图与左视图,第一行第 1 列最多有 2 个,第一行第 2 列最多有 1 个; 第二行第 1 列最多有 3 个,第二行第 2 列最多有 1 个;所以最多有: 2 1 3 1 7(个 ) . 故选: B .4.(3 分)一组从小到大排列的数据: x ,3,4,4, 5(x 为正整数),唯一的众数是 4,则 该组数据的平均数是 ( ) A .3.6B .3.8 或 3.2C .3.6 或 3.4D .3.6 或 3.2【解答】解:Q 从小到大排列的数据: x ,3,4,4,5(x 为正整数),唯一的众数是 4, x 2或 x 1,2 3 4 4 53.6 ;当 x 2 时,这组数据的平均数为 当 x 1时,这组数据的平均数为 51 3 4 45 3.4 ; 5 即这组数据的平均数为 3.4 或 3.6, 故选: C .x (2k 1)x k2k 05.(3 分)已知关于 x 的一元二次方程 数 k 的取值范围是 ( ) 22 有两个实数根 x , x1,则实21 41 41A . kB . k …C . k 4D . k … 且 k4 x (2k 1)x k2k 0【解答】解:Q 关于 x 的一元二次方程 2 2 有两个实数根 x , x1,2△ [ (2k 1)] 2 4 1 (k 22k )… 0 ,1解得: k … .4故选: B .k6.(3 分)如图,菱形 ABCD 的两个顶点 A , C 在反比例函数 y的图象上,对角线xAC , BD 的交点恰好是坐标原点 O ,已知 B ( 1,1) , ABC 120 ,则 k 的值是 ( )A .5B .4C .3D .2【解答】解:Q 四边形 ABCD 是菱形, BA AD , AC BD ,Q ABC120,BAD 60 ,ABD 是等边三角形,Q 点 B ( 1,1) , OB2 ,OBAO6 ,tan 30Q 直线 BD 的解析式为 yx ,直线 AD 的解析式为 y x , Q OA6 ,点 A 的坐标为 ( 3 , 3) ,kQ 点 A 在反比例函数 y 的图象上,x k 333,故选: C .xk7.(3 分)已知关于 x 的分式方程4 的解为正数,则 k 的取值范围是 ( )x 2 2 xA . 8 kB . k 8 且 k2 C . k8 且 k2 D . k4 且 k2 x k【解答】解:分式方程 4 ,x 2 2 x 去分母得: x 4(x 2)k ,去括号得: x 4x 8 k ,k 8 解得: x , 3 k 8k 8由分式方程的解为正数,得到 0 ,且2 33,解得: k8 且 k2 .故选: B . 8.(3 分)如图,菱形 ABCD 的对角线 AC 、 BD 相交于点 O ,过点 D 作 DHAB 于点 H ,连接 OH ,若OA 6 , S 菱形ABCD 48 ,则 OH 的长为 ( )A .4B .8C . 13D .6【解答】解:Q 四边形 ABCD 是菱形, OA OC 6 ,OBOD , ACBD ,AC 12 , Q DH AB ,BHD 90 ,1 OH B D ,2Q 菱形 ABCD 的面积 AC BD 112 BD48 , 1 22BD 8 ,1 OH B D 4 ;2 故选: A .9.(3 分)在抗击疫情网络知识竞赛中,为奖励成绩突出的学生,学校计划用 200 元钱购买A 、B 、C 三种奖品, A 种每个 10 元, B 种每个 20 元, C 种每个 30 元,在 C 种奖品不超过两个且钱全部用完的情况下,有多少种购买方案 ( ) A .12 种B .15 种C .16 种D .14 种【解答】解:设购买 A 种奖品 m 个,购买 B 种奖品 n 个, 当 C 种奖品个数为 1 个时, 根据题意得10m 20n 30 200 ,整理得 m 2n 17 ,Q m 、 n 都是正整数, 0 2m 17 , m 1,2,3,4,5,6,7,8; 当 C 种奖品个数为 2 个时,根据题意得10m 20n 60 200 ,整理得 m 2n 14 ,Q m 、 n 都是正整数, 0 2m 14 , m 1,2,3,4,5,6;有8 6 14 种购买方案.故选: D .10.(3 分)如图,正方形 ABCD 的边长为 a ,点 E 在边 AB 上运动(不与点 A , B 重合), DAM45,点 F 在射线 AM 上,且 AF2BE ,CF 与 AD 相交于点G ,连接 EC 、 EF 、EG .则下列结论:① ECF 45 ;② AEG 的周长为 (1 2)a ;2③ BE2DG 2 EG ;2 18 ④ EAF 的面积的最大值是 a 2;1⑤当 BE a 时,G 是线段 AD 的中点.3其中正确的结论是 ( )A .①②③B .②④⑤C .①③④D .①④⑤【解答】解:如图 1 中,在 BC 上截取 BH BE ,连接 EH .Q BEBH , EBH90 ,EH 2BE ,Q AF 2BE , AF EH ,Q DAM EHB 45 , BAD 90 ,FAE EHC135 ,Q BA BC , BE BH ,AE HC , FAE EHC (SAS ) ,EF EC , AEFECH , Q ECH CEB 90 ,AEFCEB 90 ,FEC 90 ,ECF EFC 45 ,故①正确,如图 2 中,延长 AD 到 H ,使得 DH BE ,则 CBE CDH (SAS ) ,ECBDCH ,ECH BCD 90 , ECGGCH45 ,Q CG CG ,CE CH ,GCE GCH (SAS ) ,EG GH ,Q GH DG DH , DHBE ,EG BE DG ,故③错误, AEG 的周 长AE EG AG AE AH AD DHAEAE EB AD AB AD2a ,故②错误, 设 BEx ,则 AE a x , AF 2x , 1 2 1 1 1 1 4 1 4 )(x 11 18 S AEF g (a x ) x 2 x ax (x 2 ax a 2 a 2a 2 ) 2a ,2 2 2 2 2 1 Q0 ,2 11 x a 时, 的面积的最大值为 a2 .故④正确, AEF218 1 当 BE a 时,设 DG x ,则 EG xa ,3 3 1 2在 Rt AEG 中,则有(x a ) 2 (a x 2 ) ( a ) ,2 3 3a解得x ,2AG GD ,故⑤正确,故选:D .二、填空题(每题3 分,满分30 分)11.(3 分)5G 信号的传播速度为300000000m / s ,将数据300000000 用科学记数法表示为310【解答】解:300000000 310故答案为:31012.(3 分)在函数y8 .8 .8 .1中,自变量x 的取值范围是x 2 .x 2【解答】解:由题意得,x 2 0 ,解得x 2 .故答案为:x 2 .13.(3 分)如图,Rt ABC 和Rt EDF 中, B D ,在不添加任何辅助线的情况下,请你添加一个条件AB ED(BC DF 或AC EF 或AE CF 等),使Rt ABC 和Rt EDF 全等.【解答】解:添加的条件是: AB ED , 理由是:Q 在 ABC 和 EDF 中 B DAB ED , A DEFABCEDF (ASA ) ,故答案为: AB ED .14.