平面几何讲义(一)
- 格式:ppt
- 大小:293.00 KB
- 文档页数:14
三角形四心竞赛讲义一、“四心〞分类讨论11、外心12、心错误!未定义书签。
3、垂心错误!未定义书签。
4、重心55、外心与心66、重心与心错误!未定义书签。
7、外心与垂心错误!未定义书签。
8、外心与重心79、垂心与心710、垂心、重心、外心错误!未定义书签。
旁心错误!未定义书签。
二、“四心〞的联想81、由心、重心性质产生的联想82、重心的巧用错误!未定义书签。
3、三角形“四心〞与一组面积公式10三角形各心间的联系12与三角形的心有关的几何命题的证明13三角形的心、外心、垂心及重心(以下简称“四心〞)是新颁发的初中数学竞赛大纲特别加强的容。
由于与四心有关的几何问题涉及知识面广、难度大、应用的技巧性强、方法灵活,是考察学生逻辑思维能力和创造思维能力的较佳题型,因此,它是近几年来升学、竞赛的热点。
92、93、94、95连续四年的全国初中数学联赛均重点考察了这一容。
本讲拟分别列举四心在解几何竞赛中的应用,以期帮助同学们掌握这类问题的思考方法,提高灵活运用有关知识的能力。
一、“四心〞分类讨论1、外心三解形三条垂直平分线的交点叫做三角形的外心,即外接圆圆心。
△ABC的外心一般用字母O表示,它具有如下性质:(1)外心到三顶点等距,即OA=OB=OC。
(2)∠A=AOB C AOC B BOC ∠=∠∠=∠∠21,21,21。
如果外心或通过分析“挖掘〞出外心,与外心有关的几何定理,尤其是圆周角与圆心角关系定理,就可以大显神通了。
下面我们举例说明。
例2证明三角形三边的垂直平分线相交于一点,此点称为三角形的外心.:△ABC 中,**′,YY ′,ZZ ′分别是BC ,AC ,AB 边的垂直平分线,求证:**′,YY ′,ZZ ′相交于一点(图3-111).例1、如图9-1所示,在△ABC 中,AB=AC ,任意延长CA 到P ,再延长AB 到Q ,使AP=BQ ,求证:△ABC 的外心O 与点A 、P 、Q 四点共圆。
I. 基础知识要点一、 平面.1. 经过不在同一条直线上的三点确定一个面.注:两两相交且不过同一点的四条直线必在同一平面内.2. 两个平面可将空间分成3或4部分.(①两个平面平行,②两个平面相交)3. 过三条互相平行的直线可以确定1或3个平面.(①三条直线在一个平面内平行,②三条直线不在一个平面内平行)[注]:三条直线可以确定三个平面,三条直线的公共点有0或1个.4. 三个平面最多可把空间分成 8 部分.(X 、Y 、Z 三个方向)二、 空间直线.1. 空间直线位置分三种:相交、平行、异面. 相交直线——共面有且仅有一个公共点;平行直线——共面没有公共点;异面直线——不同在任一平面内[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(可能两条直线平行,也可能是点和直线等)②直线在平面外,指的位置关系:平行或相交③若直线a 、b 异面,a 平行于平面α,b 与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点.⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点..向这个平面所引的垂线段和斜线段)⑦b a ,是夹在两平行平面间的线段,若b a =,则b a ,的位置关系为相交或平行或异面.2. 异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)3. 平行公理:平行于同一条直线的两条直线互相平行.4. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如下图).(二面角的取值范围[) 180,0∈θ) (直线与直线所成角(] 90,0∈θ)(斜线与平面成角() 90,0∈θ)(直线与平面所成角[] 90,0∈θ) 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.5. 两异面直线的距离:公垂线的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)三、 直线与平面平行、直线与平面垂直.1. 空间直线与平面位置分三种:相交、平行、在平面内.2. 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”)[注]:①直线a 与平面α内一条直线平行,则a ∥α. (×)(平面外一条直线)②直线a 与平面α内一条直线相交,则a 与平面α相交. (×)(平面外一条直线) 12方向相同12方向不相同③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. (√)(不是任意一条直线,可利用平行的传递性证之)④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内)⑤平行于同一直线的两个平面平行.(×)(两个平面可能相交)⑥平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面)⑦直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交)3. 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)4. 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直.● 若PA ⊥α,a ⊥AO ,得a ⊥PO (三垂线定理), 得不出α⊥PO . 因为a ⊥PO ,但PO 不垂直OA .● 三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直,线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.推论:如果两条直线同垂直于一个平面,那么这两条直线平行.[注]:①垂直于同一平面....的两个平面平行.(×)(可能相交,垂直于同一条直线.....的两个平面平行)②垂直于同一直线的两个平面平行.(√)(一条直线垂直于平行的一个平面,必垂直于另一个平面)③垂直于同一平面的两条直线平行.(√)5. ⑴垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.[注]:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)]⑵射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上四、 平面平行与平面垂直.1. 空间两个平面的位置关系:相交、平行.2. 平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,哪么这两个平面平行.(“线面平行,面面平行”)推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.[注]:一平面间的任一直线平行于另一平面.3. 两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行,线线平行”)4. 两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直性质判定二:如果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直,面面垂直”)注:如果两个二面角的平面对应平面互相垂直,则两个二面角没有什么关系.5. 两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.P OA a P αβ推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面.证明:如图,找O 作OA 、OB 分别垂直于21,l l ,因为ααββ⊥⊂⊥⊂OB PM OA PM ,,,则OB PM OA PM ⊥⊥,.五、 棱锥、棱柱.1. 棱柱.⑴①直棱柱侧面积:Ch S =(C 为底面周长,h 是高)该公式是利用直棱柱的侧面展开图为矩形得出的.②斜棱住侧面积:l C S 1=(1C 是斜棱柱直截面周长,l 是斜棱柱的侧棱长)该公式是利用斜棱柱的侧面展开图为平行四边形得出的.⑶棱柱具有的性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各个侧面都是矩形........;正棱柱的各个侧面都是全等的矩形......②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等..多边形. ③过棱柱不相邻的两条侧棱的截面都是平行四边形.注:①棱柱有一个侧面和底面的一条边垂直可推测是直棱柱. (×)(直棱柱不能保证底面是钜形可如图)②(直棱柱定义)棱柱有一条侧棱和底面垂直.[注]:①有两个侧面是矩形的棱柱是直棱柱.(×)(斜四面体的两个平行的平面可以为矩形) ②各侧面都是正方形的棱柱一定是正棱柱.(×)(应是各侧面都是正方形的直.棱柱才行) ③对角面都是全等的矩形的直四棱柱一定是长方体.(×)(只能推出对角线相等,推不出底面为矩形) ④棱柱成为直棱柱的一个必要不充分条件是棱柱有一条侧棱与底面的两条边垂直. (两条边可能相交,可能不相交,若两条边相交,则应是充要条件)2. 棱锥: [注]:①一个棱锥可以四各面都为直角三角形.