2016年黑龙江省佳木斯市中考数学试卷
- 格式:doc
- 大小:475.00 KB
- 文档页数:28
2016年黑龙江省佳木斯市中考数学试卷一、填空题(共10小题,每小题3分,满分30分)1.(3分)2015年12月6日第十届全球孔子学院大会在上海召开,截止到会前,网络孔子学院注册用户达800万人,数据800万人用科学记数法表示为人.2.(3分)在函数y=中,自变量x的取值范围是.3.(3分)如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件,使四边形DBCE是矩形.4.(3分)在一个不透明的袋子中装有除颜色外其他均相同的4个红球,3个白球,2个绿球,则摸出绿球的概率是.5.(3分)不等式组有3个整数解,则m的取值范围是.6.(3分)一件服装的标价为300元,打八折销售后可获利60元,则该件服装的成本价是元.7.(3分)如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为.8.(3分)小丽在手工制作课上,想用扇形卡纸制作一个圣诞帽,卡纸的半径为30cm,面积为300πcm2,则这个圣诞帽的底面半径为cm.9.(3分)已知:在平行四边形ABCD中,点E在直线AD上,AE=AD,连接CE 交BD于点F,则EF:FC的值是.10.(3分)如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次変换,如果这样连续经过2016次变换后,等边△ABC的顶点C的坐标为.二、选择题(共10小题,每小题3分,满分30分)11.(3分)下列运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b212.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.13.(3分)如图,由5块完全相同的小正方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置小正方体的个数,其主视图是()A.B.C.D.14.(3分)一次招聘活动中,共有8人进入复试,他们的复试成绩(百分制)如下:70,100,90,80,70,90,90,80.对于这组数据,下列说法正确的是()A.平均数是80 B.众数是90 C.中位数是80 D.极差是7015.(3分)如图,直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形.设穿过时间为t,正方形与三角形不重合部分的面积为s(阴影部分),则s与t的大致图象为()A.B.C.D.16.(3分)关于x的分式方程=3的解是正数,则字母m的取值范围是()A.m>3 B.m<3 C.m>﹣3 D.m<﹣317.(3分)若点O是等腰△ABC的外心,且∠BOC=60°,底边BC=2,则△ABC 的面积为()A.2+B.C.2+或2﹣D.4+2或2﹣18.(3分)已知反比例函数y=,当1<x<3时,y的最小整数值是()A.3 B.4 C.5 D.619.(3分)为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5m长的彩绳截成2m或1m的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法()A.1 B.2 C.3 D.420.(3分)如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是()=2S△BGE.①AE=BF;②AE⊥BF;③sin∠BQP=;④S四边形ECFGA.4 B.3 C.2 D.1三、解答题(满分60分)21.(5分)先化简,再求值:(1+)÷,其中x=4﹣tan45°.22.(6分)如图,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)(﹣2,1),先将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),再将△A1B1C1绕原点O顺时针旋转90°得到△A2B2C2,点A1的对应点为点A2.(1)画出△A1B1C1;(2)画出△A2B2C2;(3)求出在这两次变换过程中,点A经过点A1到达A2的路径总长.23.(6分)如图,二次函数y=(x+2)2+m的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴对称,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(﹣1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足(x+2)2+m≥kx+b的x的取值范围.24.(7分)某学校为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行八百米跑体能测试,测试结果分为A、B、C、D四个等级,请根据两幅统计图中的信息回答下列问题:(1)求本次测试共调查了多少名学生?(2)求本次测试结果为B等级的学生数,并补全条形统计图;(3)若该中学八年级共有900名学生,请你估计八年级学生中体能测试结果为D等级的学生有多少人?25.(8分)甲、乙两车从A城出发前往B城,在整个行程中,两车离开A城的距离y与t的对应关系如图所示:(1)A、B两城之间距离是多少千米?(2)求乙车出发多长时间追上甲车?(3)直接写出甲车出发多长时间,两车相距20千米.26.(8分)已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BD作垂线,垂足分别为点E、F,点O为AC的中点.(1)当点P与点O重合时如图1,易证OE=OF(不需证明)(2)直线BP绕点B逆时针方向旋转,当∠OFE=30°时,如图2、图3的位置,猜想线段CF、AE、OE之间有怎样的数量关系?请写出你对图2、图3的猜想,并选择一种情况给予证明.27.(10分)某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球50个,B种品牌的足球25个,共花费4500元,已知购买一个B种品牌的足球比购买一个A种品牌的足球多花30元.(1)求购买一个A种品牌、一个B种品牌的足球各需多少元.(2)学校为了响应习总书记“足球进校园”的号召,决定再次购进A、B两种品牌足球共50个,正好赶上商场对商品价格进行调整,A品牌足球售价比第一次购买时提高4元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A、B两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B种品牌足球不少于23个,则这次学校有哪几种购买方案?(3)请你求出学校在第二次购买活动中最多需要多少资金?28.(10分)如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点B在x轴的正半轴上.∠OAB=90°且OA=AB,OB,OC的长分别是一元二次方程x2﹣11x+30=0的两个根(OB>OC).(1)求点A和点B的坐标.(2)点P是线段OB上的一个动点(点P不与点O,B重合),过点P的直线l 与y轴平行,直线l交边OA或边AB于点Q,交边OC或边BC于点R.设点P 的横坐标为t,线段QR的长度为m.已知t=4时,直线l恰好过点C.当0<t <3时,求m关于t的函数关系式.(3)当m=3.5时,请直接写出点P的坐标.2016年黑龙江省佳木斯市中考数学试卷参考答案与试题解析一、填空题(共10小题,每小题3分,满分30分)1.(3分)2015年12月6日第十届全球孔子学院大会在上海召开,截止到会前,网络孔子学院注册用户达800万人,数据800万人用科学记数法表示为8×106人.【解答】解:将800万用科学记数法表示为:8×106.故答案为:8×106.2.(3分)在函数y=中,自变量x的取值范围是x≥2.【解答】解:由题意,得3x﹣6≥0,解得x≥2,故答案为:x≥2.3.(3分)如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件EB=DC,使四边形DBCE是矩形.【解答】解:添加EB=DC.理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴DE∥BC,又∵DE=AD,∴DE=BC,∴四边形DBCE为平行四边形.又∵EB=DC,∴四边形DBCE是矩形.故答案是:EB=DC.4.(3分)在一个不透明的袋子中装有除颜色外其他均相同的4个红球,3个白球,2个绿球,则摸出绿球的概率是.【解答】解:∵在一个不透明的袋子中装有除颜色外其他均相同的4个红球,3个白球,2个绿球,∴摸出绿球的概率是:=.故答案为:.5.(3分)不等式组有3个整数解,则m的取值范围是2<m≤3.【解答】解:不等式的整数解是0,1,2.则m的取值范围是2<m≤3.故答案是:2<m≤3.6.(3分)一件服装的标价为300元,打八折销售后可获利60元,则该件服装的成本价是180元.【解答】解:设该件服装的成本价是x元,依题意得:300×﹣x=60,解得:x=180.∴该件服装的成本价是180元.故答案为:180.7.(3分)如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为2.【解答】解:过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,连接OB,OA′,AA′,∵AA′关于直线MN对称,∴=,∵∠AMN=40°,∴∠A′ON=80°,∠BON=40°,∴∠A′OB=120°,过O作OQ⊥A′B于Q,在Rt△A′OQ中,OA′=2,∴A′B=2A′Q=2,即PA+PB的最小值2.故答案为:2.8.(3分)小丽在手工制作课上,想用扇形卡纸制作一个圣诞帽,卡纸的半径为30cm,面积为300πcm2,则这个圣诞帽的底面半径为10cm.【解答】解:设卡纸扇形的半径和弧长分别为R、l,圣诞帽底面半径为r,则由题意得R=30,由Rl=300π得l=20π;由2πr=l得r=10cm.故答案是:10.9.(3分)已知:在平行四边形ABCD中,点E在直线AD上,AE=AD,连接CE交BD于点F,则EF:FC的值是或.【解答】解:∵AE=AD,∴分两种情况:①当点E在线段AD上时,如图1所示∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△EFD∽△CFB,∴EF:FC=DE:BC,∵AE=AD,∴DE=2AE=AD=BC,∴DE:BC=2:3,∴EF:FC=2:3;②当点E在线段DA的延长线上时,如图2所示:同①得:△EFD∽△CFB,∴EF:FC=DE:BC,∵AE=AD,∴DE=4AE=AD=BC,∴DE:BC=4:3,∴EF:FC=4:3;综上所述:EF:FC的值是或;故答案为:或.10.(3分)如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次変换,如果这样连续经过2016次变换后,等边△ABC的顶点C的坐标为(﹣2014,+1).【解答】解:解:∵△ABC是等边三角形AB=3﹣1=2,∴点C到x轴的距离为1+2×=+1,横坐标为2,∴C(2,+1),第2016次变换后的三角形在x轴上方,点C的纵坐标为+1,横坐标为2﹣2016×1=﹣2014,所以,点C的对应点C′的坐标是(﹣2014,+1),故答案为:(﹣2014,+1).二、选择题(共10小题,每小题3分,满分30分)11.(3分)下列运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b2【解答】解:A、2a•3a=6a2,故此选项错误;B、(3a2)3=27a6,正确;C、a4÷a2=a2,故此选项错误;D、(a+b)2=a2+2ab+b2,故此选项错误;故选:B.12.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.13.(3分)如图,由5块完全相同的小正方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置小正方体的个数,其主视图是()A.B.C.D.【解答】解:由分析得该组合体的主视图为:故选B.14.(3分)一次招聘活动中,共有8人进入复试,他们的复试成绩(百分制)如下:70,100,90,80,70,90,90,80.对于这组数据,下列说法正确的是()A.平均数是80 B.众数是90 C.中位数是80 D.极差是70【解答】解:依题意得众数为90;中位数为(80+90)=85;极差为100﹣70=30;平均数为(70×2+80×2+90×3+100)=83.75.故B正确.故选B.15.(3分)如图,直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形.设穿过时间为t,正方形与三角形不重合部分的面积为s(阴影部分),则s与t的大致图象为()A.B.C.D.【解答】解:∵直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形.设穿过时间为t,正方形与三角形不重合部分的面积为s,由勾股定理得,=∴s关于t的函数大致图象应为:三角形进入正方形以前s增大,当0≤t≤时,s=×1×1+2×2﹣=﹣t2;当<t≤2时,s=×12=;当2<t≤3时,s=﹣(3﹣t)2=t2﹣3t,∴A符合要求,故选A.16.(3分)关于x的分式方程=3的解是正数,则字母m的取值范围是()A.m>3 B.m<3 C.m>﹣3 D.m<﹣3【解答】解:分式方程去分母得:2x﹣m=3x+3,解得:x=﹣m﹣3,由分式方程的解为正数,得到﹣m﹣3>0,且﹣m﹣3≠﹣1,解得:m<﹣3,故选D17.(3分)若点O是等腰△ABC的外心,且∠BOC=60°,底边BC=2,则△ABC 的面积为()A.2+B.C.2+或2﹣D.4+2或2﹣【解答】解:由题意可得,如右图所示存在两种情况,当△ABC为△A1BC时,连接OB、OC,∵点O是等腰△ABC的外心,且∠BOC=60°,底边BC=2,OB=OC,∴△OBC为等边三角形,OB=OC=BC=2,OA1⊥BC于点D,∴CD=1,OD=,∴=2﹣,当△ABC为△A2BC时,连接OB、OC,∵点O是等腰△ABC的外心,且∠BOC=60°,底边BC=2,OB=OC,∴△OBC为等边三角形,OB=OC=BC=2,OA1⊥BC于点D,∴CD=1,OD=,∴S===2+,△A2BC由上可得,△ABC的面积为或2+,故选C.18.(3分)已知反比例函数y=,当1<x<3时,y的最小整数值是()A.3 B.4 C.5 D.6【解答】解:在反比例函数y=中k=6>0,∴该反比例函数在x>0内,y随x的增大而减小,当x=3时,y==2;当x=1时,y==6.∴当1<x<3时,2<y<6.∴y的最小整数值是3.故选A.19.(3分)为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5m长的彩绳截成2m或1m的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法()A.1 B.2 C.3 D.4【解答】解:截下来的符合条件的彩绳长度之和刚好等于总长5米时,不造成浪费,设截成2米长的彩绳x根,1米长的y根,由题意得,2x+y=5,因为x,y都是非负整数,所以符合条件的解为:、、,则共有3种不同截法,故选:C.20.(3分)如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是()①AE=BF;②AE⊥BF;③sin∠BQP=;④S=2S△BGE.四边形ECFGA.4 B.3 C.2 D.1【解答】解:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正确;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正确;根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,令PF=k(k>0),则PB=2k在Rt△BPQ中,设QB=x,∴x2=(x﹣k)2+4k2,∴x=,∴sin=∠BQP==,故③正确;∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE=BC,BF=BC,∴BE:BF=1:,∴△BGE的面积:△BCF的面积=1:5,=4S△BGE,故④错误.∴S四边形ECFG故选:B.三、解答题(满分60分)21.(5分)先化简,再求值:(1+)÷,其中x=4﹣tan45°.【解答】解:原式=•=,当x=4﹣tan45°=4﹣1=3时,原式==.22.(6分)如图,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)(﹣2,1),先将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),再将△A1B1C1绕原点O顺时针旋转90°得到△A2B2C2,点A1的对应点为点A2.(1)画出△A1B1C1;(2)画出△A2B2C2;(3)求出在这两次变换过程中,点A经过点A1到达A2的路径总长.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)OA1==4,点A经过点A1到达A2的路径总长=+=+2π.23.