第五节 酶的命名与
- 格式:ppt
- 大小:181.00 KB
- 文档页数:16
绪论一.酶是生物催化剂酶是具有生物催化功能的生物大分子,按其化学组成的不同可以分为两类:蛋白类酶(P-酶)与核酸类酶(R-酶)。
理解:1、酶是由生物细胞产生2、酶发挥催化功能不仅在细胞内,在细胞外亦可二.酶学研究简史1897年,Buchner兄弟发现,用石英砂磨碎的酵母细胞或无细胞滤液能和酵母细胞一样进行酒精发酵。
标志着酶学研究的开始。
说明:酶分子不仅只是在细胞内起作用,而且在细胞外同样具有催化功能。
这一发现开启了现代酶学,乃至现代生物化学的大门。
三.酶工程的现状:目前大规模利用和生产的商品酶还很少。
第一章.酶学概论第一节.酶作为生物催化剂的显著特点一.酶作为生物催化剂的显著特点:高效、专一二.同工酶(概):能催化相同的化学反应,但其酶蛋白本身的分子结构组成不同的一组酶。
三.共价修饰调节1.概念:通过其它的酶对其结构进行共价修饰,从而使其在活性形式和非活性形式之间相互转变。
2.常见修饰类型:磷酸化与去磷酸化;腺苷酸化与脱腺苷酸化;尿苷酸化与脱尿苷酸化;泛素化;类泛素化3.例子:糖原磷酸化酶——磷酸化形式有活性(葡萄糖)n+Pi→(葡萄糖)n-1+1-磷酸葡萄糖4.常见磷酸化部位:丝氨酸/苏氨酸,酪氨酸和组氨酸四.酶活性调节方式要能判断所举酶的例子是什么类型调节1. 别构调节2. 激素调节:如乳糖合酶修饰亚基的水平是由激素控制的。
妊娠时,修饰亚基在乳腺生成。
分娩时,由于激素水平急剧的变化,修饰亚基大量合成,它和催化亚基结合,大量合成乳糖。
3. 共价修饰调节:如糖原磷酸化酶、磷酸化酶b激酶4.限制性蛋白水解作用与酶活性控制。
如酶原激活5.抑制剂和激活剂的调节6.反馈调节7.金属离子和其它小分子化合物的调节8.蛋白质剪接五.反馈调节(概):催化某物质生成的第一步反应的酶的活性,往往被其终端产物所抑制。
这种对自我合成的抑制叫反馈抑制。
A-J :代谢物实线箭头:酶促催化步骤虚线箭头:反馈抑制步骤代谢途径的第一步和共同底物进入分支途径的分支点是反馈抑制的最为重要的位点。
可编辑修改精选全文完整版《生物化学与分子生物学》教学大纲一、课程的性质和任务生物化学与分子生物学是研究生命化学的科学,它在分子水平探讨生命的本质,即研究生物体的分子结构与功能、物质代谢及其在生命活动中的作用。
生物化学与分子生物学是高等医学院校全科医学专业的必修课之一。
本课程主要向学生传授生物大分子的化学组成、结构及功能;物质代谢;遗传信息的贮存、传递与表达;血液、肝的生物化学;分子生物学基本概念、原理和技术等生命科学内容,为医学生深入学习其他医学基础课、临床医学课程乃至毕业后的继续教育、医学各学科的研究工作中在分子水平上探讨疾病的病因、发病机理及疾病诊断、预防、治疗奠定理论与实验基础。
二、课程教学的基本要求通过本课程的学习,使学生知道及理解生物分子的结构与生理功能,以及两者之间的关系。
理解生物体重要物质代谢的基本途径,主要生理意义、以及代谢异常与疾病的关系。
理解基因信息传递的基本过程,理解各组织器官的代谢特点及它们在医学上的意义,了解分子生物学基本概念、原理和技术。
本课程教材适用于医学高等专科教育三年制全科医学专业,在第一学期开设,理论课55学时、实验课12学时,总学时为67学时。
四、教学内容与要求绪论【教学内容】第一节生物化学发展简史第二节当代生物化学研究的主要内容第三节生物化学与医学【教学要求】掌握:生物化学和分子生物学的概念.熟悉:生物化学和分子生物学研究的主要内容及其与医学的关系。
了解:生物化学的发展史。
第一章蛋白质的结构与功能【教学内容】第一节蛋白质的分子组成一、组成蛋白质的主要元素,氮的含量及应用。
组成蛋白质的氨基酸种类、结构通式;氨基酸的分类及结构特点;氨基酸的两性电离、紫外吸收性质及茚三酮反应。