②一个棱柱可以分成等体积的三个三棱锥;所以棱柱棱柱3V Sh V ==.⑴①正棱锥定义:底面是正多边形;顶点在底面的射影为底面的中心.[注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形)ii. 正四面体是各棱相等,而正三棱锥是底面为正△侧棱与底棱不一定相等iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形. ②正棱锥的侧面积:'Ch 21S =(底面周长为C ,斜高为'h ) ⑵棱锥具有的性质:①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.⑶特殊棱锥的顶点在底面的射影位置:①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心. ③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心. ④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;⑧每个四面体都有内切球,球心I 是四面体各个二面角的平分面的交点,到各面的距离等于半径.[注]:i. 各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等)3. 球:⑴球的截面是一个圆面.①球的表面积公式:24R S π=. ②球的体积公式:334R V π=. 附:①圆柱体积:h r V 2π=(r 为半径,h 为高) ②圆锥体积:h r V 231π=(r 为半径,h 为高) ③锥形体积:Sh V 31=(S 为底面积,h 为高) 侧面积公式S 直棱柱侧=ch ( c -底面周长,h -高 )S 正棱锥侧=1/2 ch ( c -底面周长,h -斜高 )S 正棱台侧=1/2 (c +c')h (c ,c'-上、下底面周长,h -斜高)S 圆柱侧=cl =2πrl (c -底面周长,l -母线长 ,r -底面半径) S 圆锥侧=1/2cl =πrl (c -底面周长,l -母线长 ,r -底面半径) S 圆台侧=1/2(c +c')l =π(r +r')l(c ,c' -上、下底面周长,r ,r -上、下底面半径)体积公式V 柱体=Sh ( S -底面积,h -高 )V 椎体=1/3Sh ( S -底面积,h -高 )()h ss s s V '31'++=台体 (S ,S -上下底面积,h -高 ) 3R 34π=球V (R 为球的半径) 24R S π=球。
课程类型数学
“平面几何配极与反演变换1”
讲义编号:
配极与反演一般在难度较高的竞赛中才会涉及,但了解其特性对于理解平面几何最基本两种元素:直线与圆的关系非常有帮助。
所以仍然希望学生能有所涉猎。
1.调和线束:
定义1.1:设A、B、C、D是同一直线上一次排列的四个点,若AC AD
CB DB
,则称A、B、C、D为调和点列,或称
点C、D调和分割线段AB(易知这和“点A、B调和分割线段CD”是等价的)。
由定义容易得出如下结论:第四调和点唯一
由定义我们有两个基本图形:
图 1 基本图形1
基本图形1:若已知E、B调和分割线段AR,F、P调和分割线段BC。
连接AC、PE交于D。
则有结论EC、BD、
AF 、PR 共点。
证明:设EC 与PR 交于O ,我们证明BOD 共线即可:
已知 BA BR AE RE
= 又PE 截ABC ,有
1EA BC PD AB CP DE
⋅⋅= PR 截EBC ,有1CP BR EO PB RE OC
⋅⋅= 将以上三式带入,整理有1CB PD EO BP DE OC ⋅⋅=,为直线DB 截ECP ,所以BOD 共线
基本图形2:若AD 平分∠BAC ,AE 为∠BAC 外角平分线,则有结论B 、D 、C 、E 为调和点列
图 2 基本图形2
定义1.2:若从直线外一点P 引射线P A 、PB 、PC 、PD ,则称他们为调和线束。
我们有结论任意一条直线与调和线束相交则交点四点组成调和点列。
给出证明:设APB α∠=,BPC β∠=,CPD γ∠=。
高一数学竞赛班二试讲义第1讲 平面几何中的26个定理班级 姓名一、知识点金1. 梅涅劳斯定理:若直线l 不经过ABC ∆的顶点,并且与ABC ∆的三边,,BC CA AB 或它们的延长线分别交于,,P Q R ,则1BP CQ AR PC QA RB⋅⋅= 注:梅涅劳斯定理的逆定理也成立(用同一法证明)2. 塞瓦定理: 设,,P Q R 分别是ABC ∆的三边,,BC CA AB 或它们的延长线上的点,若,,AP BQ CR 三线共点,则1BP CQ AR PC QA RB⋅⋅= 注:塞瓦定理的逆定理也成立3. 托勒密定理:在四边形ABCD 中,有AB CD BC AD AC BD ⋅+⋅≥⋅,并且当且仅当四边形ABCD 内接于圆时,等式成立。
AB AE AC ADBC ED AC AD==⇒又4. 西姆松定理:若从ABC ∆外接圆上一点P 作,,BC AB CA 的垂线,垂足分别为,,D E F ,则,,D E F 三点共线。
西姆松定理的逆定理:从一点P 作,,BC AB CA 的垂线,垂足分别为,,D E F 。
若,,D E F 三点共线,则点P 在ABC ∆的外接圆上。
5. 蝴蝶定理:圆O 中的弦PQ 的中点M ,过点M 任作两弦AB ,CD ,弦AD 与BC 分别交PQ 于X ,Y ,则M 为XY 之中点。
证明:过圆心O 作AD 与BC 的垂线,垂足为S 、T ,,OY ,OM ,SM ,MT 。
∴AM/CM=AD/BC∵AS=1/2AD,BT=1/2BC ∴AM/CM=AS/CT又∵∠A=∠C ∴△AMS∽△CMT∴∠MSX=∠MTY∴∠OMX+∠OSX=180°∴O,S ,X ,M同理,O ,T ,∴∠MTY=∠MOY,∠MSX=∠MOX∴∠MOX=∠MOY , ∵OM⊥PQ ∴XM=YM注:把圆换成椭圆、抛物线、双曲线蝴蝶定理也成立6. 坎迪定理:设AB 是已知圆的弦,M 是AB 上一点,弦,CD EF 过点M ,连结,CF ED ,分别交AB 于,L N ,则1111LM MN AM MB-=-。
直线、平面平行的判定与性质讲义一、知识梳理1.线面平行的判定定理和性质定理文字语言图形语言符号语言判定定理平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简记为“线线平行⇒线面平行”)⎭⎪⎬⎪⎫l∥aa⊂αl⊄α⇒l∥α性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行⇒线线平行”)⎭⎪⎬⎪⎫l∥αl⊂βα∩β=b⇒l∥b2.面面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)⎭⎪⎬⎪⎫a∥βb∥βa∩b=Pa⊂αb⊂α⇒α∥β性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行⎭⎪⎬⎪⎫α∥βα∩γ=aβ∩γ=b⇒a∥b(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.(2)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b.(3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.二、基础检测题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.()(2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.()(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.()(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.()(5)若直线a与平面α内无数条直线平行,则a∥α.()(6)若α∥β,直线a∥α,则a∥β.()题组二:教材改编2.下列命题中正确的是( )A .若a ,b 是两条直线,且a ∥b ,那么a 平行于经过b 的任何平面B .若直线a 和平面α满足a ∥α,那么a 与α内的任何直线平行C .平行于同一条直线的两个平面平行D .若直线a ,b 和平面α满足a ∥b ,a ∥α,b ⊄α,则b ∥α3.如图,在正方体ABCD -A 1B 1C 1D 1中,E 为DD 1的中点,则BD 1与平面AEC 的位置关系为________.题组三:易错自纠4.若平面α∥平面β,直线a ∥平面α,点B ∈β,则在平面β内且过B 点的所有直线中( ) A .不一定存在与a 平行的直线 B .只有两条与a 平行的直线 C .存在无数条与a 平行的直线 D .存在唯一与a 平行的直线 5.设α,β,γ为三个不同的平面,a ,b 为直线,给出下列条件: ①a ⊂α,b ⊂β,a ∥β,b ∥α;②α∥γ,β∥γ; ③α⊥γ,β⊥γ;④a ⊥α,b ⊥β,a ∥b .其中能推出α∥β的条件是______.(填上所有正确的序号)6.如图是长方体被一平面所截得的几何体,四边形EFGH 为截面,则四边形EFGH 的形状为________.三、典型例题题型一:直线与平面平行的判定与性质 命题点1:直线与平面平行的判定典例 如图,在四棱锥P -ABCD 中,AD ∥BC ,AB =BC =12AD ,E ,F ,H 分别为线段AD ,PC ,CD 的中点,AC 与BE 交于O 点,G 是线段OF 上一点.