(6分)如图,二次函数y=(x+2)2+m的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴对称,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(﹣1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足(x+2)2+m≥kx+b的x的取值范围.【解答】解:(1)∵抛物线y=(x+2)2+m经过点A(﹣1,0),∴0=1+m,∴m=﹣1,∴抛物线解析式为y=(x+2)2﹣1=x2+4x+3,∴点C坐标(0,3),∵对称轴x=﹣2,B、C关于对称轴对称,∴点B坐标(﹣4,3),∵y=kx+b经过点A、B,∴,解得,∴一次函数解析式为y=﹣x﹣1,(2)由图象可知,写出满足(x+2)2+m≥kx+b的x的取值范围为x≤﹣4或x≥﹣1.24.(7分)某学校为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行八百米跑体能测试,测试结果分为A、B、C、D四个等级,请根据两幅统计图中的信息回答下列问题:(1)求本次测试共调查了多少名学生?(2)求本次测试结果为B等级的学生数,并补全条形统计图;(3)若该中学八年级共有900名学生,请你估计八年级学生中体能测试结果为D等级的学生有多少人?【解答】解:(1)设本次测试共调查了x名学生.由题意x•20%=10,x=50.∴本次测试共调查了50名学生.(2)测试结果为B等级的学生数=50﹣10﹣16﹣6=18人.条形统计图如图所示,(3)∵本次测试等级为D所占的百分比为=12%,∴该中学八年级共有900名学生中测试结果为D等级的学生有900×12%=108人.25.(8分)甲、乙两车从A城出发前往B城,在整个行程中,两车离开A城的距离y与t的对应关系如图所示:(1)A、B两城之间距离是多少千米?(2)求乙车出发多长时间追上甲车?(3)直接写出甲车出发多长时间,两车相距20千米.【解答】解:(1)由图象可知A、B两城之间距离是300千米.(2)设乙车出发x小时追上甲车.由图象可知,甲的速度==60千米/小时.乙的速度==100千米/小时.由题意60(x+1)=100x解得x=1.5小时.(3)设y甲=kx+b,则解得,∴y甲=60x﹣300,设y乙=k′x+b′,则,解得,∴y乙=100x﹣600,∵两车相距20千米,∴y甲﹣y乙=20或y乙﹣y甲=20或y甲=20或y甲=280,即60x﹣300﹣(100x﹣600)=20或100x﹣600﹣(60x﹣300)=20或60x﹣300=20或60x﹣300=280解得x=7或8或或,∵7﹣5=2,8﹣5=3,﹣5=,﹣5=∴甲车出发2小时或3小时或小时或小时,两车相距20千米.26.(8分)已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BD作垂线,垂足分别为点E、F,点O为AC的中点.(1)当点P与点O重合时如图1,易证OE=OF(不需证明)(2)直线BP绕点B逆时针方向旋转,当∠OFE=30°时,如图2、图3的位置,猜想线段CF、AE、OE之间有怎样的数量关系?请写出你对图2、图3的猜想,并选择一种情况给予证明.【解答】解:(1)∵AE⊥PB,CF⊥BP,∴∠AEO=∠CFO=90°,在△AEO和△CFO中,,∴△AOE≌△COF,∴OE=OF.(2)图2中的结论为:CF=OE+AE.图3中的结论为:CF=OE﹣AE.选图2中的结论证明如下:延长EO交CF于点G,∵AE⊥BP,CF⊥BP,∴AE∥CF,∴∠EAO=∠GCO,在△EOA和△GOC中,,∴△EOA≌△GOC,∴EO=GO,AE=CG,在Rt△EFG中,∵EO=OG,∴OE=OF=GO,∵∠OFE=30°,∴∠OFG=90°﹣30°=60°,∴△OFG是等边三角形,∴OF=GF,∵OE=OF,∴OE=FG,∵CF=FG+CG,∴CF=OE+AE.选图3的结论证明如下:延长EO交FC的延长线于点G,∵AE⊥BP,CF⊥BP,∴AE∥CF,∴∠AEO=∠G,在△AOE和△COG中,,∴△AOE≌△COG,∴OE=OG,AE=CG,在Rt△EFG中,∵OE=OG,∴OE=OF=OG,∵∠OFE=30°,∴∠OFG=90°﹣30°=60°,∴△OFG是等边三角形,∴OF=FG,∵OE=OF,∴OE=FG,∵CF=FG﹣CG,∴CF=OE﹣AE.27.(10分)某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球50个,B种品牌的足球25个,共花费4500元,已知购买一个B种品牌的足球比购买一个A种品牌的足球多花30元.(1)求购买一个A种品牌、一个B种品牌的足球各需多少元.(2)学校为了响应习总书记“足球进校园”的号召,决定再次购进A、B两种品牌足球共50个,正好赶上商场对商品价格进行调整,A品牌足球售价比第一次购买时提高4元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A、B两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B种品牌足球不少于23个,则这次学校有哪几种购买方案?(3)请你求出学校在第二次购买活动中最多需要多少资金?【解答】解:(1)设A种品牌足球的单价为x元,B种品牌足球的单价为y元,依题意得:,解得:.答:购买一个A种品牌的足球需要50元,购买一个B种品牌的足球需要80元.(2)设第二次购买A种足球m个,则购买B种足球(50﹣m)个,依题意得:,解得:25≤m≤27.故这次学校购买足球有三种方案:方案一:购买A种足球25个,B种足球25个;方案二:购买A种足球26个,B种足球24个;方案三:购买A种足球27个,B种足球23个.(3)∵第二次购买足球时,A种足球单价为50+4=54(元),B种足球单价为80×0.9=72(元),∴当购买方案中B种足球最多时,费用最高,即方案一花钱最多.∴25×54+25×72=3150(元).答:学校在第二次购买活动中最多需要3150元资金.28.(10分)如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点B在x轴的正半轴上.∠OAB=90°且OA=AB,OB,OC的长分别是一元二次方程x2﹣11x+30=0的两个根(OB>OC).(1)求点A和点B的坐标.(2)点P是线段OB上的一个动点(点P不与点O,B重合),过点P的直线l 与y轴平行,直线l交边OA或边AB于点Q,交边OC或边BC于点R.设点P 的横坐标为t,线段QR的长度为m.已知t=4时,直线l恰好过点C.当0<t <3时,求m关于t的函数关系式.(3)当m=3.5时,请直接写出点P的坐标.【解答】解:(1)∵方程x2﹣11x+30=0的解为x1=5,x2=6,∴OB=6,OC=5,∴B点坐标为(6,0),作AM⊥x轴于M,如图,∵∠OAB=90°且OA=AB,∴△AOB为等腰直角三角形,∴OM=BM=AM=OB=3,∴A点坐标为(3,3);(2)作CN⊥x轴于N,如图,∵t=4时,直线l恰好过点C,∴ON=4,在Rt△OCN中,CN===3,∴C点坐标为(4,﹣3),设直线OC的解析式为y=kx,把C(4,﹣3)代入得4k=﹣3,解得k=﹣,∴直线OC的解析式为y=﹣x,设直线OA的解析式为y=ax,把A(3,3)代入得3a=3,解得a=1,∴直线OA的解析式为y=x,∵P(t,0)(0<t<3),∴Q(t,t),R(t,﹣t),∴QR=t﹣(﹣t)=t,即m=t(0<t<3);(3)设直线AB的解析式为y=px+q,把A(3,3),B(6,0)代入得,解得,∴直线AB的解析式为y=﹣x+6,同理可得直线BC的解析式为y=x﹣9,当0<t<3时,m=t,若m=3.5,则t=3.5,解得t=2,此时P点坐标为(2,0);当3≤t<4时,Q(t,﹣t+6),R(t,﹣t),∴m=﹣t+6﹣(﹣t)=﹣t+6,若m=3.5,则﹣t+6=3.5,解得t=10(不合题意舍去);当4≤t<6时,Q(t,﹣t+6),R(t,t﹣9),∴m=﹣t+6﹣(t﹣9)=﹣t+15,若m=3.5,则﹣t+15=3.5,解得t=,此时P点坐标为(,0),综上所述,满足条件的P点坐标为(2,0)或(,0).。
黑龙江省佳木斯市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2019·常州) 的相反数是()A .B .C .D .2. (2分)(2019·哈尔滨模拟) 一个几何体由若干个大小相同的小正方体搭成,如图是从三个不同方向看到的形状图,则搭成这个几何体所用的小正方体的个数是()A . 4B . 5C . 6D . 73. (2分)下列运算正确的是()A . x2·x3=x6B . (x3)2=x5C . (xy2)3=x3y6D . x6÷x3=x24. (2分)如图,EF∥BC,AC平分∠BAF,∠B=50°,则∠C的度数是()A . 50°B . 55°C . 60°D . 65°5. (2分)如果一个多边形的内角和等于360度,那么这个多边形的边数为()A . 4B . 5C . 6D . 76. (2分)若点P(x ,-3)与点Q(4,y)关于原点对称,则x+y等于()A . 1B . -1C . 7D . -77. (2分)(2018·长宁模拟) 如图,在四边形ABCD中,对角线AC与BD相交于点O,AC平分∠DAB,且∠DAC=∠DBC,那么下列结论不一定正确的是()A . △AOD∽△BOCB . △AOB∽△DOCC . CD=BCD . BC•CD=AC•OA8. (2分) (2019九下·常德期中) 下列说法中正确是()A . 一个游戏的中奖概率是10%,则做10次这样的游戏一定会中奖B . 为了解全国中学生的心理健康情况,应该采用普查的方式C . 若甲组数据的方差S甲2=0.01,乙组数据的方差S乙2=0.1,则乙组数据比甲组数据稳定D . 一组数据8,3,7,8,8,9,10的众数和中位数都是89. (2分) (2019八下·绍兴期中) 某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元,若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多少株?设每盆多植X株,则可以列出的方程是()A . (x+1)(4-0.5x)=15B . (x+3)(4+0.5x)=15C . (x+4)(3-0.5x)=15D . (3+x)(4-0.5x)=1510. (2分)(2020·武汉模拟) 将一个球竖直向上抛起,球升到最高点,垂直下落,直到地面.在此过程中,球的高度与下落时间的关系可以用下图中的哪一幅来近似地刻画()A .B .C .D .二、填空题 (共5题;共5分)11. (1分)(2018·湘西) 农历五月初五为端午节,端午节吃粽子是中华民族的传统习俗.小明妈妈买了3个红豆粽、2个碱水粽、5个腊肉粽,粽子除了内部馅料不同外其他均相同.小明随意吃了一个,则吃到腊肉棕的概率为________.12. (1分)(2013·衢州) 不等式组的解集是________.13. (1分) (2020九上·秦淮期末) 将二次函数y=2x2的图像向上平移3个单位长度,再向右平移2个单位长度,得到的图像所对应的函数表达式为________.14. (1分) (2017九上·东台期末) 已知圆锥的底面半径为3,侧面积为15 ,则这个圆锥的高为________.15. (1分) (2017九上·召陵期末) 矩形纸片ABCD,AB=9,BC=6,在矩形边上有一点P,且DP=3.将矩形纸片折叠,使点B与点P重合,折痕所在直线交矩形两边于点E,F,则EF长为________.三、解答题 (共9题;共112分)16. (5分) (2016七下·潮南期末) 计算:+4× + (﹣1).17. (40分) (2018七下·长春月考) 计算:(1) (-4x2y)·(-x2y2)·( y)3;(2) (-3ab)(2a2b+ab-1) ;(3) (m- )(m+ );(4)(-x-1)(-x+1) ;(5) (- x - 5)2 ;(6);(7)先化简,再求值:(x+1)2﹣(x+2)(x﹣2),其中;(8)解方程组 .18. (10分) (2020九上·南岗期末) 如图,在中,点,分别是,的中点,连接,,,且,过点作交的延长线于点 .(1)求证:四边形是菱形;(2)在不添加任何辅助线和字母的情况下,请直接写出图中与面积相等的所有三角形(不包括).19. (5分) (2018八上·黑龙江期末) 要在规定的日期内加工一批机器零件,如果甲单独做,刚好在规定日期内完成,乙单独做则要超过3天.现在甲、乙两人合作2天后,再由乙单独做,正好按期完成,问规定日期是多少天?20. (6分)(2017·溧水模拟) 小亮与小明做投骰子(质地均匀的正方体)的实验与游戏.(1)在实验中他们共做了50次试验,试验结果如下:朝上的点数123456出现的次数1096988①填空:此次实验中,“1点朝上”的频率是 ________;(2)在游戏时两人约定:每次同时掷两枚骰子,如果两枚骰子的点数之和超过6,则小亮获胜,否则小明获胜.则小亮与小明谁获胜的可能性大?试说明理由.21. (5分) (2016九下·海口开学考) 如图,某校九年级3班的一个学习小组进行测量小山高度的实践活动.部分同学在山脚点A测得山腰上一点D的仰角为30°,并测得AD的长度为180米;另一部分同学在山顶点B测得山脚点A的俯角为45°,山腰点D的俯角为60度.请你帮助他们计算出小山的高度BC.(计算过程和结果都不取近似值)22. (11分) (2017七下·临川期末) “珍重生命,注意安全!”同学们在上下学途中一定要注意骑车安全.小明骑单车上学,当他骑了一段时间,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(这个题有问题)(1)图中自变量是________,因变量是________;(2)小明家到学校的路程是________ 米。
黑龙江省龙东地区2016年初中毕业学业统一考试数 学 试 题一、填空题(每题3分,满分30分)1.2015年12月6日第十届全球孔子学院大会在上海召开,截止到会前,网络孔子学院注册用户达800万人,数据800万人用科学记数法表示为 人. 2.在函数y=63-x 中,自变量x 的取值范围是 . 3.如图,在平行四边形ABCD 中,延长AD 到点E ,使DE=AD ,连接EB ,EC ,DB.请你添加一个条件 ,使四边形DBCE 是矩形.4.在一个不透明的袋子中装有除颜色外其他均相同的4个红球,3个白球,2个绿球,则摸出绿球的概率是 . 5.不等式组⎩⎨⎧<->mx x 1有3个整数解,则m 的取值范围是 .6.一件服装的标价为300元,打八折销售后可获利60元, 则该件服装的成本价是 元.7.如图,MN 是⊙O 的直径,MN=4,∠AMN=40°, 点B 为弧AN 的中点,点P 是直径MN 上的一 个动点,则PA+PB 的最小值为 .8. 半径为30cm ,面积为300πcm 2为 cm .9.已知:在平行四边形ABCD 中,点E 在直线AD 上,AE=31AD, 连接CE 交BD 于点F ,则EF :FC 的值是 .10.如图,等边三角形的顶点A (1,1)、B (3,1)△ABC “先沿x 轴翻折,再向左平移1个单位”为一次变换,如果这样连续经过2016次变E A BC D 第3题图NM第7题图第10题图换后,等边△ABC 的顶点C 的坐标为 .二、选择题(每题3分,满分30分) 11.下列各运算中,计算正确的是( )A .2a•3a=6aB .(3a 2)3=27a 6C .a 4÷a 2=2aD .(a +b )2=a 2+ab +b 212.下列图形中,既是轴对称图形又是中心对称图形的是 ( )A B CD13.如图,由5块完全相同的小正方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置小正方体的个数,其主视图是 ( )14.一次招聘活动中,共有8人进入复试,他们的复试成绩(百分制)如下:70,100,90,80,70,90,90,80.对于这组数据,下列说法正确的是 ( ) A .平均数是80 B .众数是90 C .中位数是80 D .极差是7015.如图,直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平方向从左向右匀速穿过正方形.设穿过时间为t ,正方形与三角形不重合部分的面积为S (阴影部分),则s 与t 的大致图象为 ( )16.关于x 的分式方程12+-x mx =3的解是正数,则字母m 的取值范围是 ( ) A .m >3 B.m <3 C.m >-3 D.m <-3 17.若点O 是等腰△ABC 的外心,且∠BOC=60°,底边BC=2,则△ABC 的面积为 ( )A. 2+3B.332 C. 2+3或2-3 D. 4+23或2-3 18.已知:反比例函数y =x6,当1<x <3时,y 的最小整数值是 ( )A.3B.4C.5D.619.为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5m 长的彩113A B C D绳截成2m 或1m 长的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不 同的截法 ( ) A.1 B.2 C.3 D.420.如图,在正方形ABCD 中,E 、F 分别为BC 、CD 的中点, 连接AE 、BF 交于点G , 将△BCF 沿BF 对折,得到△BPF ,延长FP 交BA 的延长线于点Q ,下列结论正确 的个数是 ( ) ①AE=BF ②AE ⊥BF ③sin ∠BQP=54④BG E ECFG S S ∆=2四边形三、解答题(满分60分) 21.(本题满分5分)先化简,再求值:(1+21-x )÷2122-+-x xx ,其中x=4-tan45°.22.