二氧化碳临界状态观测及PVT关系测定实验
- 格式:ppt
- 大小:244.00 KB
- 文档页数:13
二氧化碳临界状态观测及p-v-T关系实验1.实验目的(1)了解CO2临界状态的观测方法,增加对临界状态概念的感性认识。
(2)加深对课堂所讲的工质的热力状态、凝结、汽化、饱和状态等基本概念的理解。
(3)掌握CO2的p-v-T关系的测定方法,学会用实验测定实际气体状态变化规律的方法和技巧。
(4)学会活塞式压力计、恒温器等部分热工仪器的正确使用方法。
2.实验装置(1)整个实验装置由压力台,恒温器和试验本体及其防护罩三大部分组成,(2)对简单可压缩热力系统,当工质处于平衡状态时,其状态参数p、v、T 之间有:F(p,v,T) = 0或 T = f (p,v), 1)本试验就是根据式1),采用定温方法来测定CO2的p-v之间的关系。
从而找出CO2的p-v-T之间的关系。
(3)实验中由压力台送来的压力油进入高压容器和玻璃杯上半部,迫使水银进入先装了CO2气体的承压玻璃管。
CO2被压缩,其压力和容积通过压力台上的活塞的进、退来调节,温度由恒温器供给的水套里的水温来调节。
实验工质二氧化碳的压力由装在压力台上的压力表读出(如要提高精度可由加在活塞转盘上的平衡砝码读出,并考虑水银柱高度的修正)。
温度由插在恒温水套中的温度计读出。
比体积首先由承压玻璃管内二氧化碳柱的高度来度量,而后再根据承压玻璃内径均匀、截面积不变等条件换算得出。
3.实验步骤(1)按图1.1装好试验设备,并开启试验本体上的日光灯。
(2)使用恒温器调定温度(3)①将蒸馏水注入恒温器内,注至离盖30~50mm为止。
检查并接通电路,开动电动泵,使水循环对流。
②旋转电接点温度计顶端的帽形磁铁调动凸轮示标使凸轮上端面与所要调定的温度一致,要将帽形磁铁用横向螺钉锁紧,以防转动。
③视水温情况,开、关加热器,当水温未达到要调定的温度时,恒温器指示灯是亮的,当指示灯时亮时灭时,说明温度已达到所需恒温。
④观察玻璃水套上两支温度计,若其读数相同且与恒温器上的温度计及电接点温度计标定的温度一致时(或基本一致)则可(近似)认为承压玻璃管内的CO2的温度处于所标定的温度。
实验3 二氧化碳临界现象观测及PVT关系的测定一.实验目的1.观测CO2临界状态现象,增加对临界状态概念的感性认识;2.加深对纯流体热力学状态:汽化、冷凝、饱和态和超临流体等基本概念的理解;测定CO2的PVT数据,在PV图上绘出CO2等温线;3.掌握低温恒温浴和活塞式压力计的使用方法。
二.实验原理纯物质的临界点表示汽液二相平衡共存的最高温度(T C)和最高压力点(P C)。
纯物质所处的温度高于T C,则不存在液相;压力高于P C,则不存在汽相;同时高于T C和P C,则为超临界区。
本实验测量T<T C,T = T C和T>T C三种温度条件下等温线。
其中T<T C等温线,为一光滑曲线;T = T C等温线,在临界压力附近有一水平拐点,并出现汽液不分现象;T<T C 等温线,分为三段,中间一水平段为汽液共存区。
对纯流体处于平衡态时,其状态参数P、V和T存在以下关系:(PV=fV,)T,P(F=或)T,由相律,纯流体,在单相区,自由度为2,当温度一定时,体积随压力而变化;在二相区,自由度为1,温度一定时,压力一定,仅体积发生变化。
本实验就是利用定温的方法测定CO2的P和V之间的关系,获得CO2的P-V-T数据。
三.实验装置流程和试剂实验装置由试验台本体、压力台和恒温浴组成(图 2-3-1)。
试验台本体如图2-3-2所示。
实验装置实物图见图2-3-3。
实验中由压力台送来的压力油进入高压容器和玻璃杯上半部,迫使水银进入预先装有高纯度的CO2气体的承压玻璃管(毛细管),CO2被压缩,其压力和容积通过压力台上的活塞杆的进退来调节。
温度由恒温水套的水温调节,水套的恒温水由恒温浴供给。
CO2的压力由压力台上的精密压力表读出(注意:绝对压力=表压+大气压),温度由水套内精密温度计读出。
比容由CO2柱的高度除以质面比常数计算得到。
试剂:高纯度二氧化碳。