(1)求证:AP∥平面BEF;(2)求证:GH∥平面P AD.命题点2:直线与平面平行的性质典例如图,四棱锥P-ABCD的底面是边长为8的正方形,四条侧棱长均为217.点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH.(1)证明:GH∥EF;(2)若EB=2,求四边形GEFH的面积.思维升华:判断或证明线面平行的常用方法(1)利用线面平行的定义(无公共点).(2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α).(3)利用面面平行的性质(α∥β,a⊂α⇒a∥β).(4)利用面面平行的性质(α∥β,a⊄α,a⊄β,a∥α⇒a∥β).跟踪训练如图,四棱锥P-ABCD中,P A⊥底面ABCD,AD∥BC,AB=AD=AC=3,P A=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面P AB;(2)求四面体N-BCM的体积.题型二:平面与平面平行的判定与性质典例如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.引申探究:本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D.思维升华:证明面面平行的方法(1)面面平行的定义.(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(3)利用垂直于同一条直线的两个平面平行.(4)两个平面同时平行于第三个平面,那么这两个平面平行.(5)利用“线线平行”“线面平行”“面面平行”的相互转化.跟踪训练:如图所示,四边形ABCD与四边形ADEF都为平行四边形,M,N,G分别是AB,AD,EF的中点.求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.题型三:平行关系的综合应用典例如图所示,平面α∥平面β,点A∈α,点C∈α,点B∈β,点D∈β,点E,F分别在线段AB,CD 上,且AE∶EB=CF∶FD.(1)求证:EF∥平面β;(2)若E,F分别是AB,CD的中点,AC=4,BD=6,且AC,BD所成的角为60°,求EF的长.思维升华:利用线面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置,对于最值问题,常用函数思想来解决.跟踪训练如图所示,四边形EFGH为空间四边形ABCD的一个截面,若截面为平行四边形.(1)求证:AB∥平面EFGH,CD∥平面EFGH;(2)若AB=4,CD=6,求四边形EFGH周长的取值范围.四、反馈练习1.若直线l不平行于平面α,且l⊄α,则()A.α内的所有直线与l异面B.α内不存在与l平行的直线C.α与直线l至少有两个公共点D.α内的直线与l都相交2.已知直线a和平面α,那么a∥α的一个充分条件是()A.存在一条直线b,a∥b且b⊂αB.存在一条直线b,a⊥b且b⊥αC.存在一个平面β,a⊂β且α∥βD.存在一个平面β,a∥β且α∥β3.平面α∥平面β,点A,C∈α,点B,D∈β,则直线AC∥直线BD的充要条件是()A.AB∥CD B.AD∥CBC.AB与CD相交D.A,B,C,D四点共面4.一条直线l上有相异的三个点A,B,C到平面α的距离相等,那么直线l与平面α的位置关系是() A.l∥αB.l⊥αC.l与α相交但不垂直D.l∥α或l⊂α5.对于空间中的两条直线m,n和一个平面α,下列命题中的真命题是()A.若m∥α,n∥α,则m∥nB.若m∥α,n⊂α,则m∥nC.若m∥α,n⊥α,则m∥nD.若m⊥α,n⊥α,则m∥n6.如图,L,M,N分别为正方体对应棱的中点,则平面LMN与平面PQR的位置关系是()A.垂直B.相交不垂直C.平行D.重合7.在四面体A-BCD中,M,N分别是△ACD,△BCD的重心,则四面体的四个面中与MN平行的是________.8.设α,β,γ是三个不同的平面,m,n是两条不同的直线,在命题“α∩β=m,n⊂γ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,n⊂β;②m∥γ,n∥β;③n∥β,m⊂γ.可以填入的条件有________.9.如图所示,在正四棱柱ABCD—A1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M只需满足条件______时,就有MN∥平面B1BDD1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)10.将一个真命题中的“平面”换成“直线”、“直线”换成“平面”后仍是真命题,则该命题称为“可换命题”.给出下列四个命题:①垂直于同一平面的两直线平行;②垂直于同一平面的两平面平行;③平行于同一直线的两直线平行;④平行于同一平面的两直线平行.其中是“可换命题”的是______.(填序号)11.如图,在四棱锥P—ABCD中,平面P AD⊥平面ABCD,底面ABCD为梯形,AB∥CD,AB=2DC=23,且△P AD与△ABD均为正三角形,E为AD的中点,G为△P AD的重心.(1)求证:GF∥平面PDC;(2)求三棱锥G—PCD的体积.12.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD为正方形,BC=PD=2,E为PC的中点,CB=3CG.(1)求证:PC⊥BC;(2)AD边上是否存在一点M,使得P A∥平面MEG?若存在,求出AM的长;若不存在,请说明理由.13.在四面体ABCD中,截面PQMN是正方形,则在下列结论中,错误的是()A.AC⊥BDB.AC∥截面PQMNC.AC=BDD.异面直线PM与BD所成的角为45°14.过三棱柱ABC—A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有________条.15.如图所示,侧棱与底面垂直,且底面为正方形的四棱柱ABCD—A1B1C1D1中,AA1=2,AB=1,M,N 分别在AD1,BC上移动,始终保持MN∥平面DCC1D1,设BN=x,MN=y,则函数y=f(x)的图象大致是()16.在三棱锥S-ABC中,△ABC是边长为6的正三角形,SA=SB=SC=15,平面DEFH分别与AB,BC,SC,SA交于点D,E,F,H.D,E分别是AB,BC的中点,如果直线SB∥平面DEFH,那么四边形DEFH 的面积为________.。
平面及其基本性质知识点1 平面的概念平面是没有厚薄的,可以无限延伸,这是平面最基本的属性常见的桌面,黑板面,平静的水面等都是平面的局部形象指出: 平面的两个特征:①无限延展②平的(没有厚度)。
平面的表示:一般用一个希腊字母α、β、γ……来表示,还可用平行四边形对角顶点的字母来表示。
平面的画法:在立体几何中,通常画平行四边形来表示平面。
一个平面,通常画成水平放置,通常把平行四边形的锐角画成45 ,横边画成邻边的2倍长。
两个相交平面:画两个相交平面时,若一个平面的一部分被另一个平面遮住,应把被遮住部分的线段画成虚线或不画。
集合中“∈”的符号只能用于点与直线,点与平面的关系,“⊂”和“ ”的符号只能用于直线与直线、直线与平面、平面与平面的关系,虽然借用于集合符号,但在读法上仍用几何语言。
知识点2 公理1 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内指出:符号语言:,,,A l B l A B l ααα∈∈∈∈⇒⊂.知识点3 公理2如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线指出:符号语言:P ∈α,且P ∈β⇒α∩β=l ,且P ∈l .知识点4 公理3 经过不在同一条直线上的三点,有且只有一个平面指出:符号语言:,, ,,,,A B C A B C A B C ααβ⎫⎪∈⇒⎬⎪∈⎭不共线与β重合推论1 一条直线和直线外的一点确定一个平面.(证明见课本)指出:推论1的符号语言:A a ∉⇒有且只有一个平面α,使得A α∈,l α⊂推论2 两条相交直线确定一个平面推论3 两条平行直线有且只有一个平面三、典例解析例1 用符号语言表示下列图形中点、直线、平面之间的位置关系.例2 求证:两两相交而不通过同一点的四条直线必在同一平面内。