(本题满分6分) 如图,在平面直角坐标系中,点A 、B 、C 的坐标分别为(-1,3)、(-4,1)、(-2,1),先将△ABC 沿一确定方向平移得到△A 1B 1C 1,点B 的对应点B 1的坐标是(1,2),再将△A 1B 1C 1绕原点O 顺时针旋转90°得到△A 2B 2C2,点A 1的对应点为点A 2. (1) 画出△A 1B 1C 1; (2) 画出△A 2B 2C 2;(3) 求出在这两次变换过程中,点A 经过点A 1到达点A 2的路径总长.第22题图 23.(本题满分6分) 如图,二次函数y=(x+2)2+m 的图象与y 轴交于点C ,点B 在抛物线上,且与点C 关于抛物线的对称轴对称.已知一次函数y=kx+b 的图象经过该二次函数图象上的点A(-1,0)及点B.(1)求二次函数与一次函数的解析式.(2)根据图象,写出满足(x+2)2+m ≥kx+b 的x 的取值范围.C D EGFBQA P第20题图24.(本题满分7分)某学校为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行八百米跑体能测试,测试结果分为A 、B 、C 、D 四个等级,请根据两幅统计图中的信息回答下列问题:(1)求本次测试共调查了多少名学生?(2)求本次测试结果为B 等级的学生数,并补全条形图.(3)若该中学八年级共有900名学生,请你估计八年级学生中体能测试结果为D 等级的学生有多少人?25.(本题满分8分) 甲、 乙两车从A出发前往B A 城的距离y 与时刻t (1)A 、B 两城之间距离是多少千米?(2)求乙车出发多长时间追上甲车? (3)直接写出甲车出发多长时间,两车相距20千米.人数26.(本题满分8分) 已知:点P 是平行四边形ABCD 对角线AC 所在直线上的一个动点(点P不与点A 、C 重合),分别过点A 、C 向直线BP 作垂线,垂足分别为点E 、F,点O为AC 的中点.(1)当点P 与点O 重合时如图1,易证OE=OF (不需证明).(2)直线BP 绕点B 逆时针方向旋转,当∠OFE=30°时,如图2、图3的位置,猜想线段CF 、AE 、OE 之间有怎样的数量关系?请写出你对图2、图3的猜想,并选择一种情况给予证明. 27.(本题满分10分) 某中学开学初到商场购买A 、B 两种品牌的足球,购买A 种品牌的足球50个,B 种品牌的足球25个,共花费4500元.已知购买一个B种品牌的足球比购买一个A 种品牌的足球多花30元.(1)求购买一个A 种品牌、一个B 种品牌的足球各需多少元?(2)学校为了响应习总书记“足球进校园”的号召,决定再次购进A 、B 两种品牌的足球50个,正好赶上商场对商品价格进行调整,A 种品牌的足球售价比第一次购买时提高4元,B 种品牌的足球按第一次购买时售价的九折出售,如果学校此次购买A 、B 两种品牌的足球的总费用不超过第一次花费的70%,且保证这次购买的B 种品牌的足球不少于23个,则这次学校有哪几种购买方案? (3)请你求出学校在第二次购买活动中最多需要多少资金?28.(本题满分10分) 如图,在平面直角坐标系中,四边形OABC 的顶点O 是坐标原点, 点A 在第一象限,点C 在第四象限,点B 在x 轴的正半轴上,∠OAB=90°且OA=AB ,OB 、OC 的长分别是一元二次方程x 2-11x+30=0的两个根(OB >OC). (1)求点A 和点B 的坐标. (2)点P 是线段OB 上的一个动点(点P 不与点O 、B 重合),过点P 的直线a 与y 轴平行, 直线a 交边OA 或边AB 于点Q ,交边OC 或边BC 于点R ,设点P 的横坐标为t ,线段QR 的长度为m ,已知t=4时,直线a 恰好过点C .当0<t <3时,求m 关于t 的函数关系式. (3)当m=3.5时,请你直接写出点P 的坐标.。
佳木斯市中考数学模拟试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2017七上·温州月考) 的倒数是()A .B .C .D .2. (2分)(2019·萧山模拟) 长方体的主视图与左视图如图所示(单位:cm),则其俯视图的面积是()A . 12cm2B . 8cm2C . 6cm2D . 4cm23. (2分) (2016七上·微山期中) 2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A . 0.3×108B . 3×107C . 3×106D . 3×1034. (2分)已知△ABC中,AB=17,AC=10,BC边上的高AD=8,则边BC的长为().A . 21B . 15C . 6D . 以上答案都不对5. (2分)不等式组有4个不同的整数解,则m的取值范围()A .B .C .D .6. (2分) (2019九上·杭州月考) 平面直角坐标系中,点P的坐标为(0,﹣1),将抛物线y=x2﹣4x+2沿水平方向或竖直方向平移,使其经过点P,则平移的最短距离为()A . 3B . 2C .D . 17. (2分) (2018九上·东台期中) 如图,点O是△ABC的内切圆的圆心,若∠A=80°,则∠BOC为()A . 100°B . 130°C . 50°D . 65°8. (2分) (2019七上·厦门月考) 在下列选项中,能说明等式“ ”不成立的是()A . 0B . 1C . 101D . -29. (2分)若方程ax2+bx+c=0(a≠0)满足a+b+c=0,则方程必有一根为()A . 0B . 1C . ﹣1D . ±110. (2分)△ABC内接于⊙O,BC为⊙O直径,∠ACB=60°,AD为∠BAC的平分线交⊙O于D,BE⊥AD于E交⊙O于F,连AF、CD,OG⊥AF于G,BH⊥AF于H交AE于K,下列结论:①OG=DC;②OF=KF;③=,其中正确的有()A . ①②B . ①③C . ②③D . ①②③二、填空题 (共6题;共6分)11. (1分) (2019九上·慈溪月考) 若sinα= ,α是锐角,则α=________度.12. (1分)利用函数思想,直接写出不等式x+1>的解集为________.13. (1分)已知等腰三角形的一边长等于4cm,另一边长等于9cm,则此三角形的周长为________cm.14. (1分)如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO上以4cm/s的速度向O 点运动,与此同时,点D从点B出发,在边BO上以3cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了________ s时,以C点为圆心,2cm为半径的圆与直线EF相切.15. (1分) (2019九下·温州竞赛) 如图,在等腰△ABC中,AC=BC,AB=24.D,E是AB的三等分点,以AD 为直径的⊙E正好过点C.P点为⊙E上一点,弦PC与半径AE交于点F,过点F作FG⊥CA,垂足为G,连接PA.若,则EF的长是________16. (1分)如图,△ABC中,AB=AC,AD是BC边中线,分别以点A、C为圆心,以大于 AC长为半径画弧,两弧交点分别为点E、F,直线EF与AD相交于点O,若OA=2,则△ABC外接圆的面积为________.三、解答题 (共8题;共95分)17. (15分)(2016·桂林) 如图,在四边形ABCD中,AB=6,BC=8,CD=24,AD=26,∠B=90°,以AD为直径作圆O,过点D作DE∥AB交圆O于点E(1)证明点C在圆O上;(2)求tan∠CDE的值;(3)求圆心O到弦ED的距离.18. (10分)如图,在⊙O中,OE垂直于弦AB,垂足为点D,交⊙O于点C,∠EAC=∠CAB.(1)求证:直线AE是⊙O的切线,(2)若AB=8,sin∠E= ,求⊙O的半径.19. (12分) (2016九上·平凉期中) 如图,在Rt△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1 .(1)线段OA1的长是________,∠AOB1的度数是________;(2)连接AA1 ,求证:四边形OAA1B1是平行四边形;(3)求点B旋转到点B1的位置所经过的路线的长.20. (15分)(2018·官渡模拟) 如图,防洪大堤的横截面ABGH是梯形,背水坡AB的坡度i=1:(垂直高度AE与水平宽度BE的比),AB=20米,BC=30米,身高为1.7米的小明(AM=1.7米)站在大堤A点(M,A,E三点在同一条直线上),测得电线杆顶端D的仰角∠a=20°.(1)求甲、乙两人获胜的概率,并说明游戏是否公平.(2)求背水坡AB的坡角;(3)求电线杆CD的高度.(结果精确到个位,参考数据sin20°≈0.3,cos20°≈0.9,tan20°≈0.4,≈1.7)21. (7分)(2020·内乡模拟) 2020年的春节对于我们来说有些不一样,我们每一个人都在面临一个眼睛看不到的敌人,它叫病毒,残酷的病毒会让人惠上肺炎,在这个不能出门的悠长假期里,某中学随机对本校部分学生进行“假期中,我在家可以这么做! .扎实学习、 .快乐游戏、 .经典阅读、 .分担劳动、 .乐享健康”的网络调查,并根据调查结果绘制成如下两幅不完整的统计图(若每一位同学只能选择一项),请根据图中的信息回答下列问题.(1)这次调查的总人数是________人;(2)请补全条形统计图,并说明扇形统计图中所对应的圆心角是________度;(3)若学校共有学生的1700人,则选择有多少人?22. (10分) (2020八下·陇县期末) 为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求当x≥20时y与x的函数关系式;(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方燃,使总费用最低,并求出最低费用.23. (15分)(2019·镇海模拟) 如图1,在平面直角坐标系中,抛物线与x轴交于A(﹣l,0),B(3,0)与y轴交于C(0,﹣).(1)求这个抛物线的解析式;(2)点P在(1)中的抛物线上,连结PC、BC,若∠PCB=∠OBC,求所有满足条件的点P坐标;(3)如图2,作直线y= ,与抛物线交于D、E,连结DC,动点Q在折线C-D-E上运动,过Q作QN∥y 轴,过C作CN∥x轴,直线ON、CN交于点N,将△C沿CQ折得到△QCM,若点M落在x轴上,请直接写出所有符合条件的点Q坐标。
黑龙江省佳木斯市中考数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018七上·宿州期末) ①0是绝对值最小的有理数②a2=(﹣a)2③若|a|>b,则a2>b2④当n为正整数时,(﹣1)2n+1与(﹣1)2n互为相反数⑤若a<b,则a3<b3 .其中正确的个数有()A . 1个B . 2个C . 3个D . 4个2. (2分) (2019八上·响水期末) 下面图形分别表示低碳、节水、节能和绿色食品四个标志,其中的轴对称图形是()A .B .C .D .3. (2分) A(x1 , y1)、B(x2 , y2)是一次函数y=kx+2(k>0)图象上不同的两点,若t=(x1-x2)(y1-y2),则().A . t<0B . t=0C . t>0D . t≤04. (2分)如图,点P是菱形ABCD对角线BD上一点,PE⊥AB于点E,PE=4,则点P到BC的距离等于()A . 4B . 6C . 8D . 105. (2分)湖北省发改委办公室2008年1月24日公布:2007年,武汉市宏观经济运行态势良好,城市居民生活水平明显提高,居民人均可支配收入水平和人均消费性支出均呈两位数增长.2007年,武汉市城市居民人均可支配收入为14358元,比上年同期实际增长11.6%.如图是居民人均可支配收入每年比上年增长率的统计图(如图①)和人均消费性支出的统计图(如图②)根据图中信息,下列说法:①在这五年中我市居民人均可支配收入最多的是2006年;②2007年我市居民人均消费性支出占人均可支配收入的比例约为73.8%;③2006年我市居民人均消费性支出占人均可支配收入的比例为.其中正确的有()A . ①②③B . 只有①②C . 只有②③D . 只有②6. (2分) (2017七下·河东期末) 如果不等式的解集是x<2,那么m的取值范围是()A . m=2B . m>2C . m<2D . m≥27. (2分)如图,是一圆锥的主视图,则此圆锥的侧面展开图的圆心角的度数是()A . 60°B . 90°C . 120°D . ﹣118. (2分) (2016八下·安庆期中) 若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是()A . x2+3x﹣2=0B . x2﹣3x+2=0C . x2﹣2x+3=0D . x2+3x+2=09. (2分)如图,正方形ABCD的边长是4,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值()A . 2B . 4C .D .10. (2分)下列关于二次函数的说法错误的是()A . 抛物线y=﹣2x2+3x+1的对称轴是直线 ,B . 抛物线y=x2﹣2x﹣3,点A(3,0)不在它的图象上C . 二次函数y=(x+2)2﹣2的顶点坐标是(﹣2,﹣2)D . 函数y=2x2+4x﹣3的图象的最低点在(﹣1,﹣5)二、填空题 (共6题;共6分)11. (1分) (2019八上·湘桥期末) 因式分解:2m2-8n2 =________.12. (1分) (2017七下·兴化期末) 如图所示,AB=DB,∠ABD=∠CBE,请你添加一个适当的条件________,使△ABC≌△DBE(只需添加一个即可,不添加辅助线).13. (1分)(2018·南岗模拟) 从,0,﹣,3.14,6这5个数中随机抽取一个数,抽到的有理数的概率是________14. (1分) (2018七上·瑶海期末) 试写出一个解为x=1的一元一次方程:________.15. (1分) (2016九上·简阳期末) 直角△ABC中,斜边AB=5,直角边BC、AC之长是一元二次方程x2﹣(2m ﹣1)x+4(m﹣1)=0的两根,则m的值为________.16. (1分)(2018·温岭模拟) 对于一个函数,如果它的自变量 x 与函数值 y 满足:当−1≤x≤1 时,−1≤y≤1,则称这个函数为“闭函数”.例如:y=x,y=−x 均是“闭函数”.已知y = ax2+ bx + c(a¹0) 是“闭函数”,且抛物线经过点 A(1,−1)和点 B(−1,1),则 a 的取值范围是________.三、解答题 (共8题;共75分)17. (10分)÷ .18. (15分) (2016七下·鄂城期中) 如图1,在平面直角坐标系中,A(a,0),C(b,2),且满足(a+b)2+|a﹣b+4|=0,过C作CB⊥x轴于B.(1)求三角形ABC的面积.(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.19. (5分)解方程:(1) x2﹣5=4x(2) x2+2x﹣5=0.20. (5分)(2019·湖南模拟) 如图,一勘测人员从山脚点出发,沿坡度为的坡面行至点处时,他的垂直高度上升了米;然后再从点处沿坡角为的坡面以米/分钟的速度到达山顶点时,用了分钟.(1)求点到点之间的水平距离;(2)求山顶点处的垂直高度是多少米?( 结果保留整数)21. (10分) (2016八下·固始期末) 固始县教体局举办”我的中国梦“为主题的知识竞赛,甲、乙两所学校参赛人数相等.比赛结束后,发现学生成绩分别为70分,80分,90分,100分,并依据统计数据绘制了如下不完整的统计图表.乙校成绩统计表分数(分)70分80分90分100分人数(人)718(1)在图①中,“80分”所在扇形的圆心角度数为________.(2)请你将图②补充完整.(3)通过计算,说明哪所学校的学生成绩较整齐.22. (10分)(2018·昆明) (列方程(组)及不等式解应用题)水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费不变.甲用户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.(注:污水处理的立方数=实际生活用水的立方数)(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?23. (10分) (2019九上·益阳月考) 如图,已知直线与双曲线交于A、B两点,且点A的横坐标为4.(1)求k的值;(2)若双曲线上一点C的纵坐标为8,求的面积;(3)过原点O的另一条直线l交双曲线于P、Q两点(P点在第一象限),若由点为顶点组成的四边形面积为24,求点P的坐标.24. (10分)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=8,CF=6,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共75分)17-1、18-1、18-2、18-3、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、。
