11章几何光学
- 格式:ppt
- 大小:1.62 MB
- 文档页数:40
第十一章 几何光学通过复习后,应该:1.掌握单球面折射成像、共轴球面系统、薄透镜成像、薄透镜的组合、放大镜和显微镜;2.理解共轴球面系统的三对基点、眼的分辨本领和视力、近视眼、远视眼、散光眼的矫正;3.了解透镜像差、眼的结构和性质、色盲、检眼镜、光导纤维内窥镜。
11-1 一球形透明体置于空气中,能将无穷远处的近轴光线束会聚于第二个折射面的顶点上,求此透明体的折射率。
习题11-1附图(原11-2附图)解: 无穷远处的光线入射球形透明体,相当于物距u 为∞,经第一折射面折射,会聚于第二折射面的顶点,则v=2r(r 为球的半径),已知n 1 =1.0,设n 2 =n(即透明体的折射率),代入单球面折射成像公式,得rn r n 1.0-20.1=+∞ 解得n =2.0,即球形透明体的折射率。
11-2 在3m 深的水池底部有一小石块,人在上方垂直向下观察,此石块被观察者看到的深度是多少?(水的折射率n =1.33)习题11-2附图(原11-3附图)解: 这时水池面为一平面的折射面,相当于r 为∞,已知u =3m,n 1 =1.33,n 2 =1.0,观察者看到的是石块所成的像,设其像距为v ,应用单球面折射成像公式,得∞=+ 1.33-.010.1m 333.1v 解得v =-2.25m,这表明石块在水平面下2.25m 处成一虚像,即观察者看到的“深度”。
11-3 圆柱形玻璃棒(n =1.5)放于空气中,其一端是半径为2.0cm 的凸球面,在棒的轴线上离棒端8.0cm 处放一点物,求其成像位置。
如将此棒放在某液体中(n =1.6),点物离棒端仍为8.0cm,问像又在何处?是实像还是虚像?习题11-3附图 (a)【原11-5附图(a)】解: ①如本题附图(a)所示,已知n 1 =1.0,n 2 =1.5,u =8.0cm,r =2.0cm,代入单球面折射成像公式,得cm0.2 1.0-.515.1cm 0.80.1=+v得v =12cm,在玻璃棒中离顶点12cm 处成一实像。
第十一章 光 学11-1 在双缝干涉实验中,若单色光源S 到两缝S 1 、S 2 距离相等,则观察屏 上中央明条纹位于图中O 处,现将光源S 向下移动到图中的S ′位置,则( )(A ) 中央明纹向上移动,且条纹间距增大(B ) 中央明纹向上移动,且条纹间距不变(C ) 中央明纹向下移动,且条纹间距增大(D ) 中央明纹向下移动,且条纹间距不变分析与解 由S 发出的光到达S 1 、S 2 的光程相同,它们传到屏上中央O 处,光程差Δ=0,形成明纹.当光源由S 移到S ′时,由S ′到达狭缝S 1 和S 2 的两束光产生了光程差.为了保持原中央明纹处的光程差为0,它会向上移到图中O ′处.使得由S ′沿S 1 、S 2 狭缝传到O ′处的光程差仍为0.而屏上各级条纹位置只是向上平移,因此条纹间距不变.因此正确答案为(B ).题11-1 图11-2 如图所示,折射率为n 2 ,厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1 和n 3,且n 1 <n 2 ,n 2 >n 3 ,若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束的光程差是( )()()()()2222222D 2C 22B 2A n e n e n e n e n λλλ---题11-2 图分析与解 由于n 1 <n 2 ,n 2 >n 3 ,因此在上表面的反射光有半波损失,下表面的反射光没有半波损失,故它们的光程差222λ±=∆e n ,这里λ是光在真空中的波长.因此正确答案为(B ). 