例3 正方体ABCD-A 1B 1C 1D 1中,对角线A 1C∩平面BDC 1=O ,AC 、BC 交于点M ,求证:点C 1、O 、M 共线.例4 已知平面α、β、γ两两相交于三条直线l 1、l 2、l 3,且l 1、l 2、l 3不平行.求证:l 1、l 2、l 3相交于一点.基础练习:一、选择题:1.下面给出四个命题: ①一个平面长4m, 宽2m; ②2个平面重叠在一起比一个平面厚; ③一个平面的面积是25m 2; ④一条直线的长度比一个平面的长度大, 其中正确命题的个数是( )A. 0B.1C.2D.32.若点N 在直线a 上,直线a 又在平面α内,则点N ,直线a 与平面α之间的关系可记作( ) A、N α∈∈a B、N α⊂∈a C、N α⊂⊂a D、N α∈⊂a3.A,B,C表示不同的点,a, 表示不同的直线,βα,表示不同的平面,下列推理错误的是( ) A.A ααα⊂⇒∈∈∈∈ B B A ,;,B.βαβαβα⋂⇒∈∈∈∈B B A A ,;,=ABC.αα∉⇒∈⊄A A ,D.A,B,C α∈,A,B,C β∈且A ,B ,C 不共线α⇒与β重合4. 空间不共线的四点,可以确定平面的个数为( )A.0 B.1 C.1或4 D. 无法确定5. 空间 四点A ,B ,C ,D 共面但不共线,则下面结论成立的是( )A. 四点中必有三点共线 B. 四点中必有三点不共线C. AB ,BC ,CD ,DA 四条直线中总有两条平行D. 直线AB 与CD 必相交6. 空间不重合的三个平面可以把空间分成( )A. 4或6或7个部分B. 4或6或7或8个部分C. 4或7或8个部分D. 6或7或8个部分7.下列说法正确的是( )①一条直线上有一个点在平面内, 则这条直线上所有的点在这平面内; ②一条直线上有两点在一个平面内, 则这条直线在这个平面内; ③若线段AB α⊂, 则线段AB 延长线上的任何一点一点必在平面α内; ④一条射线上有两点在一个平面内, 则这条射线上所有的点都在这个平面内.A. ①②③B. ②③④C. ③④D. ②③8.空间三条直线交于同一点,它们确定平面的个数为n ,则n 的可能取值为( )A. 1B.1或3C. 1或2或3D.1或 4二、填空题:9.水平放置的平面用平行四边形表示时,通常把横边画成邻边的___________倍.10.设平面α与平面β交于直线 , A αα∈∈B ,, 且直线AB C =⋂ ,则直线AB β⋂=_____________.11.设平面α与平面β交于直线 , 直线α⊂a , 直线β⊂b ,M b a =⋂, 则M_______ .12.直线AB 、AD α⊂,直线CB 、CD β⊂,点E ∈AB ,点F ∈BC ,点G ∈CD ,点H ∈DA ,若直线HE ⋂直线FG=M ,则点M 必在直线___________上.三、解答题:13.判断下列说法是否正确?并说明理由.(1)平行四边形是一个平面; (2)任何一个平面图形都是一个平面;(3)空间图形中先画的线是实线,后画的线是虚线.14.如图,E、F、G、H分别是空间四边形AB、BC、CD、DA上的点,且EH与FG交于点O. 求证:B、D、O三点共线.15.证明梯形是平面图形。
2011元旦假期数学作业高一平面解析几何初步复习讲义1.掌握两条直线平行和垂直的条件,掌握两条直线所成的角和点到直线的距离公式,能够根. 2.掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程的概念.第1课时 直线的方程1.倾斜角:对于一条与x 轴相交的直线,把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角α叫做直线的倾斜角.当直线和x 轴平行或重合时,规定直线的倾斜角为0°.倾斜角的范围为________.斜率:当直线的倾斜角α≠90°时,该直线的斜率即k =tanα;当直线的倾斜角等于90°时,直线的斜率不存在.2.过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式 .若x 1=x 2,则直线的斜率不存在,此时直线的倾斜角为90°. 3例1. 已知直线(2m 2+m -3)x +(m 2-m)y =4m -1.① 当m = 时,直线的倾斜角为45°.②当m = 时,直线在x 轴上的截距为1.③ 当m = 时,直线在y 轴上的截距为-23.④当m = 时,直线与x 轴平行.⑤当m = 时,直线过原点.变式训练1.(1)直线3y – 3 x +2=0的倾斜角是 ( ) A .30° B.60° C.120° D.150° (2)设直线的斜率k=2,P 1(3,5),P 2(x 2,7),P (-1,y 3)是直线上的三点,则x 2,y 3依次是 ( )A .-3,4B .2,-3C .4,-3D .4,3(3)直线l 1与l 2关于x 轴对称,l 1的斜率是-7 ,则l 2的斜率是 ( )A .7B .-77C .77D .-7 (4)直线l 经过两点(1,-2),(-3,4),则该直线的方程是 . 例2. 已知三点A (1,-1),B (3,3),C (4,5). 求证:A 、B 、C 三点在同一条直线上.变式训练2. 设a ,b ,c 是互不相等的三个实数,如果A (a ,a 3)、B (b ,b 3)、C (c ,c 3)在同一直线上,求证:a+b+c=0.例3. 已知实数x,y 满足y=x 2-2x+2 (-1≤x≤1).试求:23++x y 的最大值与最小值.典型例题变式训练3. 若实数x,y 满足等式(x-2)2+y 2=3,那么xy的最大值为 ( ) A.21B.33 C.23D.3例4. 已知定点P(6, 4)与直线l 1:y =4x ,过点P 的直线l 与l 1交于第一象限的Q 点,与x 轴正半轴交于点M .求使△OQM 面积最小的直线l 的方程.变式训练4.直线l 过点M(2,1),且分别交x 轴y 轴的正半轴于点A 、B ,O 为坐标原点. (1)当△AOB 的面积最小时,求直线l 的方程; (2)当MB MA 取最小值时,求直线l 的方程.1.直线方程是表述直线上任意一点M 的坐标x 与y 之间的关系式,由斜率公式可导出直线方程的五种形式.这五种形式各有特点又相互联系,解题时具体选取哪一种形式,要根据直线的特点而定.2.待定系数法是解析几何中常用的思想方法之一,用此方法求直线方程,要注意所设方程的适用范围.如:点斜式、斜截式中首先要存在斜率,截距式中横纵截距存在且不为0,两点式的横纵坐标不能相同等(变形后除处).3.在解析几何中,设点而不求,往往是简化计算量的一个重要方法.4.在运用待定数法设出直线的斜率时,就是一种默认斜率存在,若有不存在的情况时,就会出现解题漏洞,此时就要补救:较好的方法是看图,数形结合来找差距.小结归纳第2课时直线与直线的位置关系(一)平面内两条直线的位置关系有三种________.1.当直线不平行坐标轴时,直线与直线的位置关系可根据下表判定2(二)点到直线的距离、直线与直线的距离1.P(x0,y0)到直线Ax+By+C=0 的距离为______________.2.直线l1∥l2,且其方程分别为:l1:Ax+By+C1=0 l2:Ax+By+C2=0,则l1与l2的距离为.(三)两条直线的交角公式若直线l1的斜率为k1,l2的斜率为k2,则1.直线l1到l2的角θ满足.2.直线l1与l2所成的角(简称夹角)θ满足.(四)两条直线的交点:两条直线的交点的个数取决于这两条直线的方程组成的方程组的解的个数.(五)五种常用的直线系方程.① 过两直线l1和l2交点的直线系方程为A1x+B1y+C1+ (A2x+B2y+C2)=0(不含l2).② 与直线y=kx+b平行的直线系方程为y=kx+m (m≠b).③ 过定点(x0, y0)的直线系方程为y-y0=k(x-x0)及x=x0.④ 与Ax+By+C=0平行的直线系方程设为Ax+By+m=0 (m≠C).⑤ 与Ax+By+C=0垂直的直线系方程设为Bx-Ay+C1=0 (AB≠0).例1. 已知直线l1:ax+2y+6=0和直线l2:x+(a-1)y+a2-1=0,(1)试判断l1与l2是否平行;(2)l1⊥l2时,求a的值.变式训练1.若直线l 1:ax+4y-20=0,l 2:x+ay-b=0,当a 、b 满足什么条件时,直线l 1与l 2分别相交?平行?垂直?重合?例2. 直线y =2x 是△ABC 中∠C 的平分线所在的直线,若A 、B 坐标分别为A(-4,2)、B(3,1),求点C 的坐标并判断△ABC 的形状.例3. 设点A(-3,5)和B(2,15),在直线l :3x -4y +4=0上找一点p ,使PB PA 为最小,并求出这个最小值.变式训练3:已知过点A (1,1)且斜率为-m(m>0)的直线l 与x 、y 轴分别交于P 、Q 两点,过P 、Q 作直线2x +y =0的垂线,垂足分别为R 、S ,求四边形PRSQ 的面积的最小值.1.处理两直线位置关系的有关问题时,要注意其满足的条件.如两直线垂直时,有两直线斜率都存在和斜率为O 与斜率不存在的两种直线垂直.2.注意数形结合,依据条件画出图形,充分利用平面图形的性质和图形的直观性,有助于问题的解决.3.利用直线系方程可少走弯路,使一些问题得到简捷的解法.4.解决对称问题中,若是成中心点对称的,关键是运用中点公式,而对于轴对称问题,一般是转化为求对称点,其关键抓住两点:一是对称点的连线与对称轴垂直;二是两对称点的中点在对称轴上,如例4第3课时 圆的方程1. 圆心为C(a 、b),半径为r 的圆的标准方程为_________________.2.圆的一般方程x2+y2+Dx+Ey+F=0(其中D2+E2-4F>0),圆心为,半径r=.3.二元二次方程Ax2+Bxy +Cy2+Dx+Ey+F=0表示圆的方程的充要条件是.4.圆C:(x-a)2+(y-b)2=r2的参数方程为_________.x2+y2=r2的参数方程为________________.5.过两圆的公共点的圆系方程:设⊙C1:x2+y2+D1x+E1y+F1=0,⊙C2:x2+y2+D2x+E2y+F2=0,则经过两圆公共点的圆系方程为.典型例题例1. 根据下列条件,求圆的方程.(1) 经过A(6,5),B(0,1)两点,并且圆心在直线3x+10y+9=0上.(2) 经过P(-2,4),Q(3,-1)两点,并且在x轴上截得的弦长为6.变式训练1:求过点A(2,-3),B(-2,-5),且圆心在直线x-2y-3=0上的圆的方程.例2. 已知圆x2+y2+x-6y+m=0和直线x+2y-3=0交于P,Q两点,且OP⊥OQ(O为坐标原点),求该圆的圆心坐标及半径.变式训练2:已知圆C:(x-1)2+(y-2)2=25及直线l:(2m+1)x+(m+1)y=7m+4 (m∈R).(1)证明:不论m取什么实数,直线l与圆C恒相交;(2)求直线l被圆C截得的弦长的最短长度及此时的直线方程.(例3. 知点P (x ,y )是圆(x+2)2+y 2=1上任意一点.(1)求P 点到直线3x+4y+12=0的距离的最大值和最小值; (2)求x-2y 的最大值和最小值; (3)求12--x y 的最大值和最小值.变式训练3:已知实数x 、y 满足方程x 2+y 2-4x+1=0. (1)求y-x 的最大值和最小值;(2)求x 2+y 2的最大值和最小值.例4. 设圆满足:①截y 轴所得的弦长为2;②被x 轴分成两段圆弧,其弧长的比为3∶1.在满足条件①②的所有圆中,求圆心到直线l :x -2y=0的距离最小的圆的方程。