2016年黑龙江省佳木斯市中考数学二模试卷一、填空题(共10小题,每小题3分,满分30分)1.(3分)我国属于水资源缺乏国家之一,总量为28000亿立方米,居世界第六位;人均只有2200立方米,仅为世界平均水平的四分之一,所以我们应该节约用水.数据28000亿立方米用科学记数法表示为立方米(结果保留三个有效数字).2.(3分)函数y=中自变量x的取值范围是:.3.(3分)如图所示,正方形ABCD中,点E在BC上,点F在DC上,请添加一个条件:,使△ABE≌△BCF(只添一个条件即可).4.(3分)小明抛掷一枚质地均匀的硬币9次,有6次正面向上,则第10次抛掷这个硬币,背面向上的概率为.5.(3分)已知x2=2x+5,则2x2﹣4x﹣3的值为.6.(3分)将一个长4cm宽2cm的矩形绕它的一边所在的直线旋转一周,所得几何体的体积为cm3.7.(3分)已知关于x的分式方程=1无解,则a的值为.8.(3分)王铭寒假时和同学们观看冰灯,门票每张150元,15张(含15张)以上打八折,他们共花1800元,他们共买了张门票.9.(3分)已知平行四边形ABCD中,E为直线BC上一点,BC=3CE,连接AE,BD交于点F,则BF:FD=.10.(3分)边长为1的正方形ABCD在平面直角坐标系中位置如图所示,以对角线BD为边作正方形BC1D1D,再以对角线BD1为边作正方形BB1C2D1,再以对角线B1D1为边作正方形B1C3D2D1,…按此规律做第10次所得正方形的顶点C10的坐标为.二、选择题(共10小题,每小题3分,满分30分)11.(3分)下列各运算中,计算正确的是()A.x2+x2=x4B.=3C.a0=1D.(﹣3ab2)2=6a2b412.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.13.(3分)如图是由一些大小相同的小正方体组成的几何体的主视图和俯视图,则组成这个几何体的小正方形的个数最少有()个.A.6B.7C.8D.914.(3分)某校九年级有11名同学参加数学竞赛,预赛成绩各不相同,要取前5名参加决赛.小兰已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这11名同学成绩的()A.中位数B.众数C.平均数D.不能确定15.(3分)如图,在平面直角坐标系中,四边形OBCD是边长为4的正方形,平行于对角线BD的直线l从O出发,沿x轴正方向以每秒1个单位长度的速度运动,运动到直线l 与正方形没有交点为止.设直线l扫过正方形OBCD的面积为S,直线l运动的时间为t (秒),下列能反映S与t之间函数关系的图象是()A.B.C.D.16.(3分)在Rt△ABC中,∠C=90°,sin A=,b=4,则tan B=()A.B.C.D.17.(3分)如图,CD是⊙O的直径,弦AB⊥CD于E,连接BC、BD,下列结论中不一定正确的是()A.AE=BE B.=C.OE=DE D.∠DBC=90°18.(3分)若点P1(x1,x2),P(x2,y2)在反比例函数y=(k>0)的图象上,且x1<x2,则()A.y1<y2B.y1>y2C.y1=y2D.以上都不对19.(3分)九年一班有6名同学在学校组织的“朗诵”比赛中获奖,李老师给班长30元钱去买笔记本作为奖品.已知甲种笔记本每本5元,乙种笔记本每本3元,那么购买奖品的方案有()A.4种B.5种C.6种D.7种20.(3分)如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有()个.A.4B.3C.2D.1三、解答题(共8小题,满分60分)21.(5分)先化简,再求值:(﹣)÷,其中x=tan60°.22.(6分)如图,方格纸中每个小正方形的边长都是单位1,△ABC在平面直角坐标系中的位置如图所示.(1)在图中作出△ABC关于y轴对称的△A1B1C1,并直接写出点A1的坐标.(2)将△ABC绕点O顺时针旋转90°得△A2B2C2,在图中作出△A2B2C2,并计算点A旋转到点A2所经过的路径长.23.(6分)如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值.24.(7分)在一次“献爱心”捐款活动中,九年1班同学人人拿出自己的零花钱,踊跃捐款,学生捐款额有5元、10元、15元、20元四种情况.根据统计数据绘制了图①和图②两幅尚不完整的统计图.(1)学生捐款的众数是,该班共有多少名同学?(2)请将图②的统计图补充完整;并计算图①中“10元”所在扇形对应的圆心角度数;(3)计算该班同学平均捐款多少元?25.(8分)甲乙两人共同加工一批零件,从工作开始到加工完这批零件两人恰好同时工作6小时,二人各自加工零件的个数y(个)与加工时间x(小时)之间的函数图象如图所示,根据信息回答下列问题:(1)求甲在前4个小时的工作效率;(2)求线段CD所在直线的解析式和这批零件的总数;(3)加工多长时间,甲乙两人各自加工的零件个数相差5个?26.(8分)在△ABC中,点D为BC上一点,连接AD,点E在BD上,且DE=CD,过点E作AB的平行线交AD于F,且EF=AC.(1)如图①,求证:∠BAD=∠CAD;(2)如图②,连接AE,若AC=CD,AB:AE=3:2,请你探究线段DF与AF的数量关系,并证明你的结论.27.(10分)某中学为贯彻“全员育人,创办特色学校,培养特色人才”育人精神,决心打造“书香校园”,计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?(3)学校已经筹集资金24420元,在(2)的条件下,将剩余资金全部用于奖励“诚实刻苦、博学多才”的学生,设立一等奖价值300元学习用品,二等奖价值200元学习用品,问有多少学生能获得奖励?28.(10分)如图,直角梯形OABC的顶点C,A分别在x轴、y轴上,AB∥OC,∠AOC =90°,∠OCB=45°,BC=6,直线DE交OB于点D,交y轴于点E,OD=2BD,且OE,OC的长分别为方程x2﹣11x+18=0的两个根(OE<OC).(1)求出点B的坐标.(2)求出直线DE的解析式.(3)若点P为y轴上一点,在坐标平面内是否存在点Q,使以D,E,P,Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.2016年黑龙江省佳木斯市中考数学二模试卷参考答案与试题解析一、填空题(共10小题,每小题3分,满分30分)1.(3分)我国属于水资源缺乏国家之一,总量为28000亿立方米,居世界第六位;人均只有2200立方米,仅为世界平均水平的四分之一,所以我们应该节约用水.数据28000亿立方米用科学记数法表示为 2.80×1012立方米(结果保留三个有效数字).【解答】解:28000亿=2800000000000=2.80×1012,故答案为:2.80×1012.2.(3分)函数y=中自变量x的取值范围是:x≥1.【解答】解:由题意得,x﹣1≥0且x≠0,解得x≥1.故答案为:x≥1.3.(3分)如图所示,正方形ABCD中,点E在BC上,点F在DC上,请添加一个条件:BE=CF,使△ABE≌△BCF(只添一个条件即可).【解答】解:添加条件:BE=CF,理由如下:∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠C=90°,在△ABE和△BCF中,,∴△ABE≌△BCF,故答案为:BE=CF.4.(3分)小明抛掷一枚质地均匀的硬币9次,有6次正面向上,则第10次抛掷这个硬币,背面向上的概率为.【解答】解:无论哪一次掷硬币,都有两种可能,即正面朝上与反面朝上,故第10次背面朝上的概率为.故答案为:.5.(3分)已知x2=2x+5,则2x2﹣4x﹣3的值为7.【解答】解:∵x2=2x+5,∴x2﹣2x=5,∴2x2﹣4x﹣3=2(x2﹣2x)﹣3,=2×5﹣3,=7.故答案为:7.6.(3分)将一个长4cm宽2cm的矩形绕它的一边所在的直线旋转一周,所得几何体的体积为16π或32πcm3.【解答】解:分两种情况:①绕长所在的直线旋转一周得到圆柱体积为:π×22×4=16π(cm3);②绕宽所在的直线旋转一周得到圆柱体积为:π×42×2=32π(cm3).故它们的体积分别为16πcm3或32πcm3.故答案为:16π或32π.7.(3分)已知关于x的分式方程=1无解,则a的值为﹣2.【解答】解:=1方程两边同乘以x﹣1,得2x+a=x﹣1移项及合并同类项,得x=﹣1﹣a,∵关于x的分式方程=1无解,∴x﹣1=0,得x=1∴﹣1﹣a=1,得a=﹣2.故答案为:﹣2.8.(3分)王铭寒假时和同学们观看冰灯,门票每张150元,15张(含15张)以上打八折,他们共花1800元,他们共买了12或15张门票.【解答】解:设他们共买了x张门票,分两种情况:①150x=1800,解得x=12;②0.8×150x=1800,解得x=15.答:他们共买了12或15张门票.故答案为:12或15.9.(3分)已知平行四边形ABCD中,E为直线BC上一点,BC=3CE,连接AE,BD交于点F,则BF:FD=2:3或4:3.【解答】解:如图所示:∵平行四边形ABCD中,∴AD∥BC,AD=BC,∴△BFE∽△DF A,∴=,∵BC=3CE,∴BE=BC,∴=,同理可得:△ADF′∽△E′BF′,则=,故=,故BF:FD=2:3或4:3.故答案为:2:3或4:3.10.(3分)边长为1的正方形ABCD在平面直角坐标系中位置如图所示,以对角线BD为边作正方形BC1D1D,再以对角线BD1为边作正方形BB1C2D1,再以对角线B1D1为边作正方形B1C3D2D1,…按此规律做第10次所得正方形的顶点C10的坐标为(63,32).【解答】解:第一个正方形边长为1=()0,第二个正方形边长为=()1,第三个正方形边长为2=()3,…第十一个正方形边长为()10=32.点C坐标(1,1),点C2坐标(1+2,2),点C4坐标(1+2+4,4),…点C10坐标(1+2+4+8+16+32,32)即(63,32).故答案为(63,32).二、选择题(共10小题,每小题3分,满分30分)11.(3分)下列各运算中,计算正确的是()A.x2+x2=x4B.=3C.a0=1D.(﹣3ab2)2=6a2b4【解答】解:A、x2+x2=2x2,故此选项错误;B、=3,正确;C、a0=1(a≠0),故此选项错误;D、(﹣3ab2)2=9a2b4,故此选项错误;故选:B.12.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.13.(3分)如图是由一些大小相同的小正方体组成的几何体的主视图和俯视图,则组成这个几何体的小正方形的个数最少有()个.A.6B.7C.8D.9【解答】解:根据俯视图可得:最底层有5个,根据主视图可得:第二层最少有2个,第三层最少有1个,则组成这个几何体的小正方形的个数最少有5+2+1=8个.故选:C.14.(3分)某校九年级有11名同学参加数学竞赛,预赛成绩各不相同,要取前5名参加决赛.小兰已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这11名同学成绩的()A.中位数B.众数C.平均数D.不能确定【解答】解:由于总共有11个人,且他们的分数互不相同,第6名的成绩是中位数,要判断是否进入前5名,故应知道自已的成绩和中位数.故选:A.15.(3分)如图,在平面直角坐标系中,四边形OBCD是边长为4的正方形,平行于对角线BD的直线l从O出发,沿x轴正方向以每秒1个单位长度的速度运动,运动到直线l 与正方形没有交点为止.设直线l扫过正方形OBCD的面积为S,直线l运动的时间为t (秒),下列能反映S与t之间函数关系的图象是()A.B.C.D.【解答】解:①当0≤t≤4时,S=×t×t=t2,即S=t2.该函数图象是开口向上的抛物线的一部分.故B、C错误;②当4<t≤8时,S=16﹣×(8﹣t)×(8﹣t)=﹣t2+8t﹣16.该函数图象是开口向下的抛物线的一部分.故A错误.故选:D.16.(3分)在Rt△ABC中,∠C=90°,sin A=,b=4,则tan B=()A.B.C.D.【解答】解:由sin A=,得BA=5a,BC=3a.由勾股定理,得(5a)2=(3a)2+42,解得a=1,BC=3.由正切函数是对边比邻边,得tan B==.故选:B.17.(3分)如图,CD是⊙O的直径,弦AB⊥CD于E,连接BC、BD,下列结论中不一定正确的是()A.AE=BE B.=C.OE=DE D.∠DBC=90°【解答】解:∵CD是⊙O的直径,弦AB⊥CD于E,∴AE=BE,=,故A、B正确;∵CD是⊙O的直径,∴∠DBC=90°,故D正确.故选:C.18.(3分)若点P1(x1,x2),P(x2,y2)在反比例函数y=(k>0)的图象上,且x1<x2,则()A.y1<y2B.y1>y2C.y1=y2D.以上都不对【解答】解:∵函数值的大小不定,若x1、x2同号,则y1>y2;若x1、x2异号,则y1<y2.故选:D.19.(3分)九年一班有6名同学在学校组织的“朗诵”比赛中获奖,李老师给班长30元钱去买笔记本作为奖品.已知甲种笔记本每本5元,乙种笔记本每本3元,那么购买奖品的方案有()A.4种B.5种C.6种D.7种【解答】解:设甲种笔记本购买了x本,乙种笔记本6﹣x本,由题意,得5x+3(6﹣x)≤30,解得:0≤x≤6,购买奖品的方案有7种,故选:D.20.(3分)如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有()个.A.4B.3C.2D.1【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,,Rt△ABE≌Rt△ADF(HL),∴BE=DF(故①正确).∠BAE=∠DAF,∴∠DAF+∠DAF=30°,即∠DAF=15°(故②正确),∵BC=CD,∴BC﹣BE=CD﹣DF,即CE=CF,∵AE=AF,∴AC垂直平分EF.(故③正确).设EC=x,由勾股定理,得EF=x,CG=x,AG=AE sin60°=EF sin60°=2×CG sin60°=x,∴AC=,∴AB=,∴BE=﹣x=,∴BE+DF=x﹣x≠x,(故④错误),∵S△CEF=,S△ABE==,∴2S△ABE==S△CEF,(故⑤正确).综上所述,正确的有4个,故选:A.三、解答题(共8小题,满分60分)21.(5分)先化简,再求值:(﹣)÷,其中x=tan60°.【解答】解:原式=•=•=,当x=tan60°=时,原式==+1.22.(6分)如图,方格纸中每个小正方形的边长都是单位1,△ABC在平面直角坐标系中的位置如图所示.(1)在图中作出△ABC关于y轴对称的△A1B1C1,并直接写出点A1的坐标.(2)将△ABC绕点O顺时针旋转90°得△A2B2C2,在图中作出△A2B2C2,并计算点A旋转到点A2所经过的路径长.【解答】解:(1)如图所示:△A1B1C1,即为所求,A1(﹣3,3);(2)如图所示:△A2B2C2,即为所求,则OA==3,故点A旋转到点A2所经过的路径长为:=π.23.(6分)如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值.【解答】解:(1)∵点A(﹣1,0)在抛物线y=x2+bx﹣2上,∴×(﹣1)2+b×(﹣1)﹣2=0,解得:b=﹣,∴抛物线的解析式为:y=x2﹣x﹣2.∵y=x2﹣x﹣2=(x2﹣3x﹣4 )=,∴顶点D的坐标为(,﹣).(2)设点C关于x轴的对称点为C′,直线C′D的解析式为y=kx+n,则,解得:.∴y=﹣x+2.∴当y=0时,﹣x+2=0,解得:x=.∴m=.24.(7分)在一次“献爱心”捐款活动中,九年1班同学人人拿出自己的零花钱,踊跃捐款,学生捐款额有5元、10元、15元、20元四种情况.根据统计数据绘制了图①和图②两幅尚不完整的统计图.(1)学生捐款的众数是10,该班共有多少名同学?(2)请将图②的统计图补充完整;并计算图①中“10元”所在扇形对应的圆心角度数;(3)计算该班同学平均捐款多少元?【解答】解:(1)∵捐20元的有10人,所占比例为20%,∴总人数=10÷20%=50人;∴捐10的人数=50﹣6﹣16﹣10=18人,∴10元是捐款额的众数;故答案为10.(2)如图:图①中“10元”所在扇形对应的圆心角度数是:360°×=129.6°;(3)平均数==13,因此该班同学平均捐款为13元.25.(8分)甲乙两人共同加工一批零件,从工作开始到加工完这批零件两人恰好同时工作6小时,二人各自加工零件的个数y(个)与加工时间x(小时)之间的函数图象如图所示,根据信息回答下列问题:(1)求甲在前4个小时的工作效率;(2)求线段CD所在直线的解析式和这批零件的总数;(3)加工多长时间,甲乙两人各自加工的零件个数相差5个?【解答】解:(1)甲在前4个小时每小时生产零件数为:80÷4=20(个),∴甲在前4个小时的工作效率为20个/小时.(2)设线段CD所在直线的解析式为y=kx+b,将点(2,80)、(5,110)代入到y=kx+b中,得,解得:.∴直线CD解析式为y=10x+60.当x=6时,y=120.设线段AB所在直线的解析式为y1=k1x+b1,将点(4,80)、(5,110)代入到y1=k1x+b1中,得,解得:.∴直线AB解析式为y1=30x﹣40.当x=6时,y1=140.∵120+140=260(个).∴这批零件的总数为260个.(3)设工作x(x<4)小时后,甲乙两人各自加工的零件个数相差5个,根据图象得:40x﹣20x=5,解得:x=;当x>4时,分两种情况:y﹣y1=5时,即(10x+60)﹣(30x﹣40)=5,解得:x=;y1﹣y=5时,即(30x﹣40)﹣(10x+60)=5,解得x=.答:加工时间为、或小时时,甲乙两人各自加工的零件个数相差5个.26.(8分)在△ABC中,点D为BC上一点,连接AD,点E在BD上,且DE=CD,过点E作AB的平行线交AD于F,且EF=AC.(1)如图①,求证:∠BAD=∠CAD;(2)如图②,连接AE,若AC=CD,AB:AE=3:2,请你探究线段DF与AF的数量关系,并证明你的结论.【解答】解:(1)延长FD到点G,过C作CG∥AB交FD的延长线于点M,则EF∥MC,∴∠BAD=∠EFD=∠M,在△EDF和△CMD中,,∴△EDF≌△CDM(AAS),∴MC=EF=AC,∴∠M=∠CAD,∴∠BAD=∠CAD;(2)∵=,==,∴,∵∠C=∠C∴△ACD∽△ECA,∴∠AEC=∠CAD=∠BAD,∴△ADE∽△BDA∴===,∴DE=AD,AD=BD,∴DE=BD,即:=,∵EF∥AB,∴==.27.