图2-3-1 CO2PVT关系实验装置图2-3-2 试验台本体1.高压容器2-玻璃杯3-压力油4-水银5-密封填料6-填料压盖7-恒温水套8-承压玻璃管9-CO210-精密温度计图2-3-3 CO2PVT实验装置实物图四、实验操作步骤1.按图2-3-1装好试验设备。
二氧化碳的pVT 关系测定和临界状态观测【实验目的】1. 学习流体pVT 关系的实验测定方法,加深理解流体pVT 状态图pV 图的特点和气液相变、饱和蒸气压、沸点的意义。
2. 通过CO 2临界状态的观测,增强对气液临界现象的感性认识,理解临界参数的重要意义。
3. 学习活塞式压力计的正确使用。
【实验原理】对于物质的量确定的系统,当处于平衡状态时,其状态函数p 、V m 、T 之间存在关系:m (,,)0f p V T ,该方程描述的物质状态图是以p 、V m 、T 为坐标的立体曲面。
在不同温度下截取恒温剖面,相交曲线投影在p -V m 平面上,可以得到由一族恒温线组成的p -V m 图,如图1所示。
它直观地表达了物质的pVT 关系。
温度较高时,等温线是一条光滑曲线;温度较低时,等温线上的有一水平线段,反映气-液相变化的特征,水平线段的两个端点(如i 和k 两点)分别代表互为共轭的饱和气体和饱和液体。
饱和气体和饱和液体的体积随温度的变化在p -V m 图上构成气液共存区的边界线,称双节线。
随着温度升高,水平线段不断缩短,饱和气体线和饱和液体线最后汇于一点(c 点),即临界点(Critical point )。
临界点的温度、压力和体积分别称临界温度T c 、临界压力p c 和临界体积V c ,是物质固有的特征参数。
温度低于T c 是气体液化的必要条件。
温度、压力高于临界点的流体称超临界流体,其应用技术是目前研究的热点。
图1 CO 2的p - V m 图本实验测定CO 2的一系列等温线,观测气-液相变和临界现象。
实验装置如图2所示,由活塞式压力计、超级恒温槽和试验台本体及其防护罩等几部分组成。
试验台本体如图3所示。
图3 试验台本体示意图1—高压容器;2—玻璃杯;3—压力油;4—水银;5—密封填料;6—填料压盖;7—恒温水套;8—承压玻璃管;9—CO 2;10—温度计实验中由活塞式压力计送来的压力油进入高压容器和玻璃杯上半部,迫使水银进入预先装了CO 2气体的承压玻璃管中,CO 2被压缩,其压力和容积通过活塞式压力计上的活塞杆的进、退来调节。
已经求出K=28.21kg/m3,则可以求出任意温度、压力下二氧化碳的比容:V=Δh/k 求出结果见下表:表2-不同温度下P-V 关系20℃ 27.5 ℃ 31.7℃ 37℃ h(cm)v(m3/k g)P(MP a)h(cm) v(m3/kg)P(MPa )h(cm) v(m3/kg)P(MP a)h(cm)v(m3/k g)P(MPa)5.79 0.00124 8.736.20 0.00138 8.41 14.23 0.00423 6.82 8.36 0.00215 8.89 5.90 0.001287.54 6.38 0.00145 7.30 12.17 0.0035 7.02 9.52 0.002568.51 6.03 0.00132 6.21 6.48 0.00148 6.919.01 0.00238 7.19 10.60 0.00294 8.01 6.14 0.00136 5.81 6.60 0.00152 6.60 8.09 0.00205 7.21 14.49 0.00432 7.31 6.18 0.00138 5.57 8.910.002346.607.43 0.00182 7.61 16.26 0.00495 6.9 7.40 0.00181 5.57 11.21 0.00316 6.60 7.39 0.00188.15 18.59 0.00578 6.49 8.90 0.00234 5.57 13.42 0.00394 6.60 7.32 0.00178 8.6 20.80 0.00656 6.19 16.80 0.00514 5.57 16.42 0.00501 6.29 19.88 0.00623 5.25 19.52 0.00611 5.79 21.39 0.00677 5.11 21.02 0.00664 5.50 23.820.00763 4.80根据此表作图,便可以得到实验测得的等温线,如图2所示:456789100.0010.0020.0030.0040.0050.0060.0070.0080.009图2-实验测得等温线附上标准等温线(文献查得)如图3所示:图3-标准等温线将两图进行对比并分析原因:可以观察到所得图能够大体上反映出标准图的整体趋势,较为相似。