二、肽和肽键,多肽链及N、C末端,主链骨架的概念。
第二节蛋白质的分子结构一、蛋白质的一级结构:肽键二、蛋白质的二级结构:维持蛋白质构象的化学键、肽单元、α-螺旋、β-折叠、β-转角和无规卷曲。
第五节溶酶体与过氧化物酶体一、溶酶体的结构* 1955年de Duve与Novikoff,首次发现溶酶体(lysosome)* 它是单层膜围绕、内含多种酸性水解酶类的囊泡其主要功能是进行细胞内消化* 具有异质性,形态、大小及其内含的水解酶种类都可能有很大的不同,标志酶为酸性磷酸酶。
* 根据完成其生理功能的不同阶段,可分为:初级溶酶体(primary lysosome)次级溶酶体(secondary lysosome)残体(residual body)。
1、初级溶酶体* 直径约0.2~0.5um膜厚7.5nm内含物均一,无明显颗粒是高尔基体分泌形成的(图6-27)* 含有多种水解酶,但没有活性只有当溶酶体破裂or 其它物质进入,才有酶活性* 其水解酶包括:蛋白酶,核酸酶、脂酶、磷酸酶、硫酸酯酶、磷脂酶类,已知60余种,均属于酸性水解酶,反应的最适pH值为5左右* 溶酶体膜与质膜厚度相近,但成分不同主要区别是:①膜有质子泵,将H+泵入溶酶体,使其pH值降低②膜蛋白高度糖基化,可能利于防止自身膜蛋白降解图6-27 初级溶酶体引自http://www.uni-mainz.de/2、次级溶酶体* 都是消化泡(图6-28)正在进行or 完成消化作用的溶酶体内含水解酶和相应的底物* 分为异噬溶酶体,消化的物质来自外源自噬溶酶体消化的物质,是细胞本身的各种组分图6-28 次级溶酶体引自http://www.uni-mainz.de/3、残体* 又称后溶酶体已失去酶活性,仅留未消化的残渣故名* 残体可通过外排作用,排出细胞也可能留在细胞内,逐年增多如,肝细胞中的脂褐质(图6-29)图6-29 肝细胞中的脂褐质引自《细胞生物学超微结构图谱》1989二、溶酶体的功能溶酶体的主要作用:* 消化作用,是细胞内的消化器官* 细胞自溶、防御&对某些物质的利用均与溶酶体的消化作用有关1、细胞内消化对高等动物而言细胞的营养物质,主要来源于血液中的小分子物质而一些大分子物质,通过内吞作用进入细胞如,内吞低密度脂蛋白,获得胆固醇(溶酶体中)对一些单细胞真核生物,溶酶体的消化作用更为重要2、细胞凋亡个体发生过程中往往涉及组织or 器官的改造or 重建如,昆虫、蛙类的变态发育等等此过程是在基因控制下实现的,称为程序性细胞死亡注定要消除的细胞以出芽的形式,形成凋亡小体被巨噬细胞吞噬并消化3、自体吞噬清除细胞中无用的生物大分子,衰老的细胞器等如,许多生物大分子的半衰期,只有几小时至几天肝细胞中线粒体的平均寿命约10天左右。
酶的定义是名词解释酶是一类高度特化的蛋白质,也被称为生物催化剂。
它们能够加速生物体内化学反应的速度,但自身并不参与反应过程。
酶通过与底物结合来促进反应,并在反应结束后迅速释放底物。
这种特点使酶对于生物体内代谢过程的进行至关重要。
酶的命名遵循国际酶学协会(International Union of Biochemistry,IUB)的命名规则。
根据反应类型,酶可以被分为多个不同的类别。
常见的分类包括氧化还原酶、水解酶、合成酶等。
每种酶都具有其专门负责催化的底物或反应类型。
酶的活性是由其三维结构决定的。
酶分子通常由一个或多个多肽链组成,这些链在细胞内折叠成特定的形状。
酶与底物之间的结合是高度特异性的,这意味着每种酶只能催化某种类型的底物。
这种特异性是由酶的活性中心决定的,活性中心是酶分子上具有催化活性的区域。
酶的活性中心有多个区域,包括催化部位和辅助部位。
催化部位通过一系列精确的空间构型和化学键变化来催化底物的转化。
辅助部位则通过参与底物与酶的结合、调节酶的活性以及促进产物释放等方式来支持催化过程。