(10分)某中学为贯彻“全员育人,创办特色学校,培养特色人才”育人精神,决心打造“书香校园”,计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?(3)学校已经筹集资金24420元,在(2)的条件下,将剩余资金全部用于奖励“诚实刻苦、博学多才”的学生,设立一等奖价值300元学习用品,二等奖价值200元学习用品,问有多少学生能获得奖励?【解答】解:(1)设组建x个中型图书角,则组建30﹣x个小型图书角,解得18≤x≤20,3种方案;分别为中型18个,小型12个;或中型19个,小型11个;或中型20个,小型10个.(2)设总费用w元,建设中型x个,则小型(30﹣x)个W=290x+17100,∵290>0∴w随x的增大而增大∴当x=18时,w最小,此时w最小=22320元.答:方案一即建设中型18个,小型12个费用最少,最少为22320元.(3)剩余资金为24420﹣22320=2100元,设获得200元有a人,300元的有b人.则200a+300b=2100,2a+3b=21,方程的整数解为a=9,b=1或a=6,b=3或a=3,b=5,∴一共有10人或9人或8人获得奖励.28.(10分)如图,直角梯形OABC的顶点C,A分别在x轴、y轴上,AB∥OC,∠AOC =90°,∠OCB=45°,BC=6,直线DE交OB于点D,交y轴于点E,OD=2BD,且OE,OC的长分别为方程x2﹣11x+18=0的两个根(OE<OC).(1)求出点B的坐标.(2)求出直线DE的解析式.(3)若点P为y轴上一点,在坐标平面内是否存在点Q,使以D,E,P,Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.【解答】(1)如图1,∵x2﹣11x+18=0,∴x=2或x=9,∵OE<OC,∴OE=2,OC=9,过点B作BG⊥OC,垂足为G∵∠OCB=45°,BC=6,∴BG=CG=6,∴OG=3,∴B(﹣3,6),(2)如图2,过点D作DH∥AB,交y轴于点H ∴,∵OD=2BD,∴DH=2,OH=4,∴D(﹣2,4),设直线DE解析式为y=kx+b,过点D(﹣2,4),E(0,2),∴DE解析式为y=﹣x+2;(3)存在Q,如图3,由(2)知,点D(﹣2,4),E(0,2),∴DE=2,∵四边形DEPQ是菱形,∴EP=DE=2,∴P1(0,2+2),P2(0,2﹣2),∵四边形DEPQ是菱形,∴DQ∥PE,DQ=DE=2,∴Q1(﹣2,4+2),Q2(﹣2,4﹣2),由(2)知,直线DE的解析式为y=﹣x+2,∴线段DE的垂直平分线的解析式为y=x+4,∴P3(0,4),∴Q3(﹣2,2)∵四边形DEPQ是菱形,∴点Q4与D关于DP4对称,∴Q4(2,4);综上所述,存在点Q,使以D、E、P、Q为顶点的四边形是菱形;点Q的坐标为:Q1(﹣2,4+2),Q2(﹣2,4﹣2),Q3(﹣2,2)Q4(2,4).。
黑龙江省佳木斯市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2012·贺州) 等于()A . 4B . ﹣2C . ±2D . 22. (2分)(2020·虹口模拟) 若cosα=,则锐角α的度数是()A . 30°B . 45°C . 60°D . 90°3. (2分)下列四个式子:①(﹣1)0=﹣1,②(﹣1)﹣1=1,③ ,④ ,其中正确的有()A . 1个B . 2个C . 3个D . 4个4. (2分)汶川地震后,某电视台法制频道在端午节组织发起“绿丝带行动”,号召市民为四川受灾的人们祈福.人们将绿丝带剪成小段,并用别针将折叠好的绿丝带别在胸前,如图所示,绿丝带重叠部分形成的图形是()A . 正方形B . 等腰梯形C . 菱形D . 矩形5. (2分)如果收入50元记作+50元,那么支出30元记作A . +30元B . -30元C . +80元D . -80元6. (2分)(2019·绥化) 若一个几何体的主视图、俯视图、左视图都是半径相等的圆,则这个几何体是()A . 球体B . 圆锥C . 圆柱D . 正方体7. (2分)若关于x的方程﹣=8有增根,那么k的值为()A . -1B . 1C . ±1D . 78. (2分)估计×+的运算结果应在()A . 6到7之间B . 7到8之间C . 8到9之间D . 9到10之间9. (2分)(2019·广西模拟) 在⊙O中,圆心O到弦AB的距离为AB长度的一半,则弦AB所对圆心角的大小为()A . 30°B . 45°C . 60°D . 90°10. (2分)对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分4个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是()A . 2.25B . 2.5C . 2.95D . 311. (2分)如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,则图中阴影部分的面积为()A .B .C .D . 1-12. (2分)小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A .B .C .D .二、填空题 (共5题;共5分)13. (1分) (2018八上·黔南期末) 因式分解:=________14. (1分)(2016·定州模拟) 小刚用一张半径为12cm的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为5cm,那么这张扇形纸板的面积是________ cm2 .15. (1分)(2012·宿迁) 不等式组的解集是________.16. (1分)(2016·深圳模拟) 小亮与小明一起玩“石头、剪刀、布”的游戏,两同学同时出“剪刀”的概率是________.17. (1分)函数y=kx+b的图象如图所示,则当y<0时,x的取值范围是________.三、解答题 (共8题;共90分)18. (5分)(2017·河南模拟) 先化简,再求值:(﹣a)÷(1+ ),其中a是不等式﹣<a<的整数解.19. (5分)(2017·鹤岗) 在四边形ABCD中,对角线AC、BD交于点O.若四边形ABCD是正方形如图1:则有AC=BD,AC⊥BD.旋转图1中的Rt△COD到图2所示的位置,AC′与BD′有什么关系?(直接写出)若四边形ABCD是菱形,∠ABC=60°,旋转Rt△COD至图3所示的位置,AC′与BD′又有什么关系?写出结论并证明.20. (15分)(2017·盐城模拟) 某校组织学生书法比赛,对参赛作品按A、B、C、D四个等级进行了评定.现随机抽取部分学生书法作品的评定结果进行分析,并绘制扇形统计图和条形统计图如下:根据上述信息完成下列问题:(1)求这次抽取的样本的容量;(2)请在图②中把条形统计图补充完整;(3)已知该校这次活动共收到参赛作品750份,请你估计参赛作品达到B级以上(即A级和B级)有多少份?21. (5分)(2017·马龙模拟) 如图,小芸在自家楼房的窗户A处,测量楼前的一棵树CD的高.现测得树顶C处的俯角为45°,树底D处的俯角为60°,楼底到大树的距离BD为20米.请你帮助小芸计算树的高度(精确到0.1米).22. (15分) (2017七下·金乡期末) 商场销售A、B两种商品,它们的进价和售价如表所示.A商品B商品进价(元/件)3040售价(元/件)5070(1)若该商场购进A、B两种商品共60件,恰好用去2050元,求购进A、B两种商品各多少件?(2)该商场第二次购买A、B两种商品,而B商品数量比A商品数量的2倍少6件,且购买总额不超过2840元,总利润不少于1900元.请你帮助该商场设计相应的进货方案;(3)若一个星期该商场销售A、B两种商品的总利润恰好是140元,求销售A、B两种商品各多少件?23. (15分) (2017·盐城模拟) 抛物线y= +x+m的顶点在直线y=x+3上,过点F(﹣2,2)的直线交该抛物线于点M、N两点(点M在点N的左边),MA⊥x轴于点A,NB⊥x轴于点B.(1)先通过配方求抛物线的顶点坐标(坐标可用含m的代数式表示),再求m的值;(2)设点N的横坐标为a,试用含a的代数式表示点N的纵坐标,并说明NF=NB;(3)若射线NM交x轴于点P,且PA•PB= ,求点M的坐标.24. (15分)(2017·濮阳模拟) 如图,直线y=﹣x﹣4与抛物线y=ax2+bx+c相交于A,B两点,其中A,B 两点的横坐标分别为﹣1和﹣4,且抛物线过原点.(1)求抛物线的解析式;(2)在坐标轴上是否存在点C,使△ABC为等腰三角形?若存在,求出点C的坐标,若不存在,请说明理由;(3)若点P是线段AB上不与A,B重合的动点,过点P作PE∥OA,与抛物线第三象限的部分交于一点E,过点E作EG⊥x轴于点G,交AB于点F,若S△BGF=3S△EFP,求的值.25. (15分)(2017·阜康模拟) 已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共5题;共5分)13-1、14-1、15-1、16-1、17-1、三、解答题 (共8题;共90分)18-1、20-1、20-2、20-3、21-1、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、。
黑龙江省佳木斯市中考数学试卷(农垦、森工用)一、填空题(每题3分,满分30分)1.(3分)在的“双11”网上促销活动中,淘宝网的交易额突破了3200000000元,将数字3200000000用科学记数法表示.2.(3分)函数y=中,自变量x的取值范围是.3.(3分)如图,BC∥EF,AC∥DF,添加一个条件,使得△ABC≌△DEF.4.(3分)在一个不透明的袋子中装有除颜色外完全相同的3个红球、3个黄球、2个绿球,任意摸出一球,摸到红球的概率是.5.(3分)不等式组的解集是x>﹣1,则a的取值范围是.6.(3分)原价100元的某商品,连续两次降价后售价为81元,若每次降低的百分率相同,则降低的百分率为.7.(3分)如图,边长为4的正方形ABCD,点P是对角线BD上一动点,点E在边CD上,EC=1,则PC+PE的最小值是.8.(3分)圆锥底面半径为3cm,母线长3cm则圆锥的侧面积为cm2.9.(3分)△ABC中,AB=12,AC=,∠B=30°,则△ABC的面积是.10.(3分)观察下列图形,第一个图形中有一个三角形;第二个图形中有5个三角形;第三个图形中有9个三角形;….则第个图形中有个三角形.二、选择题(每题3分,满分30分)11.(3分)下列各运算中,计算正确的是()A.(x﹣2)2=x2﹣4 B.(3a2)3=9a6C.x6÷x2=x3D.x3•x2=x512.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.13.(3分)几个相同的小正方体所搭成的几何体的俯视图如图所示,小正方形中的数字表示在该位置小正方体的个数最多是()俯视图左视图A.5个B.7个C.8个D.9个14.(3分)一组从小到大排列的数据:a,3,4,4,6(a为正整数),唯一的众数是4,则该组数据的平均数是()A.3.6 B.3.8 C.3.6或3.8 D.4.215.(3分)如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是()A.B.C. D.16.(3分)若关于x的分式方程的解为非负数,则a的取值范围是()A.a≥1 B.a>1 C.a≥1且a≠4 D.a>1且a≠417.(3分)在平行四边形ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则平行四边形ABCD周长是()A.22 B.20 C.22或20 D.1818.(3分)如图,是反比例函数y1=和一次函数y2=mx+n的图象,若y1<y2,则相应的x的取值范围是()A.1<x<6 B.x<1 C.x<6 D.x>119.(3分)某企业决定投资不超过20万元建造A、B两种类型的温室大棚.经测算,投资A种类型的大棚6万元/个、B种类型的大棚7万元/个,那么建造方案有()A.2种B.3种C.4种D.5种20.(3分)如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点G,连接AG交BE于点H,连接DH,下列结论正确的个数是()①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S△HDG:S△HBG=tan∠DAG ⑤线段DH的最小值是2﹣2.A.2 B.3 C.4 D.5三、解答题(满分60分)21.(5分)先化简,再求值:(﹣)÷,请在2,﹣2,0,3当中选一个合适的数代入求值.22.(6分)如图,在平面直角坐标系中,Rt△ABC三个顶点都在格点上,点A、B、C的坐标分别为A(﹣1,3),B(﹣3,1),C(﹣1,1).请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出B1的坐标.(2)画出△A1B1C1绕点C1顺时针旋转90°后得到的△A2B2C1,并求出点A1走过的路径长.23.(6分)如图,已知抛物线y=﹣x2+mx+3与x轴交于点A、B两点,与y轴交于C点,点B的坐标为(3,0),抛物线与直线y=﹣x+3交于C、D两点.连接BD、AD.(1)求m的值.(2)抛物线上有一点P,满足S△ABP=4S△ABD,求点P的坐标.24.(7分)某校在艺术节选拔节目过程中,从备选的“街舞”、“爵士”、“民族”、“拉丁”四种类型舞蹈中,选择一种学生最喜爱的舞蹈,为此,随机调查了本校的部分学生,并将调查结果绘制成如下统计图表(每位学生只选择一种类型),根据统计图表的信息,解答下列问题:(1)本次抽样调查的学生人数及a、b的值.(2)将条形统计图补充完整.(3)若该校共有1500名学生,试估计全校喜欢“拉丁舞蹈”的学生人数.25.(8分)为营造书香家庭,周末小亮和姐姐一起从家出发去图书馆借书,走了6分钟忘带借书证,小亮立即骑路边共享单车返回家中取借书证,姐姐以原来的速度继续向前行走,小亮取到借书证后骑单车原路原速前往图书馆,小亮追上姐姐后用单车带着姐姐一起前往图书馆.已知单车的速度是步行速度的3倍,如图是小亮和姐姐距家的路程y(米)与出发的时间x(分钟)的函数图象,根据图象解答下列问题:(1)小亮在家停留了分钟.(2)求小亮骑单车从家出发去图书馆时距家的路程y(米)与出发时间x(分钟)之间的函数关系式.(3)若小亮和姐姐到图书馆的实际时间为m分钟,原计划步行到达图书馆的时间为n分钟,则n ﹣m= 分钟.26.(8分)在四边形ABCD中,对角线AC、BD交于点O.若四边形ABCD是正方形如图1:则有AC=BD,AC⊥BD.旋转图1中的Rt△COD到图2所示的位置,AC′与BD′有什么关系?(直接写出)若四边形ABCD是菱形,∠ABC=60°,旋转Rt△COD至图3所示的位置,AC′与BD′又有什么关系?写出结论并证明.27.(10分)由于雾霾天气频发,市场上防护口罩出现热销.某药店准备购进一批口罩,已知1个A型口罩和3个B型口罩共需26元;3个A型口罩和2个B型口罩共需29元.(1)求一个A型口罩和一个B型口罩的售价各是多少元?(2)药店准备购进这两种型号的口罩共50个,其中A型口罩数量不少于35个,且不多于B型口罩的3倍,有哪几种购买方案,哪种方案最省钱?28.(10分)如图,矩形AOCB的顶点A、C分别位于x轴和y轴的正半轴上,线段OA、OC的长度满足方程|x﹣15|+=0(OA>OC),直线y=kx+b分别与x轴、y轴交于M、N两点,将△BCN沿直线BN折叠,点C恰好落在直线MN上的点D处,且tan∠CBD=(1)求点B的坐标;(2)求直线BN的解析式;(3)将直线BN以每秒1个单位长度的速度沿y轴向下平移,求直线BN扫过矩形AOCB的面积S关于运动的时间t(0<t≤13)的函数关系式.黑龙江省佳木斯市中考数学试卷(农垦、森工用)参考答案与试题解析一、填空题(每题3分,满分30分)1.(3分)(•黑龙江)在的“双11”网上促销活动中,淘宝网的交易额突破了3200000000元,将数字3200000000用科学记数法表示 3.2×109.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:3200000000=3.2×109.故答案为:3.2×109.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.2.(3分)(•黑龙江)函数y=中,自变量x的取值范围是x>1 .【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0可求出自变量x 的取值范围.【解答】解:根据题意得:x﹣1>0,解得:x>1.【点评】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.(3分)(•黑龙江)如图,BC∥EF,AC∥DF,添加一个条件AB=DE或BC=EF或AC=DF或AD=BE (只需添加一个即可),使得△ABC≌△DEF.【分析】本题要判定△ABC≌△DEF,易证∠A=∠EDF,∠ABC=∠E,故添加AB=DE、BC=EF或AC=DF 根据ASA、AAS即可解题.【解答】解:∵BC∥EF,∴∠ABC=∠E,∵AC∥DF,∴∠A=∠EDF,∵在△ABC和△DEF中,,∴△ABC≌△DEF,同理,BC=EF或AC=DF也可证△ABC≌△DEF.故答案为AB=DE或BC=EF或AC=DF或AD=BE(只需添加一个即可).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.(3分)(•黑龙江)在一个不透明的袋子中装有除颜色外完全相同的3个红球、3个黄球、2个绿球,任意摸出一球,摸到红球的概率是.