实验一二氧化碳P-V-T关系测定及临界状态观测实验ExperimentofCO2一、实验目的1、解CO2临界状态的观测方法,增加对临界状态概念的感性认识;2、加深对课堂所讲的有关工质的热力状态、凝结、汽化、饱和状态等基本概念的理解;3、掌握CO2的p-v-T关系测定方法,学会用实验测定实际气体状态变化规律方法及技巧;4、学会活塞式压力计、恒温器等部分热工仪器的正确使用方法。
二、实验内容本实验内容包括以下三个部分:1、测定CO2的p-v-T关系,在p-v图上画出低于临界温度(t二20C)、临界温度(t二311C)及咼于临界温度(t-50°C)的三条等温线,并与标准实验曲线及理论计算值相比较,分析产生差异的原因;2、测定CO2在低于临界温度时(t=20°C、25C及27°C)饱和温度与饱和压力的关系;3、观测临界现象1)临界状态附近气液两相分界模糊的现象;2)气液整体相变现象;3)测定CO2的「P c、;等临界参数,并将实验所得的v 值与由理想气体状态方程及范德瓦尔方程所得的理论值相比较,简述产生差异的原因。
三、实验原理简单可压系统处于平衡状态时,其状态参数压力P、比容V、温度T之间存在着确定的关系,即状态方程为F(p,v,T)二0(1)或p=f(v,T)(2)当保持T不变时测定比容与压力的对应数值,可获得到等温线数据,从而可作出P-V图。
在低于临界温度时,实际气体的等温线有气液相变的直线段,而理想气体的等温线是正双曲线,任何时候也不会出现直线段。
只有在临界温度以上,实际气体的等温线才逐渐接近理想气体的等温线。
所以理想气体的理论不能解释实际气体的气液两相转变及临界状态。
CO2的临界压力为p二73.87bar,临界温度为t=31.1°C。
在低于临界温度时,等温线出现气液相变的直线段,如图1所示。
t 二309C是恰好能压缩得到液体CO2的最高温度。
在临界点附近出现气液分界模糊的现象。
二氧化碳临界状态观测及pvt关系测定概述二氧化碳(CO2)是一种广泛应用于许多领域的重要工业气体。
为了深入了解其行为和特性,需要进行相应的实验研究。
本文旨在介绍CO2的临界状态观测和PVT(压力、容积、温度)关系测定的方法及其结果。
实验设计实验的首要部分是测定CO2的临界状态。
临界点是物理学和化学学中的基本概念之一,指的是物质在特定温度和压力下变成气相或液相的条件下的状态。
在CO2的临界状态下,液体和气体之间的界面将消失,即液体和气体将具有相同的密度和折射率。
CO2的临界状态可以通过变压法或变温法两种方法来测定。
变压法:首先将CO2装入一个加热器中,然后使用恒定的体积发生器将空气推出。
当CO2的压力高于临界点压力时,CO2的压缩率将减少。
当压力低于临界点时,CO2的压缩率将增加。
通过不断改变压力,直到找到压力等于临界点压力的点,记录相应的体积和温度。
随着压力逐渐逼近临界点,CO2的密度将不断增加,因此固定的体积将能够容纳更多的物质。
同时,CO2的均压率也会随着温度的升高而下降。
变温法:在该方法中,CO2的压力将保持不变。
随着温度逐渐升高,CO2的密度将不断减小,因此具有相同体积的CO2气体将占据更大的空间。
当温度达到临界点时,CO2的密度将达到其最小值,并且液体和气体阶段不再区分。
此时,测定相应的体积和温度。
第二个实验目的是测定CO2的PVT关系。
这被认为是将实验测量的温度、压力和容积数据和理论计算之间的比较。
通过这些测量,可以确定物质的状态方程和其他要素,这可以用于预测物质的特性和行为。