(3 分)一个盒子中装有标号为 1、2、3、4、5 的五个小球,这些球除了标号外都相同, 2从中随机摸出两个小球,则摸出的小球标号之和大于 6 的概率为 .5 【解答】解:画树状图如图所示:Q 共有 20 种等可能的结果,摸出的两个小球的标号之和大于 6 的有 8 种结果,8 25摸出的两个小球的标号之和大于 6 的概率为 ,20 2故答案为: .5x 1 015.(3 分)若关于 x 的一元一次不等式组2x a 0有 2 个整数解,则 a 的取值范围是 6 a … 8 .【解答】解:解不等式 x 10 ,得: x 1,a解不等式 2x a 0 ,得: x,2 a 则不等式组的解集为1 x , 2Q 不等式组有 2 个整数解, 不等式组的整数解为 2、3,a则3 …4,2解得6 a… 8 ,故答案为:6 a …8.16.(3 分)如图,AD 是ABC 的外接圆e O 的直径,若BAD 40,则ACB 50.【解答】解:连接BD ,如图,Q AD 为ABC 的外接圆e O 的直径,ABD 90,D 90BAD 904050,ACB D50.故答案为50.217.(3 分)小明在手工制作课上,用面积为150cm ,半径为15cm 的扇形卡纸,围成一个圆锥侧面,则这个圆锥的底面半径为10cm .1【解答】解:Q S l g R ,21g l g15150,解得l220,设圆锥的底面半径为r ,2g r 20,r 10(cm) .故答案为:10.18.(3 分)如图,在边长为4 的正方形ABCD 中,将ABD 沿射线BD 平移,得到EGF ,连接EC 、GC .求EC GC 的最小值为 4 5 .【解答】解:如图,连接DE ,作点D 关于直线AE 的对称点T ,连接AT ,ET ,CT .Q 四边形ABCD 是正方形,AB BC AD 4 ,ABC 90,ABD45,Q AE / /BD ,EAD ABD45,Q D ,T 关于AE 对称,AD AT 4 ,TAE EAD45,TAD 90,Q BAD90,B ,A ,T 共线,CT BT2 BC2 45,Q EG CD ,EG / /CD ,四边形EGCD 是平行四边形,CG EC ,EC CG EC ED ECTE ,Q TE EC…TC ,EC CG (4)5 ,EC CG 的最小值为4 5 .319.(3 分)在矩形ABCD 中,AB 1 ,BC a ,点E 在边BC 上,且B E a ,连接AE ,5将 ABE 沿 AE 折叠.若点 B 的对应点 B 落在矩形 ABCD 的边上,则折痕的长为 2 或30. 5【解答】解:分两种情况: ①当点 B落在 AD 边上时,如图 1 所示:Q 四边形 ABCD 是矩形,BAD B 90 ,Q 将 ABE 沿 AE 折叠.点 B 的对应点 B 落在矩形 ABCD 的 AD 边上,1 B AE45 ,BAD 2BAE ABE 是等腰直角三角形, ABBE1, AE2AB2 ; ②当点 B落在CD 边上时,如图 2 所示:Q 四边形 ABCD 是矩形,BADBCD90, AD BCa ,Q 将 ABE 沿 AE 折叠.点 B 的对应点 B 落在矩形 ABCD 的CD 边上,3,B AB E90 ,a , 5 AB AB 1BEBE 3 2CE BC BE a a a , B D AB 2 AD 21 a2 ,5 5 中,, , 在 ADB 和△ B CE B AD EB C 90 AB DDC 90△ , ADB ∽ B CEB DAB 1 a 2 1 ,即 ,EC B E2 53 a a55解得: a ,或 a0 (舍去),3 3 5BEa , 5 5( 5) 305 AEAB2BE 2 1 22; 5 305综上所述,折痕的长为 2 或 ; 30 故答案为: 2 或. 520.(3 分)如图,直线 AM 的解析式为 y x 1与 x 轴交于点 M ,与 y 轴交于点 A ,以 OA为边作正方形 ABCO ,点 B 坐标为 (1,1) .过点 B 作 EO MA 交 MA 于点 E ,交 x 轴于点1O ,过点 O 作 x 轴的垂线交 MA 于点 A ,以 O A 为边作正方形 O A B C ,点 B 的坐标为 1 1 1 1 1 1 1 1 1 1(5,3) .过点 B 作 E O MA 交 MA 于 E ,交 x 轴于点 O ,过点 O 作 x 轴的垂线交 MA 于点11 2 1 2 2A .以O A 为边作正方形O AB C. .则点 B 2020 的坐标 2 32020 1,32020 .2 2 2 2 2 2 2【解答】解:Q 点 B 坐标为 (1,1) ,OA AB BC CO CO1, 1 Q A (2,3) , 1 AO A B B CC O3,1 1 1 1111 2 B (5,3), 1 A (8,9) ,2A O AB BC C O9 ,2 2 2 2 2 2 2 3B (17,9),2同理可得B (53,27) ,4B (161,81) ,5由上可知,Bn (23n 1,3n) ,当n 2020 时,Bn (2320201,32020) .(232020 1,2020 .3 )故答案为:三、解答题(满分60 分)x 1) x 1 x 6x 9221.(5 分)先化简,再求值:(2 ,其中x 3 tan 303 .2x 12x 2 x 1 (x 3)2【解答】解:原式( x 3 (x 1)(x1)) x 1x 1 (x 1)(x 1)gx 1 (x 3)2x 1,x 33当x 3 tan 30 3 3 3 33时, 33 31原式 3 333 434 31.322.(6 分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,ABC 的三个顶点A(5, 2) 、B(5,5) 、C(1,1) 均在格点上.(1)将ABC 向左平移5 个单位得到△A B C,并写出点A 的坐标;1 1 1 1(2)画出△A B C绕点C 顺时针旋转90后得到的△A B C ,并写出点A 的坐标;1 1 1 12 2 1 2(3)在(2)的条件下,求△ A B C 在旋转过程中扫过的面积(结果保留) .1 1 1【解答】解:(1)如图所示,△ A B C 即为所求,点 A 的坐标为 (0,2) ; 1 1 1 1 (2)如图所示,△ A B C 即为所求,点 A 的坐标为 (3, 3) ;2 2 1 2 (3)如图,Q BC 42 42 4 2,△ A B C 在旋转过程中扫过的面积为: 90 (4 2 2) 12 3 4 86 .1 1 1 360 23.(6 分)如图,已知二次函数 y x2 bx 的c 图象经过点 A ( 1,0), B (3,0),与 y 轴交于点 C .(1)求抛物线的解析式;(2)抛物线上是否存在点 P ,使 PAB ABC ,若存在请直接写出点 P 的坐标.若不存在,请说明理由.1 b c【解答】解:(1)根据题意得 , 9 3 b c0 b2 解得 .c 3y x 2x 3故抛物线的解析式为2 ;y x 2x 3(2)二次函数2的对称轴是 x (13) 2,1当 x 0 时, y3 , 则C (0,3) ,点 C 关于对称轴的对应点 P (2,3) , 1 设直线 BC 的解析式为 y kx 3 , 则3k30 ,解得 k 1.则直线 BC 的解析式为 y x3 ,设与 BC 平行的直线 AP 的解析式为 yx m ,则1 m0 ,解得 m 1. 则与BC 平行的直线 AP 的解析式为 y x 1,yx1 联立抛物线解析式得 x 2x 3,y2x4 解得x121, y 5 y 0 (舍去). 