【分析】根据随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,用红球的个数除以总个数,求出恰好摸到红球的概率是多少即可.【解答】解:∵袋子中共有8个球,其中红球有3个,∴任意摸出一球,摸到红球的概率是,故答案为:.【点评】此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.5.(3分)(•黑龙江)不等式组的解集是x>﹣1,则a的取值范围是a≤﹣.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了,结合不等式组的解集即可确定a的范围.【解答】解:解不等式x+1>0,得:x>﹣1,解不等式a﹣x<0,得:x>3a,∵不等式组的解集为x>﹣1,则3a≤﹣1,∴a≤﹣,故答案为:a≤﹣.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.(3分)(•黑龙江)原价100元的某商品,连续两次降价后售价为81元,若每次降低的百分率相同,则降低的百分率为10% .【分析】先设平均每次降价的百分率为x,得出第一次降价后的售价是原来的(1﹣x),第二次降价后的售价是原来的(1﹣x)2,再根据题意列出方程解答即可.【解答】解:设这两次的百分率是x,根据题意列方程得100×(1﹣x)2=81,解得x1=0.1=10%,x2=1.9(不符合题意,舍去).答:这两次的百分率是10%.故答案为:10%.【点评】本题考查一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.7.(3分)(•黑龙江)如图,边长为4的正方形ABCD,点P是对角线BD上一动点,点E在边CD上,EC=1,则PC+PE的最小值是 5 .【分析】连接AC、AE,由正方形的性质可知A、C关于直线BD对称,则AE的长即为PC+PE的最小值,再根据勾股定理求出AE的长即可.【解答】解:连接AC、AE,∵四边形ABCD是正方形,∴A、C关于直线BD对称,∴AE的长即为PC+PE的最小值,∵CD=4,CE=1,∴DE=3,在Rt△ADE中,∵AE===5,∴PC+PE的最小值为5.故答案为:5.【点评】本题考查的是轴对称﹣最短路线问题及正方形的性质,根据题意作出辅助线,构造出直角三角形是解答此题的关键.8.(3分)(•黑龙江)圆锥底面半径为3cm,母线长3cm则圆锥的侧面积为9πcm2.【分析】根据题意可求出圆锥底面周长,然后利用扇形面积公式即可求出圆锥的侧面积.【解答】解:圆锥的底面周长为:2π×3=6π,∴圆锥侧面展开图的弧长为:6π,∵圆锥的母线长3,∴圆锥侧面展开图的半径为:3∴圆锥侧面积为:×3×6π=9π;故答案为:9π;【点评】本题考查圆锥的计算,解题的关键是熟练运用圆锥的相关计算公式,本题属于基础题型.9.(3分)(•黑龙江)△ABC中,AB=12,AC=,∠B=30°,则△ABC的面积是21或15.【分析】过A作AD⊥BC于D(或延长线于D),根据含30度角的直角三角形的性质得到AD的长,再根据勾股定理得到BD,CD的长,再分两种情况:如图1,当AD在△ABC内部时、如图2,当AD在△ABC外部时,进行讨论即可求解.【解答】解:①如图1,作AD⊥BC,垂足为点D,在Rt△ABD中,∵AB=12、∠B=30°,∴AD=AB=6,BD=ABcosB=12×=6,在Rt△ACD中,CD===,∴BC=BD+CD=6+=7,则S△ABC=×BC×AD=×7×6=21;②如图2,作AD⊥BC,交BC延长线于点D,由①知,AD=6、BD=6、CD=,则BC=BD﹣CD=5,∴S△ABC=×BC×AD=×5×6=15,故答案为:21或15.【点评】本题主要考查了解直角三角形,勾股定理,本题关键是得到BC和AD的长,同时注意分类思想的运用.10.(3分)(•黑龙江)观察下列图形,第一个图形中有一个三角形;第二个图形中有5个三角形;第三个图形中有9个三角形;….则第个图形中有8065 个三角形.【分析】结合图形数出前三个图形中三角形的个数,发现规律:后一个图形中三角形的个数总比前一个三角形的个数多4.【解答】解:第1个图形中一共有1个三角形,第2个图形中一共有1+4=5个三角形,第3个图形中一共有1+4+4=9个三角形,…第n个图形中三角形的个数是1+4(n﹣1)=4n﹣3,当n=时,4n﹣3=8065,故答案为:8065.【点评】此题考查图形的变化规律,由特殊到一般的归纳方法,找出规律:后一个图形中三角形的个数总比前一个三角形的个数多4解决问题.二、选择题(每题3分,满分30分)11.(3分)(•黑龙江)下列各运算中,计算正确的是()A.(x﹣2)2=x2﹣4 B.(3a2)3=9a6C.x6÷x2=x3D.x3•x2=x5【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=x2﹣4x+4,故A错误;(B)原式=27a6,故B错误;(C)原式=x4,故C错误;故选(D)【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.12.(3分)(•黑龙江)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,也不是中心对称图形,故本选项错误;B、不是轴对称图形,也不是中心对称图形,故本选项错误;C、既是轴对称图形,又是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.13.(3分)(•黑龙江)几个相同的小正方体所搭成的几何体的俯视图如图所示,小正方形中的数字表示在该位置小正方体的个数最多是()俯视图左视图【分析】根据俯视图知几何体的底层有4个小正方形组成,而左视图是由3个小正方形组成,故这个几何体的后排最有1个小正方体,前排最多有2×3=6个小正方体,即可解答.【解答】解:由俯视图及左视图知,构成该几何体的小正方形体个数最多的情况如下:故选:B.【点评】本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就容易得到答案.14.(3分)(•黑龙江)一组从小到大排列的数据:a,3,4,4,6(a为正整数),唯一的众数是4,则该组数据的平均数是()A.3.6 B.3.8 C.3.6或3.8 D.4.2【分析】根据众数的定义得出正整数a的值,再根据平均数的定义求解可得.【解答】解:∵数据:a,3,4,4,6(a为正整数),唯一的众数是4,∴a=1或2,当a=1时,平均数为=3.6;当a=2时,平均数为=3.8;故选:C.【点评】本题主要考查了众数与平均数的定义,根据众数是一组数据中出现次数最多的数得出a的值是解题的关键.15.(3分)(•黑龙江)如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是()A.B.C. D.【分析】根据特殊点的实际意义即可求出答案.【解答】解:先注甲池水未达连接地方时,乙水池中的水面高度没变化;当甲池中水到达连接的地方,乙水池中水面上升比较快;当两水池水面持平时,乙水池的水面持续增长较慢,最后两池水面持平后继续快速上升,故选:D.【点评】主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.16.(3分)(•黑龙江)若关于x的分式方程的解为非负数,则a的取值范围是()A.a≥1 B.a>1 C.a≥1且a≠4 D.a>1且a≠4【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据解为非负数及分式方程分母不为0求出a的范围即可.【解答】解:去分母得:2(2x﹣a)=x﹣2,解得:x=,由题意得:≥0且≠2,解得:a≥1且a≠4,故选:C.【点评】此题考查了分式方程的解,需注意在任何时候都要考虑分母不为0.17.(3分)(•黑龙江)在平行四边形ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则平行四边形ABCD周长是()A.22 B.20 C.22或20 D.18【分析】根据AE平分∠BAD及AD∥BC可得出AB=BE,BC=BE+EC,从而根据AB、AD的长可求出平行四边形的周长.【解答】解:在平行四边形ABCD中,AD∥BC,则∠DAE=∠AEB.∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,BC=BE+EC,①当BE=3,EC=4时,平行四边形ABCD的周长为:2(AB+AD)=2(3+3+4)=20.②当BE=4,EC=3时,平行四边形ABCD的周长为:2(AB+AD)=2(4+4+3)=22.故选:C.【点评】本题考查平行四边形的性质、等腰三角形的判定;根据题意判断出AB=BE是解答本题的关键.18.(3分)(•黑龙江)如图,是反比例函数y1=和一次函数y2=mx+n的图象,若y1<y2,则相应的x的取值范围是()A.1<x<6 B.x<1 C.x<6 D.x>1【分析】观察图象得到:当1<x<6时,一次函数y2的图象都在反比例函数y1的图象的上方,即满足y1<y2.【解答】解:由图形可知:若y1<y2,则相应的x的取值范围是:1<x<6;故选A.【点评】本题考查了反比例函数与一次函数的交点问题,利用数形结合的思想解决此类问题.19.(3分)(•黑龙江)某企业决定投资不超过20万元建造A、B两种类型的温室大棚.经测算,投资A种类型的大棚6万元/个、B种类型的大棚7万元/个,那么建造方案有()A.2种B.3种C.4种D.5种【分析】直接根据题意假设出未知数,进而得出不等式进而分析得出答案.【解答】解:设建造A种类型的温室大棚x个,建造B种类型的温室大棚y个,根据题意可得:6x+7y≤20,当x=1,y=2符合题意;当x=2,y=1符合题意;当x=3,y=0符合题意;故建造方案有3种.【点评】此题主要考查了二元一次方程的应用,正确表示出建造两种大棚的费用是解题关键.20.(3分)(•黑龙江)如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点G,连接AG交BE于点H,连接DH,下列结论正确的个数是()①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S△HDG:S△HBG=tan∠DAG ⑤线段DH的最小值是2﹣2.A.2 B.3 C.4 D.5【分析】首先证明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性质,等高模型、三边关系一一判断即可.【解答】解:∵四边形ABCD是正方形,∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠ABE=∠DCF,在△ADG和△CDG中,,∴△ADG≌△CDG(SAS),∴∠DAG=∠DCF,∴∠ABE=∠DAG,∵∠DAG+∠BAH=90°,∴∠BAE+∠BAH=90°,∴∠AHB=90°,∴AG⊥BE,故③正确,同法可证:△AGB≌△CGB,∴△CBG∽△FDG,∴△ABG∽△FDG,故①正确,∵S△HDG:S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,又∵∠DAG=∠FCD,∴S△HDG:S△HBG=tan∠FCD,tan∠DAG,故④正确取AB的中点O,连接OD、OH,∵正方形的边长为4,∴AO=OH=×4=2,由勾股定理得,OD==2 ,由三角形的三边关系得,O、D、H三点共线时,DH最小,DH最小=2 ﹣2.无法证明DH平分∠EHG,故②错误,故①③④⑤正确,故选C.【点评】本题考查了正方形的性质,全等三角形的判定与性质,三角形的三边关系,勾股定理、等高模型等知识,解题的关键是灵活运用所学知识解决问题,难点在于⑤作辅助线并确定出DH最小时的情况.三、解答题(满分60分)21.(5分)(•黑龙江)先化简,再求值:(﹣)÷,请在2,﹣2,0,3当中选一个合适的数代入求值.【分析】先化简分式,然后根据分式有意义的条件即可求出m的值,从而可求出原式的值.【解答】解:原式=(﹣)×=×﹣×=﹣=,∵m≠±2,0,∴当m=3时,原式=3【点评】本题考查分式的化简求值,解题的关键是熟练运用分式的运算法则,本题属于基础题型.22.(6分)(•黑龙江)如图,在平面直角坐标系中,Rt△ABC三个顶点都在格点上,点A、B、C的坐标分别为A(﹣1,3),B(﹣3,1),C(﹣1,1).请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出B1的坐标.(2)画出△A1B1C1绕点C1顺时针旋转90°后得到的△A2B2C1,并求出点A1走过的路径长.【分析】(1)根据网格结构找出点A、B、C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据弧长公式列式计算即可得解.【解答】解:(1)如图,B1(3,1);(2)如图,A1走过的路径长:×2×π×2=π【点评】本题考查了利用轴对称变换作图,利用旋转变换作图,以及弧长的计算,熟练掌握网格结构,准确找出对应顶点的位置是解题的关键.23.(6分)(•黑龙江)如图,已知抛物线y=﹣x2+mx+3与x轴交于点A、B两点,与y轴交于C点,点B的坐标为(3,0),抛物线与直线y=﹣x+3交于C、D两点.连接BD、AD.(1)求m的值.(2)抛物线上有一点P,满足S△ABP=4S△ABD,求点P的坐标.【分析】(1)利用待定系数法即可解决问题;(2)利用方程组首先求出点D坐标.由面积关系,推出点P的纵坐标,再利用待定系数法求出点P 的坐标即可;【解答】解:(1)∵抛物线y=﹣x2+mx+3过(3,0),∴0=﹣9+3m+3,∴m=2(2)由,得,,∴D(,﹣),∵S△ABP=4S△ABD,∴AB×|y P|=4×AB×,∴|y P|=9,y P=±9,当y=9时,﹣x2+2x+3=9,无实数解,当y=﹣9时,﹣x2+2x+3=﹣9,x1=1+,x2=1﹣,∴P(1+,﹣9)或P(1﹣,﹣9).【点评】本题考查抛物线与x轴的交点、二次函数的图象上的点的特征,解题的关键是熟练掌握待定系数法解决问题,学会利用方程组确定两个函数的交点坐标,属于中考常考题型.24.(7分)(•黑龙江)某校在艺术节选拔节目过程中,从备选的“街舞”、“爵士”、“民族”、“拉丁”四种类型舞蹈中,选择一种学生最喜爱的舞蹈,为此,随机调查了本校的部分学生,并将调查结果绘制成如下统计图表(每位学生只选择一种类型),根据统计图表的信息,解答下列问题:(1)本次抽样调查的学生人数及a、b的值.(2)将条形统计图补充完整.(3)若该校共有1500名学生,试估计全校喜欢“拉丁舞蹈”的学生人数.【分析】(1)由“拉丁”的人数及所占百分比可得总人数,由条形统计图可直接得a、b的值;(2)由(1)中各种类型舞蹈的人数即可补全条形图;(3)用样本中“拉丁舞蹈”的百分比乘以总人数可得.【解答】解:(1)总人数:60÷30%=200(人),a=50÷200=25%,b=(200﹣50﹣60﹣30)÷200=30%;(2)如图所示:(3)1500×30%=450(人).答:约有450人喜欢“拉丁舞蹈”.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问25.(8分)(•黑龙江)为营造书香家庭,周末小亮和姐姐一起从家出发去图书馆借书,走了6分钟忘带借书证,小亮立即骑路边共享单车返回家中取借书证,姐姐以原来的速度继续向前行走,小亮取到借书证后骑单车原路原速前往图书馆,小亮追上姐姐后用单车带着姐姐一起前往图书馆.已知单车的速度是步行速度的3倍,如图是小亮和姐姐距家的路程y(米)与出发的时间x(分钟)的函数图象,根据图象解答下列问题:(1)小亮在家停留了 2 分钟.(2)求小亮骑单车从家出发去图书馆时距家的路程y(米)与出发时间x(分钟)之间的函数关系式.(3)若小亮和姐姐到图书馆的实际时间为m分钟,原计划步行到达图书馆的时间为n分钟,则n ﹣m= 30 分钟.【分析】(1)根据路程与速度、时间的关系,首先求出C、B两点的坐标,即可解决问题;(2)根据C、D两点坐标,利用待定系数法即可解决问题;(3)求出原计划步行到达图书馆的时间为n,即可解决问题.【解答】解:(1)步行速度:300÷6=50m/min,单车速度:3×50=150m/min,单车时间:3000÷150=20min,30﹣20=10,∴C(10,0),∴A到B是时间==2min,∴B(8,0),∴BC=2,∴小亮在家停留了2分钟.故答案为2.(2)设y=kx+b,过C、D(30,3000),∴,解得,∴y=150x﹣1500(10≤x≤30)(3)原计划步行到达图书馆的时间为n分钟,n==60n﹣m=60﹣30=30分钟,故答案为30.【点评】本题考查一次函数的应用、路程、速度、时间之间的关系等知识,解题的关键是理解题意,读懂图象信息,灵活运用所学知识解决问题,属于中考常考题型.26.(8分)(•黑龙江)在四边形ABCD中,对角线AC、BD交于点O.若四边形ABCD是正方形如图1:则有AC=BD,AC⊥BD.旋转图1中的Rt△COD到图2所示的位置,AC′与BD′有什么关系?(直接写出)若四边形ABCD是菱形,∠ABC=60°,旋转Rt△COD至图3所示的位置,AC′与BD′又有什么关系?写出结论并证明.【分析】图2:根据四边形ABCD是正方形,得到AO=OC,BO=OD,AC⊥BD,根据旋转的性质得到OD′=OD,OC′=OC,∠D′OD=∠C′OC,等量代换得到AO=BO,OC′=OD′,∠AOC′=∠BOD′,根据全等三角形的性质得到AC′=BD′,∠OAC′=∠OBD′,于是得到结论;图3:根据四边形ABCD是菱形,得到AC⊥BD,AO=CO,BO=DO,求得OB=OA,OD=OC,根据旋转的性质得到OD′=OD,OC′=OC,∠D′OD=∠C′OC,求得OD′=OC′,∠AOC′=∠BOD′,根据相似三角形的性质得到BD′=AC′,于是得到结论.