2018奥数夏令营平面几何(教师版)2018年奥数夏令营讲义——平面几何目录一、等差幂线定理 (2)二、共边比例定理、分角张角 (7)2.1 共边比例定理 (7)2.2 分角定理 (10)2.3 张角定理 (12)三、Menelaus、Ceva、Pascal定理 (15)3.1 梅涅劳斯(Menelaus)定理 (15)3.2 赛瓦(Ceva)定理 (19)3.3 Pascal定理 (23)四、三角形五心 (28)4.1 三角形的内心 (28)4.2 三角形的外心 (31)4.3 三角形的重心 (34)4.4 三角形的垂心 (38)4.5 三角形的旁心 (42)五、等角共轭 (49)5.1 等角共轭 (49)5.2 等角共轭点 (50)六、Simson 定理、托勒密、三弦定理 (62)6.1 Simson 定理 (62)6.2 Ptolemy 定理 (65)6.3 三弦定理 (70)七、Stewart 定理 (73)八、欧拉定理、欧拉线、欧拉圆 (78)九、圆幂定理、根轴、根心 (86)十、内外角平分线定理、线段的“分割比”、阿波罗尼斯圆 (103)十一、调和点列、线束 (108)十二、顾冬华20题 (117)注:第81题、第104题、第124题为同一题,分别由三位老师提供,诠释角度不同,故仍然顺应内容重复编排在内,方便备课.1 / 1362 / 136一、等差幂线定理1. 如图,点P 为ABC △内部一点,PL PM PN 、、分别垂直于BC CA AB 、、,且AM AN =,BN BL =.求证:CL CM =.B【证明】由定差幂线定理PN AB ⊥?2222PA PB NA NB -=-;PL BC ⊥?2222PB PC LB LC -=-;PM CA ⊥2222PC PA MC MA ?-=-. 上述三式相加,结合AM AN =及BNBL =,得CL CM =.2. 在正方形对角线上一点(不与重合),. 求证:【证明】则D F3 / 1363. 在中,. 求证:和边上的中线和互相垂直.【证明】连接,得4. 如图,在ABC △中,CD AB ⊥,BE AC ⊥,D 、E 是垂足,CD 与BE 交于点H . 证明:AH BC ⊥. ABC DH E证明:在凹四边形ACBH 中,由CH AB ⊥得2222AC BH BC AH +=+. 在凹四边形ABCH 中,由BH AC ⊥得2222AB CH BC AH +=+.于是,在凹四边形ABHC 中,得到2222AB CH AC BH +=+,则AH BC ⊥. 由此题可得ABC △垂线H 的一个性质:222222AB CH BC AH AC BH +=+=+.ABCDE5.在五边形中,为五边形内一点,.求证:.ABC【证明】连接延长交,由,得:两式相减:即:由凹四边形得:.6.如图,在四边形ABCD中,E和F是CD和BC上的点,AB=AD,DF求证:CDB证明:在四边形ADEF中,由DF及定差幂线定理得,又因为AB=AD,BACDEPQ4 / 136所以,即,由定差幂线定理知7.若点P在ABC△三边BC、CA、AB所在直线上的射影分别为X、Y、Z. 证明:自YZ、ZX、XY的中点分别向BC、CA、AB所作的垂线共点.B证明:由三角形中线长公式,有22221()42am b c a=+-.由DX BC'⊥,EY CA'⊥,FZ AB'⊥,则2222X B X C BD CD''-=-22211()24BZ BY YZ=+-22211()24CY CZ YZ-+-22221()2BY BZ CY CZ=+--.同理,2222221()2Y C Y A CZ CX AZ AX ''-=+--2222221()2Z A Z B AX AY BX BY ''-=+--.以上三式相加,得222222X B X C Y C Y A Z A Z B ''''''-+-+-2222221()2XCXB YA YC ZB ZA=-+-+-.因为,由定差幂线定理可得:以上三式相加得所以222222X B X C Y C Y A Z A ZB''''''-+-+-=0(*)设与交于M 点,则由定差幂线定理可得代入(*)得即所以M在过引AB的垂线上,所以、、三线共点.5 / 1366 / 1368. 以锐角△ABC 的一边AC 为直径作圆,分别与AB 、BC 交于点K 、L ,CK 、AL 分别与△ABC 的外接圆交于点F 、D (F ≠C ,D ≠A ),E 为劣弧AC 上一点,BE 与AC 交于点N . 若AF 2+BD 2+CE 2=AE 2+CD 2+BF 2. 求证:KNB BNL =∠∠.证明如图,由于以AC 为直径的圆分别与AB 、BC 交于点K ,L ,则CK AB ⊥,AL BC ⊥. 设CK 与AL 交于点H ,则H 为ABC △的垂心,故点H 与F 关于AB 对称,点H 与D 关于BC 对称. 从而,AF AH =,CD CH =,BD BH BF ==. 由222222AF BD CE AE CD BF ++=++,有 2222AH CE AE CH +=+.即2222AH CH AE CE -=-. 由定差幂线定理知,HE AC ⊥. 又注意到H 为垂心,有BH AC ⊥. 故知B 、H 、E 三点共线. 因为N 为边AC 与BH 的交点,则BN AC ⊥. 故KNB BNL =∠∠.7 / 136二、共边比例定理、分角张角2.1 共边比例定理9. 如图,ABC △中,DE BC ∥,BE 、CD 交于P . 求证:直线AP 平分BC 和DE .EPDC BA【证明】设直线AP 分别交BC 、DE 于M 、H . 由共边定理,得ACP BCP S AD BD S =△△,ABP CBP S AE CE S =△△,而DE BC ∥,则AD AEBD CE=,所以ACP ABPBCP CBPS S S S =△△△△,则ACP ABP S S =△△. 又由共边定理,得BAP CAP S BM CM S =△△,所以1BMCM=,即BM CM =,所以M 是BC 的中点. 又易知BPD CPE S S =△△,则DAP EAP S S =△△. 由共边定理,得1DAPEAPS DH HE S ==△△,则DH HE =,所以H 是DE 的中点. 故直线AP 平分BC 和DE .MH E PDCBA8 / 13610. 过圆外一点P 引圆的两条切线和一条割线,在上取一点使. 求证:.【证明】设由共边比例定理,得:(的高)又得连接,. .,. 11. 在内任取一点P ,连结P A 、PB 、PC 分别交对边于X 、Y 、Z 点. 求证:ABC证明:由共边比例定理知:9 / 13612. 已知O 是ABC △的内切圆,D 、E 、N 分别为AB 、AC 、BC 上的切点,连结NO 并延长交DE 于点K ,连结AK 并延长交BC 于点M . 求证:M 是BC 的中点.ABC证明:如图,联结OD ,OE ,由O 、D 、B 、N 及O 、N 、C 、E 分别四点共圆有KOD B ∠∠=,KOE C ∠=∠.由共边比例定理,有sin sin ODK OKE S DK OD OK DOK KE S OE OK KOE ??∠==??∠△△sin sin sin sin DOK B ACKOE C AB ∠===∠,及sin sin ADK AEK S DK DAKKE S EAK∠==∠△△. 于是,sin sin ABM ACM S BM AB BAM MC S AC CAM ?∠==?∠△△sin sin AB DAK AC EAK ?∠=?∠AB DK AC KE =?1AB ACAC AB=?=. 故M 是BC 的中点.B10 / 1362.2 分角定理13. 在等腰△ABC 中,∠A <90°,从边AB 上点D 引AB 的垂线,交边AC 于E ,交边BC 的延长线于F .求证:AD =CF 当且仅当△ADE 面积是△CEF 面积的两倍.ABCF【证明】连接BE ,则EA 外分BED ∠.设βα=∠=∠AEB AED ,,作BC EM ⊥. 由分角定理得:BE DEAB AD :sin sin =βα ①在BEF ?中,EC 内分BEF ∠,由分角定理得:BEEFBC CF :sin sin =βα②由①=②且CF AD =,得EF ABBCDE ?=. 设θ=∠ABC ,在等腰ABC ?中,有θcos 2=ABBC. ∴θcos 2?=EF DE ,∴EM DE 2=,∴CEF ADE S S ??=2.以上过程均可逆.11 / 13614. 设△ABC 是直角三角形,点D 在斜边BC 上,4BD DC =,已知圆过点C 与AC 交于F ,与AB相切于AB 的中点G . 求证:AD BF ⊥.【证明】设α=∠BAD ,β=∠ABF ,γ=∠DAC . 在ABC ?中,AD 内分BAC ∠,则:ABACAC AB DC BD 4:sin sin ==γα. 又ααπγcos )2sin(sin =-=,∴ABAC4tan =α. 又在ABF Rt ?中,AB AF=βtan . ∴24tan tan AB AFAC ??