1 2P (4,5).2综上所述,P(2,3) ,P (4,5) .1 224.(7 分)为了提高学生体质,战胜疫情,某中学组织全校学生宅家一分钟跳绳比赛,全校跳绳平均成绩是每分钟99 次,某班班长统计了全班50 名学生一分钟跳绳成绩,列出的频数分布直方图如图所示,(每个小组包括左端点,不包括右端点).求:(1)该班一分钟跳绳的平均次数至少是多少,是否超过全校的平均次数;(2)该班的一个学生说:“我的跳绳成绩是我班的中位数”请你给出该生跳绳成绩的所在范围;(3)从该班中任选一人,其跳绳次数超过全校平均数的概率是多少.【解答】解:( 1 )该班一分钟跳绳的平均次数至少是:60 4 8013 10019 1207 1405 160 2 100.8 ,50Q100.8 100 ,超过全校的平均次数;(2)这个学生的跳绳成绩在该班是中位数,因为4 13 19 36 ,所以中位数一定在100 ~ 120 范围内;(3)该班60 秒跳绳成绩大于或等于100 次的有:19 7 5 2 33 (人) ,33故从该班中任选一人,其跳绳次数超过全校平均数的概率是.5025.(8 分)为抗击疫情,支持武汉,某物流公司的快递车和货车每天往返于物流公司、武汉两地,快递车比货车多往返一趟,如图表示两车离物流公司的距离y (单位:千米)与快递车所用时间x (单位:时)的函数图象,已知货车比快递车早1 小时出发,到达武汉后用2 小时装卸货物,按原速、原路返回,货车比快递车最后一次返回物流公司晚1 小时.(1)求ME 的函数解析式;(2)求快递车第二次往返过程中,与货车相遇的时间.(3)求两车最后一次相遇时离武汉的距离.(直接写出答案)【解答】解:(1)设ME 的函数解析式为y kx b(k 0) ,由ME 经过(0,50) ,(3,200) 可得:b 50k50,解得,b503k b200ME 的解析式为y 50x50 ;(2)设BC 的函数解析式为y mx n ,由BC 经过(4,0) ,(6,200) 可得:4m n 0m100,解得,6m n200n 400BC 的函数解析式为y 100x400 ;设FG 的函数解析式为y px q ,由FG 经过(5,200) ,(9,0) 可得:5p q 200 ,解得 q 450p50 ,9p q 0FG 的函数解析式为 y 50x450, 173 5003xy y100x 400 ,解方程组得y 50x 450同理可得 x 7h ,17答:货车返回时与快递车图中相遇的时间 h , 7h ;3(3) (9 7) 50 100(km ) ,答:两车最后一次相遇时离武汉的距离为100km . 26.(8 分)如图①,在 Rt ABC 中, ACB 90, ACBC ,点 D 、 E 分别在 AC 、 BC边上, DCEC ,连接 DE 、 AE 、 BD ,点 M 、 N 、 P 分别是 AE 、 BD 、 AB 的中点,连接 PM 、 PN 、 MN .(1) BE 与 MN 的数量关系是 BE2NM .(2)将 DEC 绕点 C 逆时针旋转到图②和图③的位置,判断 BE 与 MN 有怎样的数量关系? 写出你的猜想,并利用图②或图③进行证明.【解答】解:(1)如图①中,Q AM ME ,APPB ,1PM / /BE ,PM BE ,2Q BN DN ,APPB ,1PN / /AD ,PN AD ,2Q AC BC ,CDCE ,AD BE ,PMPN ,Q ACB90,ACBC ,Q PM / /BC ,PN / /AC ,PM PN ,PMN 的等腰直角三角形,MN2PM ,1MN 2gBE , 2BE2MN ,故答案为BE 2MN .(2)如图②中,结论仍然成立.理由:连接 AD ,延长 BE 交 AD 于点 H . Q ABC 和 CDE 是等腰直角三角形, CD CE ,CA CB , ACB DCE90 , Q ACB ACEDCEACE ,ACD ECB ,ECBDCA (AAS ) , BE AD , DACEBC ,Q AHB 180(HABABH )180 (45 HAC ABH )180 (45 HBC ABH ) 18090 90 , BH AD ,Q M 、 N 、 P 分别为 AE 、 BD 、 AB 的中点, 1 2 12 PM / /BE , PMBE , PN / /AD , PN AD ,PM PN , MPN90 ,2BE 2PM 2MN 2MN .2 27.(10 分)某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、 乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克 m 元,售价每千克 16 元;乙种蔬 菜进价每千克 n 元,售价每千克 18 元.(1)该超市购进甲种蔬菜 15 千克和乙种蔬菜 20 千克需要 430 元;购进甲种蔬菜 10 千克和 乙种蔬菜 8 千克需要 212 元,求 m , n 的值.(2)该超市决定每天购进甲、乙两种蔬菜共 100 千克,且投入资金不少于 1160 元又不多于1168 元,设购买甲种蔬菜 x 千克 (x 为正整数),求有哪几种购买方案.(3)在(2)的条件下,超市在获得的利润取得最大值时,决定售出的甲种蔬菜每千克捐出 2a 元,乙种蔬菜每千克捐出 a 元给当地福利院,若要保证捐款后的利润率不低于 20% ,求 a 的最大值.15m 20n430 【解答】解:(1)依题意,得:, 10m 8n 212 m10 解得:. n 14答: m 的值为 10, n 的值为 14.(2)依题意,得: 10x 14(100x )…1160 , 10x 14(100 …x )1168 解得:58… x … 60 . 又Q x 为正整数,x 可以为 58,59,60,共有 3 种购买方案,方案 1:购进 58 千克甲种蔬菜,42 千克乙种蔬菜;方案 2:购进 59千克甲种蔬菜,41 千克乙种蔬菜;方案 3:购进 60 千克甲种蔬菜,40 千克乙种蔬菜. (3)购买方案 1 的总利润为 (16 10) 58 (18 14) 42 516 (元 ) ;购买方案 2 的总利润为 (16 10) 59 (18 14) 41 518 (元 ) ; 购买方案 3 的总利润为 (16 10) 60 (18 14) 40 520 (元 ) . Q 516 518 520 ,利润最大值为 520 元,即售出甲种蔬菜 60 千克,乙种蔬菜 40 千克. 依题意,得: (16 10 2a ) 60 (18 14 a )40… (10 60 1440) 20% ,9解得: a … .595答: a 的最大值为 .28.(10 分)如图,在平面直角坐标系中,矩形 ABCD 的边 AB 长是 x 3x 18 0 的根,2 连接 BD , DBC30,并过点 C 作 CNBD ,垂足为 N ,动点 P 从 B 点以每秒 2 个单位长度的速度沿 BD 方向匀速运动到 D 点为止;点 M 沿线段 DA 以每秒 3 个单位长度的速度由点D 向点A 匀速运动,到点A 为止,点P 与点M 同时出发,设运动时间为t 秒(t 0) .(1)线段CN 3 3 ;(2)连接PM 和MN ,求PMN 的面积s 与运动时间t 的函数关系式;(3)在整个运动过程中,当PMN 是以PN 为腰的等腰三角形时,直接写出点P 的坐标.