【解答】解:图2结论:AC′=BD′,AC′⊥BD′,理由:∵四边形ABCD是正方形,∴AO=OC,BO=OD,AC⊥BD,∵将Rt△COD旋转得到Rt△C′OD′,∴OD′=OD,OC′=OC,∠D′OD=∠C′OC,∴AO=BO,OC′=OD′,∠AOC′=∠BOD′,在△AOC′与△BOD′中,,∴△AOC′≌△BOD′,∴AC′=BD′,∠OAC′=∠OBD′,∵∠AO′D′=∠BO′O,∠O′BO+∠BO′O=90°,∴∠O′AC′+∠AO′D′=90°,∴AC′⊥BD′;图3结论:BD′=AC′,AC′⊥BD’理由:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO,∵∠ABC=60°,∴∠ABO=30°,∴OB=OA,OD=OC,∵将Rt△COD旋转得到Rt△C′OD′,∴OD′=OD,OC′=OC,∠D′OD=∠C′OC,∴OD′=OC′,∠AOC′=∠BOD′,∴=,∴△AOC′∽△BOD′,∴==,∠OAC′=∠OBD′,∴BD′=AC′,∵∠AO′D′=∠BO′O,∠O′BO+∠BO′O=90°,∴∠O′AC′+∠AO′D′=90°,∴AC′⊥BD′.【点评】本题考查了正方形的性质,菱形的性质,全等三角形的判定和性质,相似三角形的判定和性质,旋转的性质,正确的识别图形是解题的关键.27.(10分)(•黑龙江)由于雾霾天气频发,市场上防护口罩出现热销.某药店准备购进一批口罩,已知1个A型口罩和3个B型口罩共需26元;3个A型口罩和2个B型口罩共需29元.(1)求一个A型口罩和一个B型口罩的售价各是多少元?(2)药店准备购进这两种型号的口罩共50个,其中A型口罩数量不少于35个,且不多于B型口罩的3倍,有哪几种购买方案,哪种方案最省钱?【分析】(1)设一个A型口罩的售价是a元,一个B型口罩的售价是b元,根据:“1个A型口罩和3个B型口罩共需26元;3个A型口罩和2个B型口罩共需29元”列方程组求解即可;(2)设A型口罩x个,根据“A型口罩数量不少于35个,且不多于B型口罩的3倍”确定x的取值范围,然后得到有关总费用和A型口罩之间的关系得到函数解析式,确定函数的最值即可.【解答】解:(1)设一个A型口罩的售价是a元,一个B型口罩的售价是b元,依题意有:,解得:.答:一个A型口罩的售价是5元,一个B型口罩的售价是7元.(2)设A型口罩x个,依题意有:,解得35≤x≤37.5,∵x为整数,∴x=35,36,37.方案如下:设购买口罩需要y元,则y=5x+7(50﹣x)=﹣2x+350,k=﹣2<0,∴y随x增大而减小,∴x=37时,y的值最小.答:有3种购买方案,其中方案三最省钱.。
黑龙江省佳木斯市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)-2的绝对值是()A . -2B . 2C .D . -2. (2分)如图所示,几何体的俯视图是()A .B .C .D .3. (2分) (2016七上·老河口期中) 单项式xm﹣1y3与4xyn的和是单项式,则mn的值是()A . 3B . 6C . 8D . 94. (2分)(2017·成都) 学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分)60708090100人数(人)7121083则得分的众数和中位数分别为()A . 70分,70分B . 80分,80分C . 70分,80分D . 80分,70分5. (2分) (2020九上·卫辉期末) 从九年级一班3名优秀干部和九二班2名优秀干部中随机抽取两名学生担任升旗手,则抽取的两名学生刚好一个班的概率为()A .B .C .D .6. (2分)不等式组的解集在数轴上表示正确的是()A .B .C .D .7. (2分) (2016七下·嘉祥期末) 甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%、若设甲、乙两种商品原来的单价分别为x 元、y元,则下列方程组正确的是()A .B .C .D .8. (2分) (2020八下·阳信期末) 如图,在四边形ABCD中,下列条件不能判定四边形ABCD是平行四边形的是()A . AB∥DC,AD∥BCB . AB=DC,AD=BCC . A D∥BC,AB=DCD . AB∥DC,AB=DC9. (2分) (2020八下·重庆期末) 直角三角形中,两条直角边长分别是12和5,则斜边中线长是()A . 26B . 13C .D . 6.510. (2分) (2019九上·浏阳期中) 抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①4ac<b2;②a>b>c;③一次函数y=ax+c的图象不经第四象限;④m(am+b)+b<a(m是任意实数);⑤3b+2c>0.其中正确的个数是()A . 1B . 2C . 3D . 4二、填空题 (共8题;共8分)11. (1分)下列由四舍五入法得到近似数,各精确到哪一位:0.0233________;3.10________;4.50万________;3.04×104________;12. (1分)分解因式:=________ .13. (1分) (2020九下·沭阳模拟) 甲、乙两同学近期6次数学单元测试成绩的平均分相同,甲同学成绩的方差S甲2=6.5分2 ,乙同学成绩的方差S乙2=3.1分2 ,则他们的数学测试成绩较稳定的是________(填“甲”或“乙”).14. (1分) (2017九上·信阳开学考) 已知关于x的方程(a﹣1)x2﹣x﹣2=0有两个不相等的实数根,则a 的取值范围是________.15. (1分) (2019七下·韶关期末) 如图,,,交的平分线于点,,则 ________.16. (1分) (2016九上·卢龙期中) 如图,P是正△ABC内一点,若将△PBC绕点B旋转到△P′BA,则∠PBP′的度数是________.17. (1分) (2019八下·溧阳期中) 已知正方形ABCD的边长为4,点E,F分别在AD,DC上,AE=DF=1,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为________.18. (1分)(2016·阿坝) 如图,正方形CDEF的顶点D,E在半圆O的直径上,顶点C,F在半圆上,连接AC,BC,则 =________.三、解答题 (共8题;共86分)19. (5分)(2018·遂宁) 先化简,再求值.(其中x=1,y=2)20. (11分)某社区为了解居民对足球、篮球、排球、羽毛球和乒乓球这五种球类运动项目的喜爱情况,在社区开展了“我最喜爱的球类运动项目”的随机调查(每位被调查者必须且只能选择最喜爱的一种球类运动项目),并将调查结果进行了统计,绘制成了如图所示的两幅不完整的统计图:(1)求本次被调查的人数;(2)将上面的两幅统计图补充完整;(3)若该社区喜爱这五种球类运动项目的人数大约有4000人,请你估计该社区喜爱羽毛球运动项目的人数.21. (10分)(2018·乌鲁木齐模拟) 某商场用24000元购入一批空调,然后以每台3000元的价格销售,因天气炎热,空调很快售完;商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,售价每台也上调了200元.(1)商场第一次购入的空调每台进价是多少元?(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?22. (10分)(2020·宜宾) 如图,两楼地面距离BC为米,楼AB高30米,从楼AB的顶部点A测得楼CD顶部点D的仰角为45度.(1)求的大小;(2)求楼CD的高度(结果保留根号).23. (10分)(2017·温州模拟) 环保健康的“共享单车”已成为人们短途出行的一种新方式,一辆新投放市场的单车其先期成本为1050元.如图是一辆新投放的共享单车其运营收入w1和运营支出w2关于时间m的函数图象.注:一辆单车的盈利=运营收入﹣运营支出﹣先期成本(1)分别求w1及运营60天后w2关于时间m的函数关系式.(2)求一辆新投放市场的单车恰好收回先期成本需要运营多少天?(3)某公司投放市场一批单车,其先期成本不少于2.1万元但不超过10.5万元,经过一段时间的市场试运营共盈利3550元,则该公司试运营的天数为________天(直接写出答案).24. (10分) (2020八下·龙泉驿期末) 如图,在Rt△ABC中,AC=4,∠BAC=90°,∠B=30°,D是BC 上一点,AE⊥AD ,∠ADE=30°,连接CE .(1)求证:△ADE∽△ABC;(2)求证:△ACE∽△ABD;(3)设CE=x ,当CD=2CE时,求x的值.25. (15分)(2020·广元) 如图,公路MN为东西走向,在点M北偏东36.5°方向上,距离5千米处是学校A;在点M北偏东45°方向上距离千米处是学校B.(参考数据:,).(1)求学校A , B两点之间的距离(2)要在公路MN旁修建一个体育馆C ,使得A , B两所学校到体育馆C的距离之和最短,求这个最短距离.26. (15分)(2016·梅州) 如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,﹣3),动点P在抛物线上.(1) b=________,c=________,点B的坐标为________;(直接填写结果)(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共86分)19-1、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、26-1、26-2、26-3、。
2016年黑龙江省佳木斯市中考数学试卷一、填空题(共10小题,每小题3分,满分30分)1.(3分)2015年12月6日第十届全球孔子学院大会在上海召开,截止到会前,网络孔子学院注册用户达800万人,数据800万人用科学记数法表示为人.2.(3分)在函数y=中,自变量x的取值范围是.3.(3分)如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件,使四边形DBCE是矩形.4.(3分)在一个不透明的袋子中装有除颜色外其他均相同的4个红球,3个白球,2个绿球,则摸出绿球的概率是.5.(3分)不等式组有3个整数解,则m的取值范围是.6.(3分)一件服装的标价为300元,打八折销售后可获利60元,则该件服装的成本价是元.7.(3分)如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为.8.(3分)小丽在手工制作课上,想用扇形卡纸制作一个圣诞帽,卡纸的半径为30cm,面积为300πcm2,则这个圣诞帽的底面半径为cm.9.(3分)已知:在平行四边形ABCD中,点E在直线AD上,AE=AD,连接CE 交BD于点F,则EF:FC的值是.10.(3分)如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次変换,如果这样连续经过2016次变换后,等边△ABC的顶点C的坐标为.二、选择题(共10小题,每小题3分,满分30分)11.(3分)下列运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b212.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.13.(3分)如图,由5块完全相同的小正方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置小正方体的个数,其主视图是()A.B.C.D.14.(3分)一次招聘活动中,共有8人进入复试,他们的复试成绩(百分制)如下:70,100,90,80,70,90,90,80.对于这组数据,下列说法正确的是()A.平均数是80 B.众数是90 C.中位数是80 D.极差是7015.(3分)如图,直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形.设穿过时间为t,正方形与三角形不重合部分的面积为s(阴影部分),则s与t的大致图象为()A.B.C.D.16.(3分)关于x的分式方程=3的解是正数,则字母m的取值范围是()A.m>3 B.m<3 C.m>﹣3 D.m<﹣317.(3分)若点O是等腰△ABC的外心,且∠BOC=60°,底边BC=2,则△ABC 的面积为()A.2+B.C.2+或2﹣D.4+2或2﹣18.(3分)已知反比例函数y=,当1<x<3时,y的最小整数值是()A.3 B.4 C.5 D.619.(3分)为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5m长的彩绳截成2m或1m的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法()A.1 B.2 C.3 D.420.(3分)如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是()①AE=BF;②AE⊥BF;③sin∠BQP=;④S=2S△BGE.四边形ECFGA.4 B.3 C.2 D.1三、解答题(满分60分)21.(5分)先化简,再求值:(1+)÷,其中x=4﹣tan45°.22.(6分)如图,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)(﹣2,1),先将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),再将△A1B1C1绕原点O顺时针旋转90°得到△A2B2C2,点A1的对应点为点A2.(1)画出△A1B1C1;(2)画出△A2B2C2;(3)求出在这两次变换过程中,点A经过点A1到达A2的路径总长.23.(6分)如图,二次函数y=(x+2)2+m的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴对称,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(﹣1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足(x+2)2+m≥kx+b的x的取值范围.24.(7分)某学校为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行八百米跑体能测试,测试结果分为A、B、C、D四个等级,请根据两幅统计图中的信息回答下列问题:(1)求本次测试共调查了多少名学生?(2)求本次测试结果为B等级的学生数,并补全条形统计图;(3)若该中学八年级共有900名学生,请你估计八年级学生中体能测试结果为D等级的学生有多少人?25.(8分)甲、乙两车从A城出发前往B城,在整个行程中,两车离开A城的距离y与t的对应关系如图所示:(1)A、B两城之间距离是多少千米?(2)求乙车出发多长时间追上甲车?(3)直接写出甲车出发多长时间,两车相距20千米.26.(8分)已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BD作垂线,垂足分别为点E、F,点O为AC的中点.(1)当点P与点O重合时如图1,易证OE=OF(不需证明)(2)直线BP绕点B逆时针方向旋转,当∠OFE=30°时,如图2、图3的位置,猜想线段CF、AE、OE之间有怎样的数量关系?请写出你对图2、图3的猜想,并选择一种情况给予证明.27.(10分)某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球50个,B种品牌的足球25个,共花费4500元,已知购买一个B种品牌的足球比购买一个A种品牌的足球多花30元.(1)求购买一个A种品牌、一个B种品牌的足球各需多少元.(2)学校为了响应习总书记“足球进校园”的号召,决定再次购进A、B两种品牌足球共50个,正好赶上商场对商品价格进行调整,A品牌足球售价比第一次购买时提高4元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A、B两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B种品牌足球不少于23个,则这次学校有哪几种购买方案?(3)请你求出学校在第二次购买活动中最多需要多少资金?28.(10分)如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点B在x轴的正半轴上.∠OAB=90°且OA=AB,OB,OC的长分别是一元二次方程x2﹣11x+30=0的两个根(OB>OC).(1)求点A和点B的坐标.(2)点P是线段OB上的一个动点(点P不与点O,B重合),过点P的直线l 与y轴平行,直线l交边OA或边AB于点Q,交边OC或边BC于点R.设点P 的横坐标为t,线段QR的长度为m.已知t=4时,直线l恰好过点C.当0<t <3时,求m关于t的函数关系式.(3)当m=3.5时,请直接写出点P的坐标.2016年黑龙江省佳木斯市中考数学试卷参考答案与试题解析一、填空题(共10小题,每小题3分,满分30分)1.(3分)2015年12月6日第十届全球孔子学院大会在上海召开,截止到会前,网络孔子学院注册用户达800万人,数据800万人用科学记数法表示为8×106人.【解答】解:将800万用科学记数法表示为:8×106.故答案为:8×106.2.(3分)在函数y=中,自变量x的取值范围是x≥2.【解答】解:由题意,得3x﹣6≥0,解得x≥2,故答案为:x≥2.3.