=?βα,又AG AB 2=,∴AC AF AG AB ?==4422(切割线定理)∴1tan tan =?βα,从而2πβα=+,.BF AD ⊥∴ 15. △ABC 是等腰直角三角形,∠BAC =90°,AB =AC . 以AB 为一边作△ABD ,且AD =BD .若∠ADC =15°,求证:△ABD 是等边三角形.DBA证明:设.在中,在AB 边上用分角定理可得:12 / 136在中,在AB 边上用分角定理可得:所以解得,所以ABD 是等边三角形2.3 张角定理16. 已知AM 是△ABC 的BC 边上的中线,任作一直线顺次交AM AC AB ,,于N Q P ,,. 求证:AQAC AN AM AP AB ,,成等差数列.【证明】令θβα=∠=∠=∠AMB MAC BAM ,,. 以A 为视点,分别对Q N P ,,及C M B ,,应用张角定理,有AQAP AN αββαsin sin )sin(+=+,①AC AB AM αββαsin sin )sin(+=+.②又在ABM ?和AMC ?中,由正弦定理,有MC AC MB AB βθαθsin sin ,sin sin ==.由已知MC MB =,上述两式相除得ABAC βαsin sin =,于是②式可变为:AC AB AM αββαsin 2sin 2)sin(==+,即sin()sin 2AB AM αββ+=,sin()sin 2AC AM αβα+=.代入①得,).(21AQ AC AP AB AN AM +=13 / 136故AQAC AN AM AP AB ,,成等差数列.14 / 13617. 如图,在线段AB 上取内分点M ,使AM BM ≤,分别以MA ,MB 为边,在AB 的同侧作正方形AMCD 和M BEF ,P 和Q 分别是这两个正方形的外接圆,两圆交于M ,N . 求证:B ,C ,N 三点共线.证明连MD ,ME ,NE ,ND ,NM ,则90DNM ENM ==?∠∠,则D ,N ,E 三点共线,注意454590DME =?+?=?∠.设DMN NEM α==∠∠,P ,Q 的半径分别为1r ,2r ,则M C =,MB ,12cos MN r α=?= 22sin r α?. 对视点M ,考察点B ,C ,N 所在的三角形△MBN. 由22sin sin sin 902sin CMB CMN MN MB r α?+=+=∠∠()2111sin cos sin cos sin cos 2cos 2cos r r αααααααα+?-+?==?11cos sin 2r αα+===sin NMBMC==∠.由张角定理可知B ,C ,N 三点共线.15 / 136三、Menelaus 、Ceva 、Pascal 定理3.1 梅涅劳斯(Menelaus )定理设直线l 与ABC ?三边所在直线BC ,CA ,AB 分别交于点D ,E ,F ,则1=??FBAFEA CE DC BD 反之,若三角形三边所在直线上三点使得上述等式成立,则该三点共线. 利用面积转换,可得出如下两个角元形式:第一角元形式:1sin sin sin sin sin sin =∠∠?∠∠?∠∠FCBACFEBA CBE DAC BAD第二角元形式:1sin sin sin sin sin sin =∠∠?∠∠?∠∠FOBAOFEOA COE DOC BOD(O 为不再三边所在直线上的任意一点)18. AD 为锐角三角形ABC 的一条高,K 为AD 上任一点,BK 、CK 的延长线分别交AC 、AB 于点E 、F .求证:∠EDK =∠FDK .证明:过点A 作MN ∥BC ,与DE 、DF 的延长线分别交于点M 、N .BCAE FK MN由于AF FB ·BD DC ·CEEA=1.而AF FB =AN BD ,CE EA =DC AM . ?ANAM =1?AN =AM ,即DA 是等腰三角形DMN 的底边上的高,从而∠EDA =∠FDA .DBC AEFK16 / 13619. 在△ABC 中,AM 、AT 分别为BC 边上的中线与角平分线. TK ∥AC ,交AM 于K . 证明:AT ⊥CK .证明:由CD 截△ABM ,有AD DB ·BC CM ·MK KA =1. 故AD DB =1 2·AKKM.HBCAK D设AB =c ,BC =a ,CA =b ,则BT CT =c b ?BT =ac b +c ,CT =abb +c .MT =CM -CT =a 2-ab b +c =a (c -b )2(b +c ).但TK ∥AC ?AK KM =CT TM =2b c -b ,?AD DB =bc -b .AD AB =AD AD +DB =b c ,即AD c =bc ?AD =b =AC . 故证.20. 如图,四边形ABCD 中,AB 与CD 所在直线交于点E ,AD 与BC 所在直线交于点F ,BD 与EF所在直线交于点H ,AC 与EF 所在直线交于点G . 求证:HE FG HF EG ?=?.F【解析】考虑AEF ?被直线HBD 截,应用梅涅劳斯定理可知1=??DAFD HF EH BE AB ① HBC AM TK17 / 136考虑AEG ?被直线BCF 截,同理可得1=??CAGC FG EF BE AB ②考虑AGF ?被直线ECD 截,同理可得1=??DAFDEF GE CG AC ③ ②×③÷①可得1=?EHHFFG GE 所以原命题成立21. 如图,已知ABC ?的内切圆分别切BC 、CA 、AB 于点D 、E 、F ,线段BE 、CF 分别与该内切圆交于点P ,Q . 若直线FE 与BC 交于圆外一点R ,证明:P ,Q ,R 三点共线.RC【析】考虑ABC ?被直线EFR 截,应用梅涅劳斯定理可知RC1=??EA CE RC BR FB AF ,因为AF =AE 所以CE FBRC BR =,如图,设BE 与CF 交于点S ,则EFC ?~QEC ?,FEB ?~PFB ?,SEQ ?~SFP ?所以,EQFPSQ SP FB FE PB FP EF CE EQ CQ ===,,18 / 136考虑SBC ?及三个点P ,Q ,R ,RC BR QE CQ PB FP RC BR PB CQ EQ FP RC BR PB CQ SQ SP QS CQ RC BR PB SP ??=??=??=??1=??=CEFB EF CE FB FE 由梅涅劳斯定理的逆定理可知,P ,Q ,R 三点共线.22. 已知ABC △的内心为I ,外接圆圆心为O ,BC 中点为N ,NI 与AC 交于点P ,B 点相对的旁切圆圆心为M ,MI 与圆O 交于点E ,过M 点的直线l 与AC 平行且与BC 所在直线交于点F . 求证:P ,E ,F 三点共线.F【析】如图,连结BI,设MI 与AC 交于点D ,易知,B ,I ,D ,E ,M 五点共线.因为MC 平分ACF ∠,所以MF =CF ,且DC BCMF BF FC BF == 考虑BCD ?被NIP 截,应用梅涅劳斯定理知1=??IBDIPD CP NC BN又因为BC CD BI DI =,所以1=??BC CD PD CP NC BN . 所以CD BCPD CP =所以22CD BC PD CP FC BF =?. 又因为BCD ?~AED ?所以ED AECD BC =,所以22DE AE PD CP FC BF =?. 而ABE ?~DAE ?,则AEDE BE AE =,所以BE DE AE ?=2. 所以DE BE DE BE DE PD CP FC BF =?=?2,所以1=??BEDEPD CP FC BF . 所以由梅涅劳斯定理逆定理知,P ,E ,F 三点共线.19 / 1363.2 赛瓦(Ceva)定理设点P 不在ABC ?三边所在直线上,直线AP ,BP ,CP 分别与BC ,CA ,AB 交于点D ,E ,F ,则1=??FBAFEA CE DC BD ,反之,若三角形三边所在直线上的点使得上述等式成立,则AD ,BE ,CF 交于一点或互相平行.Ceva 定理角元形式:为了方便,我们可以从某个角开始,把六个角顺时针(或逆时针)标记为1∠至6∠,则16sin 5sin 4sin 3sin 2sin 1sin =∠∠?∠∠?∠∠.或者改为判断过ABC ?的顶点的三条直线AX ,BY ,CZ 是否共点,等价于1sin sin sin sin sin sin =∠∠?∠∠?∠∠YBACBY ZCB ACZ XAC BAX23. 在ABC △中,已知40BAC ∠=,60ABC ∠=,D ,E 分别为边AC ,AB 上的点,且使40CBD ∠=,70BCE ∠=,F 是BD 与CE 的交点,连结AF ,证明:AF BC ⊥.。
