酶的分类与命名.
- 格式:ppt
- 大小:303.00 KB
- 文档页数:14
《酶》知识清单一、酶的定义和作用酶是生物体内产生的具有催化作用的蛋白质或 RNA 分子。
它们在生物体内扮演着至关重要的角色,能够加速化学反应的进行,使生命活动得以顺利进行。
酶的作用就像是一把“钥匙”,能够精准地打开化学反应的“锁”,降低反应所需的活化能,从而使反应在温和的条件下快速、高效地进行。
比如,在我们消化食物的过程中,唾液中的淀粉酶能够将淀粉分解为麦芽糖,胃中的蛋白酶能够将蛋白质分解为多肽,这些都是酶在发挥作用。
二、酶的化学本质大多数酶是蛋白质,少数酶是 RNA。
作为蛋白质的酶,其结构和功能密切相关。
蛋白质的一级结构决定了酶的氨基酸组成,而二级、三级和四级结构则共同决定了酶的活性中心和催化机制。
RNA 酶也被称为核酶,它们在一些特定的生物过程中发挥着催化作用。
三、酶的特性1、高效性酶具有极高的催化效率,比一般的无机催化剂高出成千上万倍甚至更多。
例如,过氧化氢酶催化过氧化氢分解的效率比无机催化剂铁离子高约 10^10 倍。
2、专一性一种酶通常只能催化一种或一类化学反应。
这是因为酶的活性中心具有特定的结构,只能与特定的底物结合并发生反应。
3、反应条件温和酶催化反应通常在常温、常压和接近中性的条件下进行,相比之下,许多化学反应需要高温、高压和极端的 pH 条件才能发生。
4、可调节性酶的活性可以受到多种因素的调节,包括底物浓度、产物浓度、酶的浓度、pH 值、温度、抑制剂和激活剂等。
四、酶的命名和分类1、命名酶的命名通常根据其所催化的反应或底物来进行。
例如,催化水解反应的酶通常被称为“水解酶”,催化氧化还原反应的酶被称为“氧化还原酶”。
2、分类根据国际酶学委员会的分类方法,酶可以分为六大类:(1)氧化还原酶类:参与氧化还原反应,如过氧化氢酶、脱氢酶等。
(2)转移酶类:催化基团转移反应,如转氨酶等。
(3)水解酶类:催化水解反应,如蛋白酶、淀粉酶等。
(4)裂解酶类:催化从底物分子中移去一个基团或原子形成双键的反应或其逆反应,如碳酸酐酶等。
高中生物酶知识点总结酶的概念与特性酶是生物体内一类具有催化作用的生物大分子,绝大多数酶是蛋白质,少数为RNA。
酶能够降低化学反应的活化能,加速生物体内的各种代谢过程,而自身在反应前后不发生永久性改变。
酶的催化作用具有高效性、专一性和可调控性。
高效性体现在酶能够在生物体内的温和条件下(如常温、常压、中性pH值)催化反应,且反应速率比非催化反应快上百万倍。
专一性指的是一种酶通常只能催化一种或少数几种化学反应,这是由酶的三维结构决定的。
可调控性意味着酶的活性可以受到多种因素的调节,如底物浓度、pH值、温度、酶抑制剂和激活剂等。
酶的分类与命名根据催化反应的类型,酶可以分为六大类:氧化还原酶、转移酶、水解酶、裂解酶、合成酶和异构酶。
酶的命名通常遵循国际酶学委员会(IUBMB)的规定,以“EC”为前缀,后跟四位数字,数字的前两位表示酶的大类,后两位表示酶在该大类中的次序。
酶的结构与功能酶的结构分为四级:一级结构是酶的氨基酸序列;二级结构是氨基酸链折叠形成的α-螺旋和β-折叠;三级结构是二级结构元素的空间排列;四级结构是多个亚基的集合。
酶的活性位点通常位于其三维结构的凹陷区域,底物分子与酶的活性位点相互作用,形成酶-底物复合物,从而进行催化反应。
酶的催化机理酶催化反应的机理包括底物定向、转化状态稳定和能量传递。
酶通过与底物的相互作用,使底物分子的正确取向和定位,从而降低化学反应的活化能。
在转化状态稳定阶段,底物转化为产物的过程被稳定,加速了反应的进行。