【解答】解:(1)Q AB 长是xAB 6 ,2 3x 18 0 的根,Q 四边形ABCD 是矩形,AD BC ,AB CD 6 ,BCD90,Q DBC 30,BD 2CD 12 ,BC 3CD 63 ,Q DBC 30,CNBD ,1CN BC 3 3 ,2故答案为:3 3 .(2)如图,过点M 作MH BD 于H ,Q AD / /BC ,ADB DBC30,123MH M D t ,2Q DBC 30,CNBD ,BN 3CN 9 ,9 123 3 9 34当0 t 时,PMN的面积s (92t )t t 2 t ;292 2当t 时,点P 与点N 重合,s 0,2921 3 3 9 34当t… 6 时,PMN 的面积s (2t9)t t 2 t ;2 2 2(3)如图,过点P 作PE BC 于E ,当PN PM 9 2t时,Q PM 2 MH 2 PH2 ,3 32(9 2t)2 ( t)2 (12 2t 2t),27t 3 或tBP 6或,,3143当BP 6 时,Q DBC 30,PEBC ,1PE BP 3,BE 3PE 33 ,2点P(3 3 ,3),14当BP 时,37 3 7,) ,3同理可求点P(3当 PN NM 9 2t时,Q NM 2 MH 2 NH 2 , 3 3 (92t ) 2 ( t ) 2 ( t 3 2 ), 2 2 t 3 或 24(不合题意舍去), BP 6 ,点 P (3 3 ,3) ,7 3 3 7, ) . 3 综上所述:点 P 坐标为 (3 3 ,3) 或 (。
佳木斯市2020版中考数学试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)(2018·北京) 被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为,则FAST的反射面积总面积约为()A .B .C .D .2. (2分)(2018·岳阳模拟) 下列各式计算正确的是()A . 2+b=2bB .C . (2a2)3=8a5D . a6÷ a4=a23. (2分)的平方根是();A . 2B . ±2C . 4D . ±44. (2分)如图所示,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数﹣2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数﹣2016将与圆周上的哪个数字重合()A . 0B . 1C . 2D . 35. (2分) (2016七下·济宁期中) 估计 +1的值()A . 在1和2之间B . 在2和3之间C . 在3和4之间D . 在4和5之间6. (2分)(2019·河北) 对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n .”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x ,再取最小整数n .甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=13.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n=13.下列正确的是()A . 甲的思路错,他的n值对B . 乙的思路和他的n值都对C . 甲和丙的n值都对D . 甲、乙的思路都错,而丙的思路对二、填空题 (共10题;共10分)7. (1分) (2019九上·临沧期末) 的相反数是________.8. (1分) (2017八下·临沧期末) ( +1)(﹣1)+ ﹣(﹣1)2=________.9. (1分)分解因式: ________.10. (1分)(2020·龙泉驿模拟) 若是一元二次方程的一个根,则k的值为________。
2020年黑龙江省佳木斯市中考数学试题及参考答案与解析(考试时间120分钟;全卷共三道大题,总分120分)一、选择题(每题3分,满分30分)1.下列各运算中,计算正确的是()A.a2+2a2=3a4B.x8﹣x2=x6C.(x﹣y)2=x2﹣xy+y2D.(﹣3x2)3=﹣27x6 2.下列图标中是中心对称图形的是()A.B.C.D.3.如图,由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则所需的小正方体的个数最少是()A.2 B.3 C.4 D.54.一组从小到大排列的数据:x,3,4,4,5(x为正整数),唯一的众数是4,则数据x是()A.1 B.2 C.0或1 D.1或25.已知2+是关于x的一元二次方程x2﹣4x+m=0的一个实数根,则实数m的值是()A.0 B.1 C.﹣3 D.﹣16.如图,正方形ABCD的两个顶点B,D在反比例函数y=的图象上,对角线AC,BD的交点恰好是坐标原点O,已知B(﹣1,1),则k的值是()A.﹣5 B.﹣4 C.﹣3 D.﹣17.已知关于x的分式方程﹣4=的解为非正数,则k的取值范围是()A.k≤﹣12 B.k≥﹣12 C.k>﹣12 D.k<﹣128.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,OH=4,则菱形ABCD的面积为()A.72 B.24 C.48 D.969.学校计划用200元钱购买A、B两种奖品,A种每个15元,B种每个25元,在钱全部用完的情况下,有多少种购买方案()A.2种B.3种C.4种D.5种10.如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B重合),∠DAM=45°,点F在射线AM上,且AF=BE,CF与AD相交于点G,连接EC、EF、EG.则下列结论:①∠ECF=45°;②△AEG的周长为(1+)a;③BE2+DG2=EG2;④△EAF的面积的最大值是a2;⑤当BE=a时,G是线段AD的中点.其中正确的结论是()A.①②③B.②④⑤C.①③④D.①④⑤二、填空题(每题3分,满分30分)11.2019年1月1日,“学习强国”平台全国上线,截至2019年3月17日,某市党员“学习强国”客户端注册人数约1180000,将数据1180000用科学记数法表示为.12.在函数y=中,自变量x的取值范围是.13.如图,Rt△ABC和Rt△EDF中,BC∥DF,在不添加任何辅助线的情况下,请你添加一个条件,使Rt△ABC和Rt△EDF全等.14.一个盒子中装有标号为1,2,3,4,5的五个小球,这些球除了标号外都相同,从中随机摸出一个小球,是偶数的概率为.15.若关于x的一元一次不等式组的解是x>1,则a的取值范围是.16.如图,AD是△ABC的外接圆⊙O的直径,若∠BCA=50°,则∠ADB=°.17.小明在手工制作课上,用面积为150πcm2,半径为15cm的扇形卡纸,围成一个圆锥侧面,则这个圆锥的底面半径为cm.18.如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD方向平移,得到△EFG,连接EC、GC.求EC+GC的最小值为.19.在矩形ABCD中,AB=1,BC=a,点E在边BC上,且BE=a,连接AE,将△ABE沿AE折叠.若点B的对应点B′落在矩形ABCD的边上,则折痕的长为.20.如图,直线AM的解析式为y=x+1与x轴交于点M,与y轴交于点A,以OA为边作正方形ABCO,点B坐标为(1,1).