学习目标核心素养1.能根据两个圆的方程,判断两圆的位置关系.(重点)2.当两个圆有公共点时能求出它们的公共点,能运用两圆的位置关系解决有关问题.(易错点)3.了解两圆相交时公共弦所在直线的求法;了解两圆公切线的概念,会判断所给直线是不是两圆的公切线.(难点)通过学习本节内容提升学生的逻辑推理和数学运算核心素养.圆与圆的位置关系1.几何法:若两圆的半径分别为r1,r2,两圆的圆心距为d,则两圆的位置关系的判断方法如下:位置关系外离外切相交内切内含图示d与r1,r2的关系d>r1+r2d=r1+r2|r1—r2|<d<r1+r2d=|r1—r2|d<|r1—r2|错误!错误!错误!错误!1.思考辨析(1)两圆方程联立,若方程组有两个解,则两圆相交.()(2)若两个圆没有公共点,则两圆一定外离.()(3)若两圆外切,则两圆有且只有一个公共点,反之也成立.()(4)若两圆有公共点,则|r1—r2|≤d≤r1+r2. ()[答案] (1)√(2)×(3)×(4)√2.两圆x2+y2+6x+4y=0及x2+y2+4x+2y—4=0的公共弦所在的直线方程为______________.x+y+2=0 [联立错误!1—2得:x+y+2=0.]3.圆x2+y2=1与圆x2+y2+2x+2y+1=0的交点坐标为________.(—1,0)和(0,—1)[由错误!解得错误!或错误!]4.圆C1:x2+y2+4x—4y+7=0和圆C2:x2+y2—4x—10y+13=0的公切线有________条.3[圆C1的圆心坐标为C1(—2,2),半径r1=1.∵圆C2的圆心坐标为C2(2,5),半径r2=4.∴|C1C2|=错误!=5,r1+r2=5,∴两圆外切.故公切线有3条.]两圆位置关系的判定1222222(1)m=1时,圆C1与圆C2有什么位置关系?(2)是否存在m使得圆C1与圆C2内含?思路探究:(1)参数m的值已知,求解时可先找出圆心及半径,然后比较两圆的圆心距d与r1+r和|r1—r2|的大小关系.(2)假设存在m使得圆C1与圆C2内含,则圆心距d<|r1—r2|.2[解] (1)∵m=1,∴两圆的方程分别可化为:C1:(x—1)2+(y+2)2=9.C2:(x+1)2+y2=1.两圆的圆心距d=错误!=2错误!,又∵r1+r2=3+1=4,r1—r2=3—1=2,∴r1—r2<d<r1+r2,所以圆C1与圆C2相交.(2)假设存在m使得圆C1与圆C2内含,则错误!<3—1,即(m+1)2<0,显然不等式无解.故不存在m使得圆C1与圆C2内含.判断圆与圆的位置关系时,通常用几何法,即转化为判断圆心距与两圆半径的和与差之间的大小关系.1.已知圆C1:x2+y2—2ax—2y+a2—15=0,C2:x2+y2—4ax—2y+4a2=0(a>0).试求a为何值时两圆C1,C2(1)相切;(2)相交;(3)相离;(4)内含.[解] 对圆C1,C2的方程,经配方后可得:C1:(x—a)2+(y—1)2=16,C2:(x—2a)2+(y—1)2=1,∴圆心C1(a,1),r1=4,C2(2a,1),r2=1,∴|C1C2|=错误!=a,(1)当|C1C2|=r1+r2=5,即a=5时,两圆外切,当|C1C2|=r1—r2=3,即a=3时,两圆内切.(2)当3<|C1C2|<5,即3<a<5,时,两圆相交.(3)当|C1C2|>5,即a>5时,两圆外离.(4)当|C1C2|<3,即0<a<3时,两圆内含.两圆相交的问题122222(1)求公共弦所在直线的方程;(2)求公共弦的长.思路探究:错误!→错误!→错误!→错误![解] (1)设两圆的交点分别为A(x1,y1),B(x2,y2).将点A的坐标代入两圆方程,得错误!1—2,得x1—2y1+4=0,故点A在直线x—2y+4=0上.同理,点B也在直线x—2y+4=0上,即点A,B均在直线x—2y+4=0上.因为经过两点有且只有一条直线,所以直线AB的方程为x—2y+4=0,即公共弦所在直线的方程为x—2y+4=0.(2)圆C1的方程可化为(x—1)2+(y+5)2=50,所以C1(1,—5),半径r1=5错误!.C1(1,—5)到公共弦的距离d=错误!=3错误!.设公共弦的长为l,则l=2错误!=2错误!=2错误!.1.利用两圆的方程相减求两圆公共弦所在直线的方程时,必须注意只有当两圆方程中二次项的系数相同时,才能如此求解,若二次项的系数不同,需先调整方程中各项的系数.2.求两圆的公共弦长有两种方法:一是先求出两圆公共弦所在直线的方程;再利用圆的半径、弦心距、弦长的一半构成的直角三角形求解;二是联立两圆的方程求出交点坐标,再利用两点间的距离公式求弦长.2.求圆心在直线x—y—4=0上,且经过两圆x2+y2—4x—6=0和x2+y2—4y—6=0的交点的圆的方程.[解] 由错误!得错误!或错误!即两圆的交点坐标为A(—1,—1),B(3,3).设所求圆的圆心坐标C为(a,a—4),由题意可知CA=CB,即错误!=错误!,解得a=3,∴C(3,—1).∴CA=错误!=4,所以,所求圆的方程为(x—3)2+(y+1)2=16.两圆相切的问题1.若已知圆C1:x2+y2=a2(a>0)和C2:(x—2)2+y2=1,那么a取何值时C1与C2相外切?[提示] 由|C1C2|=a+1,得a+1=2,∴a=1.2.若将探究1中,C2的方程改为(x—2)2+y2=r2(r>0),那么a与r满足什么条件时两圆相切?[提示] 若两圆外切,则a+r=|C1C2|=2,即a+r=2时外切.若两圆内切,则|r—a|=|C1C2|=2.∴r—a=2或a—r=2.【例3】已知圆C1:x2+y2+4x—4y—5=0与圆C2:x2+y2—8x+4y+7=0.(1)证明:圆C1与圆C2相切,并求过切点的公切线的方程;(2)求过点(2,3)且与两圆相切于(1)中切点的圆的方程.思路探究:(1)证明|C1C2|=r1+r2,两圆方程相减得公切线方程.(2)由圆系方程设圆的方程,将已知点代入.[解] (1)把圆C1与圆C2都化为标准方程形式,得(x+2)2+(y—2)2=13,(x—4)2+(y+2)2=13;圆心与半径长分别为C1(—2,2),r1=错误!;C2(4,—2),r2=错误!,因为|C1C2|=错误!=2错误!=r1+r2,所以圆C1与圆C2相切.由错误!得12x—8y—12=0,即3x—2y—3=0,这就是过切点的两圆公切线的方程.(2)由圆系方程,可设所求圆的方程为x2+y2+4x—4y—5+λ(3x—2y—3)=0.点(2,3)在此圆上,将点坐标代入方程解得λ=错误!.所以所求圆的方程为x2+y2+4x—4y—5+错误!(3x—2y—3)=0,即x2+y2+8x—错误!y—9=0.两圆相切有如下性质(1)设两圆的圆心分别为O1,O2,半径分别为r1,r2,则两圆相切错误!(2)两圆相切时,两圆圆心的连线过切点(两圆若相交时,两圆圆心的连线垂直平分公共弦).在解题过程中应用这些性质,有时能大大简化运算.3.求与圆C:x2+y2—2x=0外切且与直线l:x+错误!y=0相切于点M(3,—错误!)的圆的方程.[解] 圆C的方程可化为(x—1)2+y2=1,圆心C(1,0),半径为1.设所求圆的方程为(x—a)2+(y—b)2=r2(r>0),由题意可知错误!解得错误!或错误!所以所求圆的方程为(x—4)2+y2=4或x2+(y+4错误!)2=36.1.本节课的重点是理解并掌握圆与圆的位置关系,会利用方程判断圆与圆的位置关系,以及解决有关问题,能利用直线与圆的方程解决平面几何问题.难点是利用方程判断圆与圆的位置关系.2.本节课要重点掌握的规律方法(1)判断两圆位置关系的方法及应用.(2)求两圆公共弦长的方法.3.本节课的易错点是判断两圆位置关系时易忽略相切的两种情况而丢解.1.圆(x+2)2+y2=4与圆(x—2)2+(y—1)2=9的位置关系为()A.相离B.相切C.相交D.内含C[两圆圆心分别为(—2,0),(2,1),半径分别为2和3,圆心距d=错误!=错误!.∵3—2<d<3+2,∴两圆相交.]2.已知圆C1:x2+y2—2mx+m2=1与圆C2:x2+y2+2y=8外离,则实数m的取值范围是________.(—∞,—错误!)∪(错误!,+∞)[圆C1可化为(x—m)2+y2=1,圆C2可化为x2+(y +1)2=9,所以圆心C1(m,0),C2(0,—1),半径r1=1,r2=3,因为两圆外离,所以应有C1C2>r1+r2=1+3=4,即错误!>4,解得m>错误!或m<—错误!.]3.半径长为6的圆与x轴相切,且与圆x2+(y—3)2=1内切,则此圆的方程为________.(x±4)2+(y—6)2=36 [设圆心坐标为(a,b),由题意知b=6,错误!=5,可以解得a =±4,故所求圆的方程为(x±4)2+(y—6)2=36.]4.已知圆C1:x2+y2—2mx+4y+m2—5=0,圆C2:x2+y2+2x—2my+m2—3=0,m为何值时,(1)圆C1与圆C2外切;(2)圆C1与圆C2内含.[解] 将圆C1,圆C2化为标准形式得C1:(x—m)2+(y+2)2=9,C2:(x+1)2+(y—m)2=4.则C1(m,—2),C2(—1,m),r1=3,r2=2,C1C2=错误!=错误!.(1)当圆C1与圆C2外切时,有r1+r2=C1C2,则错误!=5,解得m=—5或2,即当m=—5或2时,两圆外切.(2)当圆C1与圆C2内含时,C1C2<r1—r2,∴错误!<1,即m2+3m+2<0.∵f(m)=m2+3m+2的图象与横坐标轴的交点是(—2,0),(—1,0),∴由m2+3m+2<0,可得—2<m<—1,即当—2<m<—1时,两圆内含.。