能量传递则涉及到辅酶或辅基的参与,它们可以暂时存储或转移能量,协助酶完成催化过程。
酶的调控酶的活性调控是细胞精细调节代谢过程的重要方式。
酶的调控方式包括:1. 基因表达调控:通过控制酶蛋白的合成量来调节酶的活性。
2. 翻译后修饰:如磷酸化、泛素化等,改变酶的活性或稳定性。
3. 底物浓度:底物浓度的变化直接影响酶的催化效率。
4. 反馈抑制:代谢途径的最终产物抑制途径开始时的关键酶,防止过量合成。
高考酶的知识点在高中生物学中,酶是一个重要的概念,也是高考中常考的一个知识点。
了解和熟悉酶的相关知识,不仅可以加深对生物学的理解,还能为高考顺利过关提供帮助。
下面将介绍高考中常见的酶的相关概念和应用。
一、酶的定义和特点酶是生物体内能加速化学反应的特殊蛋白质分子,它能够降低活化能,使生化反应在温和的条件下迅速进行。
酶是高效的催化剂,具有高度的选择性和专一性,能够催化特定的化学反应,同时不参与反应本身,能够反复使用。
酶的活性受到温度、pH值、底物浓度等因素的影响。
二、酶的分类1. 按催化反应的类型分类:酶可分为水解酶、合成酶、氧化还原酶等,根据它们所催化的化学反应类型来划分。
2. 按底物种类分类:酶可分为蛋白酶、脂酶、淀粉酶等,根据它们所催化的底物种类来划分。
3. 按反应位置分类:酶可分为胞内酶、胞外酶、溶菌酶等,根据酶所处的位置来分类。
三、酶的作用机理酶的催化作用发生在酶的活性中心,包括接触过渡态、提供或吸收质子、调整受体构象等。
常见的酶的催化机理有酸碱催化、金属离子的参与、共价催化和亲和力等。
四、酶在生物体内的作用1. 促进新陈代谢:酶在生物体内参与各种代谢反应,如氧化还原反应、水解反应等,调节物质合成和降解,维持生理平衡。
2. 助推消化:消化酶参与胃肠道中的食物消化,如唾液淀粉酶、胃蛋白酶等,在食物消化和吸收中起着重要作用。
3. 增强免疫力:抗菌酶如溶菌酶和抗生素酶等能够破坏外来微生物的细胞壁,起到保护机体的免疫作用。
4. 调节代谢途径:酶通过催化反应的速率来调节代谢途径,如糖原酶和糖原磷酸化酶等参与糖原的合成和分解调节。
五、高考中的相关考点在高考中,酶作为一个重要的生物学概念常常涉及到以下几个方面:1. 酶的特点和作用:考生需要了解酶的定义、特点和催化作用,并能够结合具体例子进行解释。
2. 酶的分类和命名:考生需要熟悉常见的酶的分类和命名原则,如蛋白酶、脂酶等。
3. 酶的作用机理:考生需要理解酶的催化机理,包括酸碱催化、金属离子的参与等。
酶的分类和命名一、酶的分类国际酶学委员会(I.E.C)规定,按酶促反应的性质,可把酶分成六大类:1.氧化还原酶类(oxidoreductases)指催化底物进行氧化还原反应的酶类。
例如,乳酸脱氢酶、琥珀酸脱氢酶、细胞色素氧化酶、过氧化氢酶等。
2.转移酶类(transferases)指催化底物之间进行某些基团的转移或交换的酶类。
如转甲基酶、转氨酸、己糖激酶、磷酸化酶等。
3.水解酶类(hydrolases)指催化底物发生水解反应的酶类。
例如、淀粉酶、蛋白酶、脂肪酶、磷酸酶等。
4.裂解酶类(lyases)指催化一个底物分解为两个化合物或两个化合物合成为一个化合物的酶类。
例如柠檬酸合成酶、醛缩酶等。
5.异构酶类(isomerases)指催化各种同分异构体之间相互转化的酶类。
例如,磷酸丙糖异构酶、消旋酶等。
6.合成酶类(连接酶类,ligases)指催化两分子底物合成为一分子化合物,同时还必须偶联有ATP的磷酸键断裂的酶类。
例如,谷氨酰胺合成酶、氨基酸:tRNA连接酶等。
二、酶的命名(一)习惯命名法1.一般采用底物加反应类型而命名,如蛋白水解酶、乳酸脱氢酶、磷酸己糖异构酶等。