过B点作直线EO1⊥MA交MA于点E,交x轴于点O1,过点O1作x轴的垂线交MA于点A1.以O1A1为边作正方形O1A1B1C1,点B1的坐标为(5,3).过点B1作直线E1O2⊥MA交MA于E1,交x轴于点O2,过点O2作x轴的垂线交MA于点A2.以O2A2为边作正方形O2A2B2C2,…,则点B2020的坐标.三、解答题(满分60分)21.(本题满分5分)先化简,再求值:(1﹣)÷,其中a=sin30°.22.(本题满分6分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△ABC的三个顶点A(5,2)、B(5,5)、C(1,1)均在格点上.(1)将△ABC向下平移5个单位得到△A1B1C1,并写出点A1的坐标;(2)画出△A1B1C1绕点C1逆时针旋转90°后得到的△A2B2C1,并写出点A2的坐标;(3)在(2)的条件下,求△A1B1C1在旋转过程中扫过的面积(结果保留π).23.(本题满分6分)如图,已知二次函数y=﹣x2+(a+1)x﹣a与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C,已知△BAC的面积是6.(1)求a的值;(2)在抛物线上是否存在一点P,使S△ABP=S△ABC.若存在请求出P坐标,若不存在请说明理由.24.(本题满分7分)某公司工会组织全体员工参加跳绳比赛,工会主席统计了公司50名员工一分钟跳绳成绩,列出的频数分布直方图如图所示,(每个小组包括左端点,不包括右端点).求:(1)该公司员工一分钟跳绳的平均次数至少是多少.(2)该公司一名员工说:“我的跳绳成绩是我公司的中位数”请你给出该员工跳绳成绩的所在范围.(3)若该公司决定给每分钟跳绳不低于140个的员工购买纪念品,每个纪念品300元,则公司应拿出多少钱购买纪念品.25.(本题满分8分)为抗击疫情,支持武汉,某物流公司的快递车和货车每天往返于物流公司、武汉两地,快递车比货车多往返一趟,如图表示两车离物流公司的距离y(单位:千米)与快递车所用时间x(单位:时)的函数图象,已知货车比快递车早1小时出发,到达武汉后用2小时装卸货物,按原速、原路返回,货车比快递车最后一次返回物流公司晚1小时.(1)求ME的函数解析式;(2)求快递车第二次往返过程中,与货车相遇的时间.(3)求两车最后一次相遇时离武汉的距离.(直接写出答案)26.(本题满分8分)以Rt△ABC的两边AB、AC为边,向外作正方形ABDE和正方形ACFG,连接EG,过点A 作AM⊥BC于M,延长MA交EG于点N.(1)如图①,若∠BAC=90°,AB=AC,易证:EN=GN;(2)如图②,∠BAC=90°;如图③,∠BAC≠90°,(1)中结论,是否成立,若成立,选择一个图形进行证明;若不成立,写出你的结论,并说明理由.27.(本题满分10分)某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克m元,售价每千克16元;乙种蔬菜进价每千克n 元,售价每千克18元.(1)该超市购进甲种蔬菜10千克和乙种蔬菜5千克需要170元;购进甲种蔬菜6千克和乙种蔬菜10千克需要200元.求m,n的值.(2)该超市决定每天购进甲、乙两种蔬菜共100千克,且投入资金不少于1160元又不多于1168元,设购买甲种蔬菜x千克,求有哪几种购买方案.(3)在(2)的条件下,超市在获得的利润取得最大值时,决定售出的甲种蔬菜每千克捐出2a 元,乙种蔬菜每千克捐出a元给当地福利院,若要保证捐款后的利润率不低于20%,求a的最大值.28.(本题满分10分)如图,在平面直角坐标系中,矩形ABCD的边AB长是x2﹣3x﹣18=0的根,连接BD,∠DBC=30°,并过点C作CN⊥BD,垂足为N,动点P从B点以每秒2个单位长度的速度沿BD方向匀速运动到D点为止;点M沿线段DA以每秒个单位长度的速度由点D向点A匀速运动,到点A为止,点P与点M同时出发,设运动时间为t秒(t>0).(1)线段CN=;(2)连接PM和MN,求△PMN的面积s与运动时间t的函数关系式;(3)在整个运动过程中,当△PMN是以PN为腰的等腰三角形时,直接写出点P的坐标.参考答案与解析一、选择题(每题3分,满分30分)1.下列各运算中,计算正确的是()A.a2+2a2=3a4B.x8﹣x2=x6C.(x﹣y)2=x2﹣xy+y2D.(﹣3x2)3=﹣27x6【思路分析】根据合并同类项法则,完全平方公式,幂的乘方和积的乘方分别求出每个式子的值,再判断即可.【解答过程】解:A、结果是3a2,故本选项不符合题意;B、x8和﹣x2不能合并,故本选项不符合题意;C、结果是x2﹣2xy+y2,故本选项不符合题意;D、结果是﹣27x6,故本选项符合题意;故选:D.2.下列图标中是中心对称图形的是()A.B.C.D.【思路分析】根据轴对称图形与中心对称图形的概念求解.【解答过程】解:A.是轴对称图形,不是中心对称图形,故本选项不合题意;B.是中心对称图形,故本选项符合题意;C.是轴对称图形,不是中心对称图形,故本选项不合题意;D.是轴对称图形,不是中心对称图形,故本选项不合题意.故选:B.3.如图,由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则所需的小正方体的个数最少是()A.2 B.3 C.4 D.5【思路分析】左视图底面有2个小正方体,主视图底面有2个小正方体,则可以判断出该几何体底面最少有2个小正方体,最多有4个.根据这个思路可判断出该几何体有多少个小立方块.【解答过程】解:左视图与主视图相同,可判断出底面最少有2个,第二层最少有1个小正方体,第三层最少有1个小正方体,则这个几何体的小立方块的个数最少是2+1+1=4个.故选:C.4.一组从小到大排列的数据:x,3,4,4,5(x为正整数),唯一的众数是4,则数据x是()A.1 B.2 C.0或1 D.1或2【思路分析】根据众数的定义得出正整数x的值即可.【解答过程】解:∵一组从小到大排列的数据:x,3,4,4,5(x为正整数),唯一的众数是4,∴数据x是1或2.故选:D.5.已知2+是关于x的一元二次方程x2﹣4x+m=0的一个实数根,则实数m的值是()A.0 B.1 C.﹣3 D.﹣1【思路分析】把x=2+代入方程就得到一个关于m的方程,就可以求出m的值.【解答过程】解:根据题意,得(2+)2﹣4×(2+)+m=0,解得m=1;故选:B.6.如图,正方形ABCD的两个顶点B,D在反比例函数y=的图象上,对角线AC,BD的交点恰好是坐标原点O,已知B(﹣1,1),则k的值是()A.﹣5 B.﹣4 C.﹣3 D.﹣1【思路分析】把B(﹣1,1)代入y=即可得到结论.【解答过程】解:∵点B在反比例函数y=的图象上,B(﹣1,1),∴1=,∴k=﹣1,故选:D.7.已知关于x的分式方程﹣4=的解为非正数,则k的取值范围是()A.k≤﹣12 B.k≥﹣12 C.k>﹣12 D.k<﹣12【思路分析】表示出分式方程的解,由解为非正数得出关于k的不等式,解出k的范围即可.【解答过程】解:方程﹣4=两边同时乘以(x﹣3)得:x﹣4(x﹣3)=﹣k,∴x﹣4x+12=﹣k,∴﹣3x=﹣k﹣12,∴x=+4,∵解为非正数,∴+4≤0,∴k≤﹣12.故选:A.8.