11-3 如图(a )所示,两个直径有微小差别的彼此平行的滚柱之间的距离为L ,夹在两块平面晶体的中间,形成空气劈形膜,当单色光垂直入射时,产生等厚干涉条纹,如果滚柱之间的距离L 变小,则在L 范围内干涉条纹的( )(A ) 数目减小,间距变大 (B ) 数目减小,间距不变(C ) 数目不变,间距变小 (D ) 数目增加,间距变小题11-3图分析与解 图(a )装置形成的劈尖等效图如图(b )所示.图中 d 为两滚柱的直径差,b 为两相邻明(或暗)条纹间距.因为d 不变,当L 变小时,θ 变大,L ′、b 均变小.由图可得L d b n '==//2sin λθ,因此条纹总数n d b L N λ//2='=,因为d 和λn 不变,所以N 不变.正确答案为(C )11-4 在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度为3λ的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为( )(A ) 2 个 (B ) 3 个 (C ) 4 个 (D ) 6 个分析与解 根据单缝衍射公式()()(),...2,1 212 22sin =⎪⎪⎩⎪⎪⎨⎧+±±=k λk λk θb 明条纹暗条纹 因此第k 级暗纹对应的单缝波阵面被分成2k 个半波带,第k 级明纹对应的单缝波阵面被分成2k +1 个半波带.由题意23sin /λθ=b ,即对应第1 级明纹,单缝分成3 个半波带.正确答案为(B ).11-5 波长λ=550 nm 的单色光垂直入射于光栅常数d =1.0 ×10-4 cm 的光栅上,可能观察到的光谱线的最大级次为( )(A ) 4 (B ) 3 (C ) 2 (D ) 1分析与解 由光栅方程(),...1,02dsin =±=k λk θ,可能观察到的最大级次为()82.1/2dsin max =≤λπk 即只能看到第1 级明纹,答案为(D ). 11-6 三个偏振片P 1 、P 2 与P 3 堆叠在一起,P 1 与P 3的偏振化方向相互垂直,P 2与P 1 的偏振化方向间的夹角为45°,强度为I 0 的自然光入射于偏振片P 1 ,并依次透过偏振片P 1 、P 2与P 3 ,则通过三个偏振片后的光强为( )(A ) I 0/16 (B ) 3I 0/8 (C ) I 0/8 (D ) I 0/4分析与解 自然光透过偏振片后光强为I 1 =I 0/2.由于P 1 和P 2 的偏振化方向成45°,所以偏振光透过P 2 后光强由马吕斯定律得445cos 0o 212/I I I ==.而P 2和P 3 的偏振化方向也成45°,则透过P 3 后光强变为845cos 0o 223/I I I ==.故答案为(C ).11-7 一束自然光自空气射向一块平板玻璃,如图所示,设入射角等于布儒斯特角i B ,则在界面2 的反射光( )(A ) 是自然光(B ) 是线偏振光且光矢量的振动方向垂直于入射面(C ) 是线偏振光且光矢量的振动方向平行于入射面(D ) 是部分偏振光题11-7 图分析与解 由几何光学知识可知,在界面2 处反射光与折射光仍然垂直,因此光在界面2 处的入射角也是布儒斯特角,根据布儒斯特定律,反射光是线偏振光且光振动方向垂直于入射面.答案为(B ).11-8 在双缝干涉实验中,两缝间距为0.30 mm ,用单色光垂直照射双缝,在离缝1.20m 的屏上测得中央明纹一侧第5条暗纹与另一侧第5条暗纹间的距离为22.78 mm .问所用光的波长为多少,是什么颜色的光?分析与解 在双缝干涉中,屏上暗纹位置由()212λ+'=k d d x 决定,式中d ′为双缝到屏的距离,d 为双缝间距.所谓第5 条暗纹是指对应k =4 的那一级暗纹.由于条纹对称,该暗纹到中央明纹中心的距离mm 27822.=x ,那么由暗纹公式即可求得波长λ.此外,因双缝干涉是等间距的,故也可用条纹间距公式λdd x '=∆求入射光波长.应注意两个第5 条暗纹之间所包含的相邻条纹间隔数为9(不是10,为什么?),故mm 97822.=∆x 。