2.对水解酶类,只要底物名称即可,如蔗糖酶、胆硷酯酶、蛋白酶等。
3.有时在底物名称前冠以酶的来源,如血清谷氨酸-丙酮酸转氨酶、唾液淀粉酶等。
习惯命名法简单,应用历史长,但缺乏系统性,有时出现一酶数名或一名数酶的现象。
(二)系统命名法鉴于新酶的不断发展和过去文献中对酶命名的混乱,国际酶学委员会规定了一套系统的命名法,使一种酶只有一种名称。
它包括酶的系统命名和4个数字分类的酶编号。
例如对催化下列反应酶的命名。
ATP+D—葡萄糖→ADP+D—葡萄糖-6-磷酸该酶的正式系统命名是:ATP:葡萄糖磷酸转移酶,表示该酶催化从ATP中转移一个磷酸到葡萄糖分子上的反应。
它的分类数字是:E.C.2.7.1.1,E.C代表按国际酶学委员会规定的命名,第1个数字(2)代表酶的分类名称(转移酶类),第2个数字(7)代表亚类(磷酸转移酶类),第3个数字(1)代表亚亚类(以羟基作为受体的磷酸转移酶类),第4个数字(1)代表该酶在亚-亚类中的排号(D葡萄糖作为磷酸基的受体)。
酶的高考知识点总结酶是一类能够加速化学反应速度的生物催化剂,在人们的日常生活和科学研究中都扮演着重要角色。
在高考生物考试中,酶作为一个重要的知识点经常被提及。
下面就让我们来总结一下酶的高考知识点。
一、酶的基本概念酶是一类大分子蛋白质,由氨基酸组成,具有特定的空间结构。
酶能够通过与底物结合形成酶底物复合物,通过改变反应的活化能降低反应速率,并且在反应结束后酶可以再次利用。
酶对于生物体内的代谢、调节以及生命活动至关重要。
二、酶的命名和分类酶按照其功能和反应类型可以分为氧化酶、还原酶、转移酶、加水酶等多种类型。
酶的命名通常以底物名加上后缀“酶”构成,例如乳糖酶、脱氧核糖酶等。
有些酶还根据它们的催化机制来命名,例如蛋白酶、酯酶等。
三、酶的结构与功能酶的功能与其结构密切相关。
酶的结构可以分为四个层次,即初级结构、二级结构、三级结构和四级结构。
其中,三级结构对于酶的功能起着关键作用。
酶底物结合位点称为活性位,酶与底物之间的结合方式可以是键合、静电作用或者疏水力等。
四、酶的工作原理酶的催化作用主要通过两种机制来实现:一是酶与底物结合后通过空间构象改变底物的构象从而降低活化能;二是通过酶提供的亲合合适环境,例如特定的pH、温度和离子浓度,来促进反应的进行。
五、酶的影响因素酶的活性受到多种因素的影响。
温度是其中非常重要的一个因素,因为酶活性随着温度的升高而增强,但过高温度会破坏酶的结构。
pH 值也是影响酶活性的重要因素,因为酶在不同的 pH 值下具有最适合的活性。
此外,底物浓度、抑制剂和激活剂等都能够对酶的活性产生影响。
六、酶的应用领域由于酶在催化反应中的高效性和选择性,它们在工业生产、生物学研究和医学等领域都有广泛的应用。
例如,酶在食品加工中可用于酿酒、酵母发酵等;在医学领域,酶可以用于临床分析、酶联免疫吸附实验等。
总结:酶作为高考生物考试中的重要知识点,我们应该对其有清晰的认识和理解。
对于酶的基本概念、命名和分类、结构与功能、工作原理、影响因素以及应用领域等方面,我们需要掌握并理解透彻。
第二节酶的命名和分类一、酶的命名迄今已鉴定出2 500多种酶,如此种类繁多、催化反应各异的酶,为防止混乱,需要一个统一的分类和命名。
1 、习惯命名法习惯命名(recommended name)是把底物的名字、底物发生的反应类型以及该酶的生物来源等加在“酶”字的前面组合而成。
①根据酶的底物命名,如淀粉酶、脂肪酶、蛋白酶等。
②根据催化反应的类型命名,如氧化酶、脱氢酶、加氧酶、转氨酶等。
不足之处:一是“一酶多名”,如分解淀粉的酶,若按习惯命名法则有三个名字,分别为淀粉酶、水解酶、细菌淀粉酶;二是“一名数酶”,如脱氢酶,该酶的全酶中辅因子是NAD++或者是FAD,作为底物脱下来的氢载体,像乳酸脱氢酶、琥珀酸脱氢酶。