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,OH=4,则菱形ABCD的面积为()A.72 B.24 C.48 D.96【思路分析】根据菱形的性质得O为BD的中点,再由直角三角形斜边上的中线等于斜边的一半,得BD的长度,最后由菱形的面积公式求得面积.【解答过程】解:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,∵DH⊥AB,∴∠BHD=90°,∴BD=2OH,∵OH=4,∴BD=8,∵OA=6,∴AC=12,∴菱形ABCD的面积=.故选:C.9.学校计划用200元钱购买A、B两种奖品,A种每个15元,B种每个25元,在钱全部用完的情况下,有多少种购买方案()A.2种B.3种C.4种D.5种【思路分析】设购买了A种奖品x个,B种奖品y个,根据学校计划用200元钱购买A、B两种奖品,其中A种每个15元,B种每个25元,钱全部用完可列出方程,再根据x,y为非负整数可求出解.【解答过程】解:设购买了A种奖品x个,B种奖品y个,根据题意得:15x+25y=200,化简整理得:3x+5y=40,得y=8﹣x,∵x,y为非负整数,∴,,,∴有3种购买方案:方案1:购买了A种奖品0个,B种奖品8个;方案2:购买了A种奖品5个,B种奖品5个;方案3:购买了A种奖品10个,B种奖品2个.故选:B.10.如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B重合),∠DAM=45°,点F在射线AM上,且AF=BE,CF与AD相交于点G,连接EC、EF、EG.则下列结论:①∠ECF=45°;②△AEG的周长为(1+)a;③BE2+DG2=EG2;④△EAF的面积的最大值是a2;⑤当BE=a时,G是线段AD的中点.其中正确的结论是()A.①②③B.②④⑤C.①③④D.①④⑤【思路分析】①正确.如图1中,在BC上截取BH=BE,连接EH.证明△FAE≌△EHC(SAS)即可解决问题.②③错误.如图2中,延长AD到H,使得DH=BE,则△CBE≌△CDH(SAS),再证明△GCE ≌△GCH(SAS)即可解决问题.④正确.设BE=x,则AE=a﹣x,AF=x,构建二次函数,利用二次函数的性质解决最值问题.⑤正确.当BE=a时,设DG=x,则EG=x+a,利用勾股定理构建方程可得x=即可解决问题.【解答过程】解:如图1中,在BC上截取BH=BE,连接EH.∵BE=BH,∠EBH=90°,∴EH=BE,∵AF=BE,∴AF=EH,∵∠DAM=∠EHB=45°,∠BAD=90°,∴∠FAE=∠EHC=135°,∵BA=BC,BE=BH,∴AE=HC,∴△FAE≌△EHC(SAS),∴EF=EC,∠AEF=∠ECH,∵∠ECH+∠CEB=90°,∴∠AEF+∠CEB=90°,∴∠FEC=90°,∴∠ECF=∠EFC=45°,故①正确,如图2中,延长AD到H,使得DH=BE,则△CBE≌△CDH(SAS),∴∠ECB=∠DCH,∴∠ECH=∠BCD=90°,∴∠ECG=∠GCH=45°,∵CG=CG,CE=CH,∴△GCE≌△GCH(SAS),∴EG=GH,∵GH=DG+DH,DH=BE,∴EG=BE+DG,故③错误,∴△AEG的周长=AE+EG+AG=AE+AH=AD+DH+AE=AE+EB+AD=AB+AD=2a,故②错误,设BE=x,则AE=a﹣x,AF=x,∴S△AEF=•(a﹣x)×x=﹣x2+ax=﹣(x2﹣ax+a2﹣a2)=﹣(x﹣a)2+a2,∵﹣<0,∴x=a时,△AEF的面积的最大值为a2.故④正确,当BE=a时,设DG=x,则EG=x+a,在Rt△AEG中,则有(x+a)2=(a﹣x)2+(a)2,解得x=,∴AG=GD,故⑤正确,故选:D.二、填空题(每题3分,满分30分)11.2019年1月1日,“学习强国”平台全国上线,截至2019年3月17日,某市党员“学习强国”客户端注册人数约1180000,将数据1180000用科学记数法表示为.【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:1180000=1.18×106,故答案为:1.18×106.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.在函数y=中,自变量x的取值范围是.【思路分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答过程】解:由题意得2x﹣3>0,解得x>1.5.故答案为:x>1.5.13.如图,Rt△ABC和Rt△EDF中,BC∥DF,在不添加任何辅助线的情况下,请你添加一个条件,使Rt△ABC和Rt△EDF全等.【思路分析】根据全等三角形的判定解答即可.【解答过程】解:∵Rt△ABC和Rt△EDF中,∴∠BAC=∠DEF=90°,∵BC∥DF,∴∠DFE=∠BCA,∴添加AB=ED,在Rt△ABC和Rt△EDF中,∴Rt△ABC≌Rt△EDF(AAS),故答案为:AB=ED答案不唯一.14.一个盒子中装有标号为1,2,3,4,5的五个小球,这些球除了标号外都相同,从中随机摸出一个小球,是偶数的概率为.【思路分析】直接利用概率公式计算可得.【解答过程】解:∵盒子中共装有5个小球,其中标号为偶数的有2、4这2个小球,∴从中随机摸出一个小球,是偶数的概率为,故答案为:.15.若关于x的一元一次不等式组的解是x>1,则a的取值范围是.【思路分析】分别求出每一个不等式的解集,根据口诀:同大取大可得答案.【解答过程】解:解不等式x﹣1>0,得:x>1,解不等式2x﹣a>0,得:x>,∵不等式组的解集为x>1,∴≤1,解得a≤2,故答案为:a≤2.16.如图,AD是△ABC的外接圆⊙O的直径,若∠BCA=50°,则∠ADB=°.【思路分析】根据圆周角定理即可得到结论.【解答过程】解:∵AD是△ABC的外接圆⊙O的直径,∴点A,B,C,D在⊙O上,∵∠BCA=50°,∴∠ADB=∠BCA=50°,故答案为:50.17.小明在手工制作课上,用面积为150πcm2,半径为15cm的扇形卡纸,围成一个圆锥侧面,则这个圆锥的底面半径为cm.【思路分析】先根据扇形的面积公式:S=l•R(l为弧长,R为扇形的半径)计算出扇形的弧长,然后根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥的底面圆的周长,利用圆的周长公式计算出圆锥的底面半径.【解答过程】解:∵S=l•R,∴•l•15=150π,解得l=20π,设圆锥的底面半径为r,∴2π•r=20π,∴r=10(cm).故答案为:10.18.如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD方向平移,得到△EFG,连接EC、GC.求EC+GC的最小值为.【思路分析】根据菱形的性质得到AB=1,∠ABD=30°,根据平移的性质得到EG=AB=1,EG∥AB,推出四边形EGCD是平行四边形,得到ED=GC,于是得到EC+GC的最小值=EC+GD 的最小值,根据平移的性质得到点E在过点A且平行于BD的定直线上,作点D关于定直线的对称点M,连接CM交定直线于AE,解直角三角形即可得到结论.