测量过程为了进行实验,使用石英玻璃管作为高压容器,该容器可以在高达300个大气压的压力下工作,并且具有胶带衬里以确保材料的完整性。
之后将必要量的CO2注入其中,并通过自然升温达到目标温度。
然后,通过记录压力和容积的变化来跟踪CO2的状态。
结果和讨论CO2的临界点压力被测定为7.4 MPa,临界温度为31.2℃。
二氧化碳临界状态观测及p-v-t关系测定一.实验目的1.测定二氧化碳的P-V-T关系,观察临界现象,测定其临界参数(P_C、V_C、T_C);2.测定二氧化碳在不同压力下饱和蒸汽和饱和液体的比容;3.测定二氧化碳饱和温度和饱和压力的对应关系。
二.技术参数1.高压容器用45号钢一次性加工成型,表面采用镀铬处理,内部装有玻璃容器;2.白色透明有机玻璃保护罩,35cm×35cm×70.5cm;3.照明日光灯:节能灯管,功率:15W色调RR;4.压力校验仪:配有压力表、油杯、检验压力范围0-60MPa,基本误差:实际测量值的±0.05%,可设定最高压力,比容:0.001~0.012m^3⁄kg;5.精密压力表:型号DAYOUU-150,表盘同时显示MPa测量范围0-16MPa和kgf/cm²测量范围0-160kgf/cm²基本误差±0.4%;6.恒温水箱:白色12mm厚PP板制作而成,外形尺寸:33cm×22cm ×32cm,内设两根1000W的加热棒和铜-康铜的热电偶,温度显示分辨率0.1℃,恒温水箱可调节控温,控温精度±1℃;7.温度传感器:铜-康铜的热电偶,测温范围-40~133℃,Ⅰ级精度,数显温度表温度显示分辨率0.1℃;8.制冷系统:实验台配备压缩机制冷系统,可提供0-50℃实验所需水温,制冷机组可快速降温,降温温度可以自行设定低于环境的实时温度。
制冷系统配备1HP制冷压缩机,环保氟利昂/R134a,制冷剂压力表、高低压断路器、毛细管、制冷系统铜管、钛合金蒸发器盘管、风冷冷凝器;9.循环水泵:供恒温水循环用,交流220V、流量:600L/H 扬程7M,电机功率28.8W;10.温控仪:输出规格采用4~20mA;11.刻度管最小分度值:1mm;12.装置外形尺寸:1180×630×1590mm。
二氧化碳临界状态观测及P-V-T 关系测定实验————————————————————————————————作者: ————————————————————————————————日期:ﻩ实 验 报 告评分13系 07级 第二大组 实验室力一楼 日期2010-03-24姓名 钟伟PB07013076实验题目:二氧化碳临界状态观测及P-V-T 关系测定实验实验目的:了解2CO 临界状态的观测方法,增加对临界状态概念的感性认识加深对课堂所讲的工质热力状态、凝结、汽化、饱和状态等基本概念的理解掌握2CO 的p-v -t 关系的测定方法,学会用实验测定实际气体状态变化规律的方法和技巧 学会活塞式压力计、恒温器等热工仪器的正确使用方法。
实验原理和装置:整个实验装置由压力台、恒温器和试验台本体及其防护罩等三大部分组成(如图所示)。
试验台本体如图所示。
对简单可压缩热力系统,当工质处于平衡状态时,其状态参数p 、v 、t 之间有: ()0,,=t v p E 或 ()v p f t ,=(1)本试验就是根据式(1),采用定温方法来测定2CO 的p-v 之间的关系,从而找出2CO 的p -v -t 关系。
实验中,由压力台送来的压力油进入高压容器和玻璃杯上半部,迫使水银进入预先装了2CO 气体的承压玻璃管,2CO 被压缩,其压力和容积通过压力台上的活塞杆的进、退来调节。
温度由恒温器供给的水套里的水温来调节。
实验工质二氧化碳的压力,由装图 21 – 高压容器2 – 玻璃杯3 – 压力油4 – 水银5 – 密封填料6 – 填料压盖恒温水恒温水在压力台上的压力表读出。
温度由插在恒温水套中的温度计读出。
比容首先由承压玻璃管内二氧化碳柱的高度来测量,而后再根据承压玻璃管内径均匀、截面不变等条件换算得出。
实验步骤:1. 按图1装好试验设备,并开启试验本体上的日光灯2. 恒温器准备及温度调定① 将蒸镏水注入恒温器内,注至离盖30~50mm 。