为此,国际生物化学协会酶学委员会(Eenzyme Commission,EC)于1961年提出了一个新的系统命名及系统分类原则。
2、系统命名法系统命名(systematic name)要求能确切地表明酶的底物及酶催化的反应性质,即酶的系统名包括酶作用的底物名称和该酶的分类名称。
若底物是两个或多个则通常用“:”号把它们分开,作为供体的底物,名字排在前面,而受体的名字在后。
如乳酸脱氢酶的系统名称是:L-乳酸:NAD+++氧化还原酶。
按照严格的规则对酶进行系统命名后,获得的新名过于冗长而使用不便,因此,尽管系统命名科学严谨,读者一见酶名,就知道该酶所催化的反应。
但实际上,只在关键时刻,需要鉴别一种酶的时候,或在一篇论文中,初始出现该酶的名字时,才予以引用。
而在绝大多数情况下,使用的都是简便明了的习惯名称。
总之,每一种酶往往分别有一个习惯名称和系统名称。
二、分类根据酶所催化的反应类型,可将酶分为六大类。
1、氧化还原酶类:催化氧化-还原反应(如乳酸脱氢酶等)2、移换酶类:催化功能基团的转移反应(如:丙氨酸:酮戊二酸氨基移换酶,即:谷丙转氨酶)3、水解酶类:催化水解反应(如淀粉酶、核酸酶、蛋白酶、脂肪酶等)4、裂合酶类:催化从底物上移去一个基团而形成双键的反应或其逆反应(如醛缩酶、水化酶及脱氢酶等)5、异构酶类:催化各种同分异构体的相互转化(如磷酸葡萄糖异构酶、磷酸甘油酸磷酸变位酶等)6、合成酶:催化一切必须与ATP分解相关联,并由两种物质合成一种物质的反应(如天冬酰胺合成酶、丙酮酸羧化酶等)在每一大类酶中,又可根据不同的原则,分为几个亚类。
共三套《酶工程》试题一:一、是非题(每题1 分,共10 分)1 、酶是具有生物催化特性的特殊蛋白质。
( )2 、酶的分类与命名的基础是酶的专一性. ( )3 、酶活力是指在一定条件下酶所催化的反应速度,反应速度越大,意味着酶活力越高。
( )4 、液体深层发酵是目前酶发酵生产的主要方式。
( )5 、培养基中的碳源,其惟一作用是能够向细胞提供碳素化合物的营养物质。
( )6 、膜分离过程中,膜的作用是选择性地让小于其孔径的物质颗粒成份或者份子通过,而把大于其孔径的颗粒截留。
( )7 、在酶与底物、酶与竞争性抑制剂、酶与辅酶之间都是互配的份子对,在酶的亲和层析分离中,可把份子对中的任何一方作为固定相。
( )8 、角叉菜胶也是一种凝胶,在酶工程中常用于凝胶层析分离纯化酶。
( )9 、α-淀粉酶在一定条件下可使淀粉液化,但不称为糊精化酶。
( )10、酶法产生饴糖使用α-淀粉酶和葡萄糖异构酶协同作用. ( )二、填空题(每空1 分,共28 分)1 、日本称为“酵素”的东西,中文称为__________,英文则为__________,是库尼 (Kuhne) 于1878 年首先使用的。
其实它存在于生物体的__________与__________。
2 、1926 年,萨姆纳(Sumner)首先制得__________酶结晶,并指出__________是蛋白质。
他因这一杰出贡献,获1947 年度诺贝尔化学奖.3 、目前我国广泛使用的高产糖比酶优良菌株菌号为__________,高产液化酶优良菌株菌号为___________。
在微生物分类上,前者属于__________菌,后者属于__________菌。
4 、1960 年,查柯柏(Jacob)和莫洛德(Monod)提出了控制子学说,认为DNA 份子中,与酶生物合成有关的基因有四种,即控制基因、调节基因、__________基因和__________基因。