【解答过程】解:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△EGF,∴EG=AB=1,EG∥AB,∵四边形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴EG=CD,EG∥CD,∴四边形EGCD是平行四边形,∴ED=GC,∴EC+GC的最小值=EC+ED的最小值,∵点E在过点A且平行于BD的定直线上,∴作点D关于定直线的对称点M,连接CM交定直线于E,则CM的长度即为EC+DE的最小值,∵∠EAD=∠ADB=30°,AD=1,∴∠ADM=60°,DH=MH=AD=,∴DM=1,∴DM=CD,∵∠CDM=∠MDG+∠CDB=90°+30°=120°,∴∠M=∠DCM=30°,∴CM=2×CD=.故答案为:.19.在矩形ABCD中,AB=1,BC=a,点E在边BC上,且BE=a,连接AE,将△ABE沿AE 折叠.若点B的对应点B′落在矩形ABCD的边上,则折痕的长为.【知识考点】矩形的性质;PB:翻折变换(折叠问题).【思路分析】分两种情况:①当点B'落在AD边上时,证出△ABE是等腰直角三角形,得出AE =AB=;②当点B'落在CD边上时,证明△ADB'∽△B'CE,得出=,求出BE=a=,由勾股定理求出AE即可.【解答过程】解:分两种情况:①当点B'落在AD边上时,如图1所示:∵四边形ABCD是矩形,∴∠BAD=∠B=90°,∵将△ABE沿AE折叠.点B的对应点B′落在矩形ABCD的AD边上,∴∠BAE=∠B'AE=∠BAD=45°,∴△ABE是等腰直角三角形,∴AB=BE=1,AE=AB=;②当点B'落在CD边上时,如图2所示:∵四边形ABCD是矩形,∴∠BAD=∠B=∠C=∠D=90°,AD=BC=a,∵将△ABE沿AE折叠.点B的对应点B′落在矩形ABCD的CD边上,∴∠B=∠AB'E=90°,AB'=AB=1,BE'=BE=a,∴CE=BC﹣BE=a﹣a=a,B'D==,在△ADB'和△B'CE中,∠B'AD=∠EB'C=90°﹣∠AB'D,∠D=∠C=90°,∴△ADB'∽△B'CE,∴=,即=,解得:a=,或a=0(舍去),∴BE=a=,∴AE===;综上所述,折痕的长为或;故答案为:或.【总结归纳】本题考查了翻折变换的性质、矩形的性质、等腰直角三角形的判定与性质、相似三角形的判定与性质、勾股定理等知识;熟练掌握翻折变换的性质和矩形的性质是解题的关键.20.如图,直线AM的解析式为y=x+1与x轴交于点M,与y轴交于点A,以OA为边作正方形ABCO,点B坐标为(1,1).过B点作直线EO1⊥MA交MA于点E,交x轴于点O1,过点O1作x轴的垂线交MA于点A1.以O1A1为边作正方形O1A1B1C1,点B1的坐标为(5,3).过点B1作直线E1O2⊥MA交MA于E1,交x轴于点O2,过点O2作x轴的垂线交MA于点A2.以O2A2为边作正方形O2A2B2C2,…,则点B2020的坐标.【知识考点】规律型:点的坐标;一次函数的性质;一次函数图象上点的坐标特征;相似三角形的判定与性质.【思路分析】由B坐标为(1,1)根据题意求得A1的坐标,进而得B1的坐标,继续求得B2,B3,B4,B5的坐标,根据这5点的坐标得出规律,再按规律得结果.【解答过程】解:∵点B坐标为(1,1),∴OA=AB=BC=CO=CO1=1,∵A1(2,3),∴A1O1=A1B1=B1C1=C1O2=3,∴B1(5,3),∴A2(8,9),∴A2O2=A2B2=B2C2=C2O3=9,∴B2(17,9),同理可得B4(53,27),B5(161,81),…由上可知,,∴当n=2020时,.故答案为:(2×32020﹣1,32020).【总结归纳】本题主要考查了一次函数的图象与性质,正方形的性质,等腰直角三角形的性质,规律变化,关键是求出前几个点的坐标得出规律.三、解答题(满分60分)21.(本题满分5分)先化简,再求值:(1﹣)÷,其中a=sin30°.【知识考点】分式的化简求值;特殊角的三角函数值.【思路分析】根据分式的运算法则即可求出答案,【解答过程】解:当a=sin30°时,所以a=原式=•=•==﹣1【总结归纳】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.22.(本题满分6分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△ABC 的三个顶点A(5,2)、B(5,5)、C(1,1)均在格点上.(1)将△ABC向下平移5个单位得到△A1B1C1,并写出点A1的坐标;(2)画出△A1B1C1绕点C1逆时针旋转90°后得到的△A2B2C1,并写出点A2的坐标;(3)在(2)的条件下,求△A1B1C1在旋转过程中扫过的面积(结果保留π).【知识考点】扇形面积的计算;作图﹣平移变换;作图﹣旋转变换.【思路分析】(1)依据△ABC向下平移5个单位,即可得到△A1B1C1,进而写出点A1的坐标;(2)依据△A1B1C1绕点C1逆时针旋转90°,即可得到的△A2B2C1,进而写出点A2的坐标;(3)依据扇形面积公式和三角形面积公式,即可得到△A1B1C1在旋转过程中扫过的面积.【解答过程】解:(1)如图所示,△A1B1C1即为所求,点A1的坐标为(5,﹣3);(2)如图所示,△A2B2C1即为所求,点A2的坐标为(0,0);(3)如图,△A1B1C1在旋转过程中扫过的面积为:+=8π+6.【总结归纳】本题考查了利用平移变换和旋转变换作图、扇形面积的计算等,利用平移变换作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.23.(本题满分6分)如图,已知二次函数y=﹣x2+(a+1)x﹣a与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C,已知△BAC的面积是6.(1)求a的值;(2)在抛物线上是否存在一点P,使S△ABP=S△ABC.若存在请求出P坐标,若不存在请说明理由.【知识考点】二次函数的性质;二次函数图象上点的坐标特征;抛物线与x轴的交点.【思路分析】(1)由y=﹣x2+(a+1)x﹣a,令y=0,即﹣x2+(a+1)x﹣a=0,可求出A、B坐标结合三角形的面积,解出a=﹣3;(2)根据题意P的纵坐标为±3,分别代入解析式即可求得横坐标,从而求得P的坐标.【解答过程】解:(1)∵y=﹣x2+(a+1)x﹣a,令x=0,则y=﹣a,∴C(0,﹣a),令y=0,即﹣x2+(a+1)x﹣a=0解得x1=a,x2=1由图象知:a<0∴A(a,0),B(1,0)∵S△ABC=6∴(1﹣a)(﹣a)=6解得:a=﹣3,(a=4舍去);(2)∵a=﹣3,∴C(0,3),∵S△ABP=S△ABC.∴P点的纵坐标为±3,把y=3代入y=﹣x2﹣2x+3得﹣x2﹣2x+3=3,解得x=0或x=﹣2,把y=﹣3代入y=﹣x2﹣2x+3得﹣x2﹣2x+3=﹣3,解得x=﹣1+或x=﹣1﹣,∴P点的坐标为(﹣2,3)或(﹣1+,﹣3)或(﹣1﹣,﹣3).【总结归纳】本题考查了抛物线与x轴的交点,二次函数图象上点的坐标特征,二次函数的性质,求得交点坐标是解题的关键.24.(本题满分7分)某公司工会组织全体员工参加跳绳比赛,工会主席统计了公司50名员工一分钟跳绳成绩,列出的频数分布直方图如图所示,(每个小组包括左端点,不包括右端点).求:(1)该公司员工一分钟跳绳的平均次数至少是多少.(2)该公司一名员工说:“我的跳绳成绩是我公司的中位数”请你给出该员工跳绳成绩的所在范围.