(3分)如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件EB=DC,使四边形DBCE是矩形.【解答】解:添加EB=DC.理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴DE∥BC,又∵DE=AD,∴DE=BC,∴四边形DBCE为平行四边形.又∵EB=DC,∴四边形DBCE是矩形.故答案是:EB=DC.4.(3分)在一个不透明的袋子中装有除颜色外其他均相同的4个红球,3个白球,2个绿球,则摸出绿球的概率是.【解答】解:∵在一个不透明的袋子中装有除颜色外其他均相同的4个红球,3个白球,2个绿球,∴摸出绿球的概率是:=.故答案为:.5.(3分)不等式组有3个整数解,则m的取值范围是2<m≤3.【解答】解:不等式的整数解是0,1,2.则m的取值范围是2<m≤3.故答案是:2<m≤3.6.(3分)一件服装的标价为300元,打八折销售后可获利60元,则该件服装的成本价是180元.【解答】解:设该件服装的成本价是x元,依题意得:300×﹣x=60,解得:x=180.∴该件服装的成本价是180元.故答案为:180.7.(3分)如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为2.【解答】解:过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,连接OB,OA′,AA′,∵AA′关于直线MN对称,∴=,∵∠AMN=40°,∴∠A′ON=80°,∠BON=40°,∴∠A′OB=120°,过O作OQ⊥A′B于Q,在Rt△A′OQ中,OA′=2,∴A′B=2A′Q=2,即PA+PB的最小值2.故答案为:2.8.(3分)小丽在手工制作课上,想用扇形卡纸制作一个圣诞帽,卡纸的半径为30cm,面积为300πcm2,则这个圣诞帽的底面半径为10cm.【解答】解:设卡纸扇形的半径和弧长分别为R、l,圣诞帽底面半径为r,则由题意得R=30,由Rl=300π得l=20π;由2πr=l得r=10cm.故答案是:10.9.(3分)已知:在平行四边形ABCD中,点E在直线AD上,AE=AD,连接CE交BD于点F,则EF:FC的值是或.【解答】解:∵AE=AD,∴分两种情况:①当点E在线段AD上时,如图1所示∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△EFD∽△CFB,∴EF:FC=DE:BC,∵AE=AD,∴DE=2AE=AD=BC,∴DE:BC=2:3,∴EF:FC=2:3;②当点E在线段DA的延长线上时,如图2所示:同①得:△EFD∽△CFB,∴EF:FC=DE:BC,∵AE=AD,∴DE=4AE=AD=BC,∴DE:BC=4:3,∴EF:FC=4:3;综上所述:EF:FC的值是或;故答案为:或.10.(3分)如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次変换,如果这样连续经过2016次变换后,等边△ABC的顶点C的坐标为(﹣2014,+1).【解答】解:解:∵△ABC是等边三角形AB=3﹣1=2,∴点C到x轴的距离为1+2×=+1,横坐标为2,∴C(2,+1),第2016次变换后的三角形在x轴上方,点C的纵坐标为+1,横坐标为2﹣2016×1=﹣2014,所以,点C的对应点C′的坐标是(﹣2014,+1),故答案为:(﹣2014,+1).二、选择题(共10小题,每小题3分,满分30分)11.(3分)下列运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b2【解答】解:A、2a•3a=6a2,故此选项错误;B、(3a2)3=27a6,正确;C、a4÷a2=a2,故此选项错误;D、(a+b)2=a2+2ab+b2,故此选项错误;故选:B.12.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.13.(3分)如图,由5块完全相同的小正方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置小正方体的个数,其主视图是()A.B.C.D.【解答】解:由分析得该组合体的主视图为:故选B.14.(3分)一次招聘活动中,共有8人进入复试,他们的复试成绩(百分制)如下:70,100,90,80,70,90,90,80.对于这组数据,下列说法正确的是()A.平均数是80 B.众数是90 C.中位数是80 D.极差是70【解答】解:依题意得众数为90;中位数为(80+90)=85;极差为100﹣70=30;平均数为(70×2+80×2+90×3+100)=83.75.故B正确.故选B.15.(3分)如图,直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形.设穿过时间为t,正方形与三角形不重合部分的面积为s(阴影部分),则s与t的大致图象为()A.B.C.D.【解答】解:∵直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形.设穿过时间为t,正方形与三角形不重合部分的面积为s,由勾股定理得,=∴s关于t的函数大致图象应为:三角形进入正方形以前s增大,当0≤t≤时,s=×1×1+2×2﹣=﹣t2;当<t≤2时,s=×12=;当2<t≤3时,s=﹣(3﹣t)2=t2﹣3t,∴A符合要求,故选A.16.(3分)关于x的分式方程=3的解是正数,则字母m的取值范围是()A.m>3 B.m<3 C.m>﹣3 D.m<﹣3【解答】解:分式方程去分母得:2x﹣m=3x+3,解得:x=﹣m﹣3,由分式方程的解为正数,得到﹣m﹣3>0,且﹣m﹣3≠﹣1,解得:m<﹣3,故选D17.(3分)若点O是等腰△ABC的外心,且∠BOC=60°,底边BC=2,则△ABC 的面积为()A.2+B.C.2+或2﹣D.4+2或2﹣【解答】解:由题意可得,如右图所示存在两种情况,当△ABC为△A1BC时,连接OB、OC,∵点O是等腰△ABC的外心,且∠BOC=60°,底边BC=2,OB=OC,∴△OBC为等边三角形,OB=OC=BC=2,OA1⊥BC于点D,∴CD=1,OD=,∴=2﹣,当△ABC为△A2BC时,连接OB、OC,∵点O是等腰△ABC的外心,且∠BOC=60°,底边BC=2,OB=OC,∴△OBC为等边三角形,OB=OC=BC=2,OA1⊥BC于点D,∴CD=1,OD=,∴S===2+,△A2BC由上可得,△ABC的面积为或2+,故选C.18.(3分)已知反比例函数y=,当1<x<3时,y的最小整数值是()A.3 B.4 C.5 D.6【解答】解:在反比例函数y=中k=6>0,∴该反比例函数在x>0内,y随x的增大而减小,当x=3时,y==2;当x=1时,y==6.∴当1<x<3时,2<y<6.∴y的最小整数值是3.故选A.19.(3分)为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5m长的彩绳截成2m或1m的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法()A.1 B.2 C.3 D.4【解答】解:截下来的符合条件的彩绳长度之和刚好等于总长5米时,不造成浪费,设截成2米长的彩绳x根,1米长的y根,由题意得,2x+y=5,因为x,y都是非负整数,所以符合条件的解为:、、,则共有3种不同截法,故选:C.20.(3分)如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是()①AE=BF;②AE⊥BF;③sin∠BQP=;④S=2S△BGE.四边形ECFGA.4 B.3 C.2 D.1【解答】解:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正确;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正确;根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,令PF=k(k>0),则PB=2k在Rt△BPQ中,设QB=x,∴x2=(x﹣k)2+4k2,∴x=,∴sin=∠BQP==,故③正确;∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE=BC,BF=BC,∴BE:BF=1:,∴△BGE的面积:△BCF的面积=1:5,=4S△BGE,故④错误.∴S四边形ECFG故选:B.三、解答题(满分60分)21.(5分)先化简,再求值:(1+)÷,其中x=4﹣tan45°.【解答】解:原式=•=,当x=4﹣tan45°=4﹣1=3时,原式==.22.(6分)如图,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)(﹣2,1),先将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),再将△A1B1C1绕原点O顺时针旋转90°得到△A2B2C2,点A1的对应点为点A2.(1)画出△A1B1C1;(2)画出△A2B2C2;(3)求出在这两次变换过程中,点A经过点A1到达A2的路径总长.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)OA1==4,点A经过点A1到达A2的路径总长=+=+2π.23.(6分)如图,二次函数y=(x+2)2+m的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴对称,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(﹣1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足(x+2)2+m≥kx+b的x的取值范围.【解答】解:(1)∵抛物线y=(x+2)2+m经过点A(﹣1,0),∴0=1+m,∴m=﹣1,∴抛物线解析式为y=(x+2)2﹣1=x2+4x+3,∴点C坐标(0,3),∵对称轴x=﹣2,B、C关于对称轴对称,∴点B坐标(﹣4,3),∵y=kx+b经过点A、B,∴,解得,∴一次函数解析式为y=﹣x﹣1,(2)由图象可知,写出满足(x+2)2+m≥kx+b的x的取值范围为x≤﹣4或x≥﹣1.24.(7分)某学校为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行八百米跑体能测试,测试结果分为A、B、C、D四个等级,请根据两幅统计图中的信息回答下列问题:(1)求本次测试共调查了多少名学生?(2)求本次测试结果为B等级的学生数,并补全条形统计图;(3)若该中学八年级共有900名学生,请你估计八年级学生中体能测试结果为D等级的学生有多少人?【解答】解:(1)设本次测试共调查了x名学生.由题意x•20%=10,x=50.∴本次测试共调查了50名学生.(2)测试结果为B等级的学生数=50﹣10﹣16﹣6=18人.条形统计图如图所示,(3)∵本次测试等级为D所占的百分比为=12%,∴该中学八年级共有900名学生中测试结果为D等级的学生有900×12%=108人.25.(8分)甲、乙两车从A城出发前往B城,在整个行程中,两车离开A城的距离y与t的对应关系如图所示:(1)A、B两城之间距离是多少千米?(2)求乙车出发多长时间追上甲车?(3)直接写出甲车出发多长时间,两车相距20千米.【解答】解:(1)由图象可知A、B两城之间距离是300千米.(2)设乙车出发x小时追上甲车.由图象可知,甲的速度==60千米/小时.乙的速度==100千米/小时.由题意60(x+1)=100x解得x=1.5小时.(3)设y甲=kx+b,则解得,∴y甲=60x﹣300,设y乙=k′x+b′,则,解得,∴y乙=100x﹣600,∵两车相距20千米,∴y甲﹣y乙=20或y乙﹣y甲=20或y甲=20或y甲=280,即60x﹣300﹣(100x﹣600)=20或100x﹣600﹣(60x﹣300)=20或60x﹣300=20或60x﹣300=280解得x=7或8或或,∵7﹣5=2,8﹣5=3,﹣5=,﹣5=∴甲车出发2小时或3小时或小时或小时,两车相距20千米.26.(8分)已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BD作垂线,垂足分别为点E、F,点O为AC的中点.(1)当点P与点O重合时如图1,易证OE=OF(不需证明)(2)直线BP绕点B逆时针方向旋转,当∠OFE=30°时,如图2、图3的位置,猜想线段CF、AE、OE之间有怎样的数量关系?请写出你对图2、图3的猜想,并选择一种情况给予证明.【解答】解:(1)∵AE⊥PB,CF⊥BP,∴∠AEO=∠CFO=90°,在△AEO和△CFO中,,∴△AOE≌△COF,∴OE=OF.(2)图2中的结论为:CF=OE+AE.图3中的结论为:CF=OE﹣AE.选图2中的结论证明如下:延长EO交CF于点G,∵AE⊥BP,CF⊥BP,∴AE∥CF,∴∠EAO=∠GCO,在△EOA和△GOC中,,∴△EOA≌△GOC,∴EO=GO,AE=CG,在Rt△EFG中,∵EO=OG,∴OE=OF=GO,∵∠OFE=30°,∴∠OFG=90°﹣30°=60°,∴△OFG是等边三角形,∴OF=GF,∵OE=OF,∴OE=FG,∵CF=FG+CG,∴CF=OE+AE.选图3的结论证明如下:延长EO交FC的延长线于点G,∵AE⊥BP,CF⊥BP,∴AE∥CF,∴∠AEO=∠G,在△AOE和△COG中,,∴△AOE≌△COG,∴OE=OG,AE=CG,在Rt△EFG中,∵OE=OG,∴OE=OF=OG,∵∠OFE=30°,∴∠OFG=90°﹣30°=60°,∴△OFG是等边三角形,∴OF=FG,∵OE=OF,∴OE=FG,∵CF=FG﹣CG,∴CF=OE﹣AE.27.(10分)某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球50个,B种品牌的足球25个,共花费4500元,已知购买一个B种品牌的足球比购买一个A种品牌的足球多花30元.(1)求购买一个A种品牌、一个B种品牌的足球各需多少元.(2)学校为了响应习总书记“足球进校园”的号召,决定再次购进A、B两种品牌足球共50个,正好赶上商场对商品价格进行调整,A品牌足球售价比第一次购买时提高4元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A、B两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B种品牌足球不少于23个,则这次学校有哪几种购买方案?(3)请你求出学校在第二次购买活动中最多需要多少资金?【解答】解:(1)设A种品牌足球的单价为x元,B种品牌足球的单价为y元,依题意得:,解得:.答:购买一个A种品牌的足球需要50元,购买一个B种品牌的足球需要80元.(2)设第二次购买A种足球m个,则购买B种足球(50﹣m)个,依题意得:,解得:25≤m≤27.故这次学校购买足球有三种方案:方案一:购买A种足球25个,B种足球25个;方案二:购买A种足球26个,B种足球24个;方案三:购买A种足球27个,B种足球23个.(3)∵第二次购买足球时,A种足球单价为50+4=54(元),B种足球单价为80×0.9=72(元),∴当购买方案中B种足球最多时,费用最高,即方案一花钱最多.∴25×54+25×72=3150(元).答:学校在第二次购买活动中最多需要3150元资金.28.(10分)如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点B在x轴的正半轴上.∠OAB=90°且OA=AB,OB,OC的长分别是一元二次方程x2﹣11x+30=0的两个根(OB>OC).(1)求点A和点B的坐标.(2)点P是线段OB上的一个动点(点P不与点O,B重合),过点P的直线l 与y轴平行,直线l交边OA或边AB于点Q,交边OC或边BC于点R.设点P 的横坐标为t,线段QR的长度为m.已知t=4时,直线l恰好过点C.当0<t <3时,求m关于t的函数关系式.(3)当m=3.5时,请直接写出点P的坐标.【解答】解:(1)∵方程x2﹣11x+30=0的解为x1=5,x2=6,∴OB=6,OC=5,∴B点坐标为(6,0),作AM⊥x轴于M,如图,∵∠OAB=90°且OA=AB,∴△AOB为等腰直角三角形,∴OM=BM=AM=OB=3,∴A点坐标为(3,3);(2)作CN⊥x轴于N,如图,∵t=4时,直线l恰好过点C,∴ON=4,在Rt△OCN中,CN===3,∴C点坐标为(4,﹣3),设直线OC的解析式为y=kx,把C(4,﹣3)代入得4k=﹣3,解得k=﹣,∴直线OC的解析式为y=﹣x,设直线OA的解析式为y=ax,把A(3,3)代入得3a=3,解得a=1,∴直线OA的解析式为y=x,∵P(t,0)(0<t<3),∴Q(t,t),R(t,﹣t),∴QR=t﹣(﹣t)=t,即m=t(0<t<3);(3)设直线AB的解析式为y=px+q,把A(3,3),B(6,0)代入得,解得,∴直线AB的解析式为y=﹣x+6,同理可得直线BC的解析式为y=x﹣9,当0<t<3时,m=t,若m=3.5,则t=3.5,解得t=2,此时P点坐标为(2,0);当3≤t<4时,Q(t,﹣t+6),R(t,﹣t),∴m=﹣t+6﹣(﹣t)=﹣t+6,若m=3.5,则﹣t+6=3.5,解得t=10(不合题意舍去);当4≤t<6时,Q(t,﹣t+6),R(t,t﹣9),∴m=﹣t+6﹣(t﹣9)=﹣t+15,若m=3.5,则﹣t+15=3.5,解得t=,此时P点坐标为(,0),综上所述,满足条件的P点坐标为(2,0)或(,0).。