酶的活性中心的构象也对其活性起着重要作用,即活性中心的立体结构有利于底物与酶的结合状态。
酶催化反应的速率被称为酶的催化效率。
酶的特异性和催化效率使其在生物体内具有非常重要的功能。
酶可以加速代谢途径中几乎所有反应的速度,从而维持生命活动的正常进行。
酶还可以在极寒、酸碱等特殊环境下发挥作用,使得生物体能够在各种极端条件下存活和繁衍。
酶在医学和工业领域也有广泛应用。
在医学上,酶可以用于诊断疾病和治疗疾病。
例如,血清酶可以用于检查肝脏和心脏的功能情况,而抗生素则可以抑制细菌的生长和繁殖。
在工业上,酶可以用于生产和加工各种物质。
例如,酶可以用于制造纺织品、制作食品、生产清洁剂等。
另外,酶还在生物技术中具有重要应用。
通过对酶的生物合成和基因工程的研究,科学家们能够开发出更加高效和特异性的酶。
这些新型酶可以在工业生产和科学研究中发挥重要作用,为人类带来更多的福祉。
南昌大学《生物化学》考研大纲一、大纲说明(一) 课程说明课程总分150,闭卷(二)课程的学科性质、研究对象和任务生物化学(biochemistry)是研究生命化学的科学,它在分子水平探讨生命的本质,即研究生物体的分子结构与功能、物质代谢与调节及其在生命活动中的作用。
生物化学是在分子水平上阐明生命现象的科学,是生物技术、生物工程专业及其他生命科学专业和医学专业的重要基础课(专业必修课)。
现代的生化理论和技术有着广泛的实用价值。
当今生物化学越来越多的成为生命科学的共同语言,它已成为生命科学领域的前沿学科。
(三)课程的考试目的和要求这门课主要向学生传授生物大分子的化学组成、结构及功能(包括蛋白质、核酸、酶);物质代谢及其调控(糖代谢、三羧酸循环、脂类代谢、氨基酸代谢、核苷酸代谢、生物氧化、物质代谢联系与调节);遗传信息的贮存、传递与表达(DNA的生物合成、RNA的生物合成、蛋白质的生物合成、基因表达调控、基因重组与基因工程)。
为了学习和掌握生物化学的原理和方法,要求学生必须具有较好的生物学﹑物理学和化学方面的基础,能够将这些基础知识运用到生物化学的学习中,要求学生能从生物大分子的组成﹑结构和性质去认识结构与功能的关系;物质代谢和能量代谢的关系以及代谢调节的意义;基因信息传递的分子基础;重组DNA和基因工程技术等。
(四)课程选用的教材、考研测试的基本内容和重点教材:生物化学(上、下册),第三版,沈同、王镜岩编,高等教育出版社参考教材:郑集等主编,《生物化学》,高等教育出版社,第三版。
罗盛纪等主编,《生物化学简明教程》,高等教育出版社,第三版。
张楚富主编,《生物化学原理》,高等教育出版社。
Garrtt,《生物化学》(影印版),高等教育出版社,第二版。
从生物化学和分子生物学不断发展与其应用范围日益扩大的实际考虑,根据国家教委对生物化学考研测试要求的精神,为密切结合考研测试需要,本课程主要考以下几方面内容:(1)生物大分子(包括蛋白质、酶及核酸等)的分子结构、主要理化性质,并在分子水平上阐述其结构与功能的关系;(2)物质代谢(包括糖类、脂类及蛋白质)的代谢变化,重点阐述主要代谢途径(减少逐步化学反应的讲解)、生物氧化与能量转换、代谢途径间的联系以及代谢调节原理及规律;(3)阐明遗传学中心法则所揭示的信息流向,包括DNA复制、RNA转录、翻译及基因表达调控;(4)概要地介绍重组DNA和基因工程技术(五)课程考研重点与难点本课程的考研重点与难点为以下三个方面:(1)生物大分子(包括蛋白质、酶及核酸等)的分子结构、主要理化性质,并在分子水平上阐述其结构与功能的关系;(2)物质代谢(包括糖类、脂类及蛋白质)的代谢变化,重点阐述主要代谢途径(减少逐步化学反应的讲解)、生物氧化与能量转换、代谢途径间的联系以及代谢调节原理及规律;(3)阐明遗传学中心法则所揭示的信息流向,包括DNA复制、RNA转录、翻译及基因表达调控。