(3)若该公司决定给每分钟跳绳不低于140个的员工购买纪念品,每个纪念品300元,则公司应拿出多少钱购买纪念品.【知识考点】频数(率)分布直方图;中位数.【思路分析】(1)要求平均次数至少是多少,可每组都取最小值计算平均数即可;(2)找出中位数所在的成绩范围,(3)样本中获奖的有7人,求出费用即可.【解答过程】解:(1)该公司员工一分钟跳绳的平均数为:==100.8,答:该公司员工一分钟跳绳的平均次数至少是100.8个;(2)把50个数据从小到大排列后,处在中间位置的两个数都在100~120这个范围;(3)300×(5+2)=2100(元),答:公司应拿出2100元钱购买纪念品.【总结归纳】考查频数分布直方图的意义和制作方法,理解频数、频率、总数之间的关系是正确计算的前提.25.(本题满分8分)为抗击疫情,支持武汉,某物流公司的快递车和货车每天往返于物流公司、武汉两地,快递车比货车多往返一趟,如图表示两车离物流公司的距离y(单位:千米)与快递车所用时间x(单位:时)的函数图象,已知货车比快递车早1小时出发,到达武汉后用2小时装卸货物,按原速、原路返回,货车比快递车最后一次返回物流公司晚1小时.(1)求ME的函数解析式;(2)求快递车第二次往返过程中,与货车相遇的时间.(3)求两车最后一次相遇时离武汉的距离.(直接写出答案)【知识考点】一次函数的应用.【思路分析】(1)利用待定系数法求一次函数解析式即可;(2)利用待定系数法分别求出BC与FG的解析式,再联立解答即可;(3)根据题意列式计算即可.【解答过程】解:(1)设ME的函数解析式为y=kx+b(k≠0),由ME经过(0,50),(3,200)可得:,解得,∴ME的解析式为y=50x+50;(2)设BC的函数解析式为y=mx+n,由BC经过(4,0),(6,200)可得:,解得,∴BC的函数解析式为y=100x﹣400;设FG的函数解析式为y=px+q,由FG经过(5,200),(9,0)可得:,解得,∴FG的函数解析式为y=﹣50x+450,解方程组得,同理可得x=7h,答:货车返回时与快递车图中相遇的时间h,7h;(3)(9﹣7)×50=100(km),答:两车最后一次相遇时离武汉的距离为100km.【总结归纳】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,相遇问题,读懂题目信息,理解两车的运动过程是解题的关键.26.(本题满分8分)以Rt△ABC的两边AB、AC为边,向外作正方形ABDE和正方形ACFG,连接EG,过点A 作AM⊥BC于M,延长MA交EG于点N.(1)如图①,若∠BAC=90°,AB=AC,易证:EN=GN;(2)如图②,∠BAC=90°;如图③,∠BAC≠90°,(1)中结论,是否成立,若成立,选择一个图形进行证明;若不成立,写出你的结论,并说明理由.【知识考点】四边形综合题.【思路分析】(1)由等腰直角三角形的性质得出∠MAC=45°,证得∠EAN=∠NAG,由等腰三角形的性质得出结论;(2)如图1,2,证明方法相同,利用“AAS”证明△ABM和△EAP全等,根据全等三角形对应边相等可得EP=AM,同理可证GQ=AM,从而得到EP=GQ,再利用“AAS”证明△EPN和△GQN全等,根据全等三角形对应边相等可得EN=NG.【解答过程】解:(1)证明:∵∠BAC=90°,AB=AC,∴∠ACB=45°,∵AM⊥BC,∴∠MAC=45°,∴∠EAN=∠MAC=45°,同理∠NAG=45°,∴∠EAN=∠NAG,∵四边形ABDE和四边形ACFG为正方形,∴AE=AB=AC=AG,∴EN=GN.(2)如图1,∠BAC=90°时,(1)中结论成立.理由:过点E作EP⊥AN交AN的延长线于P,过点G作GQ⊥AM于Q,∵四边形ABDE是正方形,∴AB=AE,∠BAE=90°,∴∠EAP+∠BAM=180°﹣90°=90°,∵AM⊥BC,∴∠ABM+∠BAM=90°,∴∠ABM=∠EAP,在△ABM和△EAP中,,∴△ABM≌△EAP(AAS),∴EP=AM,同理可得:GQ=AM,∴EP=GQ,在△EPN和△GQN中,,∴△EPN≌△GQN(AAS),∴EN=NG.如图2,∠BAC≠90°时,(1)中结论成立.理由:过点E作EP⊥AN交AN的延长线于P,过点G作GQ⊥AM于Q,∵四边形ABDE是正方形,∴AB=AE,∠BAE=90°,∴∠EAP+∠BAM=180°﹣90°=90°,∵AM⊥BC,∴∠ABM+∠BAM=90°,∴∠ABM=∠EAP,在△ABM和△EAP中,,∴△ABM≌△EAP(AAS),∴EP=AM,同理可得:GQ=AM,∴EP=GQ,在△EPN和△GQN中,,∴△EPN≌△GQN(AAS),∴EN=NG.【总结归纳】本题是四边形综合题,考查了正方形的性质,全等三角形的判定及性质,等腰三角形的性质,等腰直角三角形的性质等知识;正确作出辅助线,构造全等三角形,运用全等三角形的性质是解题的关键.27.(本题满分10分)某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克m元,售价每千克16元;乙种蔬菜进价每千克n 元,售价每千克18元.(1)该超市购进甲种蔬菜10千克和乙种蔬菜5千克需要170元;购进甲种蔬菜6千克和乙种蔬菜10千克需要200元.求m,n的值.(2)该超市决定每天购进甲、乙两种蔬菜共100千克,且投入资金不少于1160元又不多于1168元,设购买甲种蔬菜x千克,求有哪几种购买方案.(3)在(2)的条件下,超市在获得的利润取得最大值时,决定售出的甲种蔬菜每千克捐出2a 元,乙种蔬菜每千克捐出a元给当地福利院,若要保证捐款后的利润率不低于20%,求a的最大值.【知识考点】二元一次方程组的应用;一元一次不等式组的应用.【思路分析】(1)根据“该超市购进甲种蔬菜10千克和乙种蔬菜5千克需要170元;购进甲种蔬菜6千克和乙种蔬菜10千克需要200元”,即可得出关于m,n的二元一次方程组,解之即可得出结论;(2)设购买甲种蔬菜x千克,则购买乙种蔬菜(100﹣x)千克,根据总价=单价×数量结合投入资金不少于1160元又不多于1168元,即可得出关于x的一元一次不等式组,解之即可得出x 的取值范围,再结合x为正整数即可得出各购买方案;(3)设超市获得的利润为y元,根据总利润=每千克的利润×销售数量可得出y关于x的函数关系式,利用一次函数的性质可得出获得利润最多的方案,由总利润=每千克的利润×销售数量结合捐款后的利润率不低于20%,即可得出关于a的一元一次不等式,解之取其最大值即可得出结论.【解答过程】解:(1)依题意,得:,解得:.答:m的值为10,n的值为14.(2)设购买甲种蔬菜x千克,则购买乙种蔬菜(100﹣x)千克,依题意,得:,解得:58≤x≤60.∵x为正整数,∴x=58,59,60,∴有3种购买方案,方案1:购买甲种蔬菜58千克,乙种蔬菜42千克;方案2:购买甲种蔬菜59千克,乙种蔬菜41千克;方案3:购买甲种蔬菜60千克,乙种蔬菜40千克.(3)设超市获得的利润为y元,则y=(16﹣10)x+(18﹣14)(100﹣x)=2x+400.∵k=2>0,∴y随x的增大而增大,∴当x=60时,y取得最大值,最大值为2×60+400=520.依题意,得:(16﹣10﹣2a)×60+(18﹣14﹣a)×40≥(10×60+14×40)×20%,解得:a≤1.8.答:a的最大值为1.8.。