高二数学竞赛班二试平面几何讲义第一讲 梅涅劳斯定理和塞瓦定理班级 姓名一、知识要点:1. 梅涅劳斯定理:若直线l 不经过ABC ∆的顶点,并且与ABC ∆的三边,,BC CA AB 或它们的延长线分别交于,,P Q R ,则1BP CQ ARPC QA RB⋅⋅=1A B C C B AC A Bh h h A B C l h h h BP CQ AR PC QA RB h h h ⋅⋅=⋅⋅=证:设、、分别是、、到直线的垂线的长度,则: 2. 梅涅劳斯定理逆定理:P Q R ABC BC CA AB P Q R ABC BP 021P Q R PC CQ ARQA RB∆∆⋅⋅=设、、分别是的三边、、上或它们的延长线上的三点,并且、、三点中,位于边上的点的个数为或,若,则、、三点共线;''''''''''1BP BP 11PC PC 02,PQ AB R CQ AR CQ AR AR AR QA R BQA RB R B RBP Q R ABC R R AB AB R R AB R R AR AR ⋅⋅=⋅⋅=∆>证:设直线与直线交于,于是由定理得:又,则:=由于在同一直线上的、、三点中,位于边上的点的个数也为或,因此与或者同在线段上,或者同在的延长线上;若与同在线段上,则与必定重合,不然的话,设 '''''',,AR AR AR AR AB AR AB AR BR BR BR BR BR BR-<-<>这时即于是可得这与=矛盾''R R AB R R P Q R 类似地可证得当与同在的延长线上时,与也重合综上可得:、、三点共线;注:此定理常用于证明三点共线的问题,且常需要多次使用再相乘; 3. 塞瓦定理:1:=⋅⋅∆RBARQA CQ PC BP CR BQ AP AB CA BC ABC R Q P 的充要条件是三线共点、、边上的点,则、、的分别是、、设,1BCM ACMABP BMP ABM ACP CMP ACM ABM BCM AP BQ CR M S S S S S BP CQ AR PC S S S QA S RB S BP CQ AR PC QA RB∆∆∆∆∆∆∆∆∆∆=====⋅⋅证:先证必要性:设、、相交于点,则:同理:以上三式相乘,得:= M QRACPB11BP CQ AR AP BQ M CM AB R PC QA RBBP CQ AR AR ARR R PC QA R B R B RB AB R R AP BQ CR M ⋅⋅=⋅⋅=‘’’’‘‘’ 再证充分性:若,设与相交于,且直线交于,由塞瓦定理有:,于是:=因为和都在线段上,所以必与重合,故、、相交于一点点;二、例题精析1//ABC CK CE ACK E AK D AC F DE CK BF CE ∆∠例:若直角中,是斜边上的高,是的平分线,点在上,是的中点,是与的交点,证明:。
8.5 椭圆[知识梳理] 1.椭圆的定义(1)定义:在平面内到两定点F 1,F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹(或集合)叫椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距.(2)集合语言:P ={M ||MF 1|+|MF 2|=2a ,且2a >|F 1F 2|},|F 1F 2|=2c ,其中a >c >0,且a ,c 为常数.注:当2a >|F 1F 2|时,轨迹为椭圆;当2a =|F 1F 2|时,轨迹为线段F 1F 2;当2a <|F 1F 2|时,轨迹不存在.2.椭圆的标准方程和几何性质图3.直线与椭圆位置关系的判断直线与椭圆方程联立方程组,消掉y ,得到Ax 2+Bx +C =0的形式(这里的系数A 一定不为0),设其判别式为Δ:(1)Δ>0⇔直线与椭圆相交; (2)Δ=0⇔直线与椭圆相切; (3)Δ<0⇔直线与椭圆相离. 4.弦长公式(1)若直线y =kx +b 与椭圆相交于两点A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 1-x 2|=1+1k 2|y 1-y 2|.(2)焦点弦(过焦点的弦):最短的焦点弦为通径长2b 2a ,最长为2a . 5.必记结论(1)设椭圆x2a2+y2b2=1(a>b>0)上任意一点P(x,y),则当x=0时,|OP|有最小值b,P点在短轴端点处;当x=±a时,|OP|有最大值a,P点在长轴端点处.(2)已知过焦点F1的弦AB,则△ABF2的周长为4a.[诊断自测]1.概念思辨(1)平面内与两个定点F1、F2的距离之和等于常数的点的轨迹是椭圆.()(2)方程mx2+ny2=1(m>0,n>0且m≠n)表示的曲线是椭圆.()(3)椭圆上一点P与两焦点F1,F2构成△PF1F2的周长为2a+2c(其中a为椭圆的长半轴长,c为椭圆的半焦距).()(4)x2a2+y2b2=1(a>b>0)与y2a2+x2b2=1(a>b>0)的焦距相同.()答案(1)×(2)√(3)√(4)√2.教材衍化(1)(选修A1-1P35例3)已知椭圆的方程是x2a2+y225=1(a>5),它的两个焦点分别为F1,F2,且F1F2=8,弦AB过点F1,则△ABF2的周长为()A.10 B.20C.241 D.441答案 D解析因为a>5,所以椭圆的焦点在x轴上,所以a2-25=42,解得a=41.由椭圆的定义知△ABF2的周长为4a=441.故选D.(2)(选修A1-1P42A组T6)已知点P是椭圆x25+y24=1上y轴右侧的一点,且以点P及焦点F1,F2为顶点的三角形的面积等于1,则点P的坐标为________.答案 ⎝ ⎛⎭⎪⎫152,1或⎝ ⎛⎭⎪⎫152,-1 解析 设P (x ,y ),由题意知c 2=a 2-b 2=5-4=1,所以c =1,则F 1(-1,0),F 2(1,0),由题意可得点P 到x 轴的距离为1,所以y =±1,把y =±1代入x 25+y 24=1,得x =±152,又x >0,所以x =152,∴P 点坐标为⎝ ⎛⎭⎪⎫152,1或⎝ ⎛⎭⎪⎫152,-1. 3.小题热身(1)(2014·大纲卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1 B.x 23+y 2=1 C.x 212+y 28=1 D.x 212+y 24=1答案 A解析 由题意及椭圆的定义知4a =43,则a =3,又c a =c 3=33,∴c =1,∴b 2=2,∴C 的方程为x 23+y 22=1,故选A.(2)椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2c .若直线y =3(x +c )与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.答案3-1解析 由已知得直线y =3(x +c )过M ,F 1两点,所以直线MF 1的斜率为3,所以∠MF 1F 2=60°,则∠MF 2F 1=30°,∠F 1MF 2=90°,则MF 1=c ,MF 2=3c ,由点M 在椭圆Γ上知:c +3c =2a ,故e =ca =3-1.题型1 椭圆的定义及应用典例1 已知椭圆x 225+y 216=1上一点P 到椭圆一个焦点F 1的距离为3,则P 到另一个焦点F 2的距离为( )A .2B .3C .5D .7应用椭圆的定义.答案 D解析 根据椭圆的定义|PF 1|+|PF 2|=2a =10,得|PF 2|=7,故选D.[条件探究] 若将典例中的条件改为“F 1,F 2分别为左、右焦点,M 是PF 1的中点,且|OM |=3”,求点P 到椭圆左焦点的距离?解 由M 为PF 1中点,O 为F 1F 2中点,易得|PF 2|=6,再利用椭圆定义易知|PF 1|=4.典例2(2018·漳浦县校级月考)椭圆x 24+y 2=1上的一点P 与两焦点F 1,F 2所构成的三角形称为焦点三角形.(1)求PF 1→·PF 2→的最大值与最小值; (2)设∠F 1PF 2=θ,求证:S △F 1PF 2=tan θ2.(1)利用向量数量积得到目标函数,利用二次函数求最值;(2)利用余弦定理、面积公式证明.解 (1)设P (x ,y ),∴F 1(-3,0),F 2(3,0),则PF 1→·PF 2→=(-3-x ,-y )·(3-x ,-y )=x 2+y 2-3=34x 2-2, ∵x 2∈[0,4],∴34x 2-2∈[-2,1]. ∴PF 1→·PF 2→的最大值为1,最小值为-2. (2)证明:由椭圆的定义可知||PF 1|+|PF 2||=2a , |F 1F 2|=2c ,设∠F 1PF 2=θ, 在△F 1PF 2中,由余弦定理可得: |F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos θ =(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|(1+cos θ),可得4c 2=4a 2-2|PF 1|·|PF 2|(1+cos θ)⇒|PF 1|·|PF 2|=2b21+cos θ,即有△F 1PF 2的面积S =12|PF 1|·|PF 2|sin ∠F 1PF 2=b 2·sin θ1+cos θ=b 2tan θ2=tan θ2.方法技巧椭圆定义的应用技巧1.椭圆定义的应用主要有两个方面:一是判定平面内动点与两定点的轨迹是否为椭圆;二是利用定义求焦点三角形的周长、面积、椭圆的弦长及最值和离心率等.2.通常定义和余弦定理结合使用,求解关于焦点三角形的周长和面积问题.见典例2.冲关针对训练已知A ⎝ ⎛⎭⎪⎫-12,0,B 是圆⎝ ⎛⎭⎪⎫x -122+y 2=4(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于点P ,则动点P 的轨迹方程为________.答案 x 2+43y 2=1解析 如图,由题意知|P A |=|PB |,|PF |+|BP |=2.所以|P A |+|PF |=2且|P A |+|PF |>|AF |,即动点P 的轨迹是以A ,F 为焦点的椭圆,a =1,c =12,b 2=34.所以动点P 的轨迹方程为x 2+43y 2=1.题型2 椭圆的标准方程及应用典例1(2018·湖南岳阳模拟)在平面直角坐标系xOy 中,椭圆C 的中心为坐标原点,F 1、F 2为它的两个焦点,离心率为22,过F 1的直线l 交椭圆C 于A ,B 两点,且△ABF 2的周长为16,那么椭圆C 的方程为________.在未明确焦点的具体位置时,应分情况讨论.答案 x 216+y 28=1或x 28+y 216=1解析 由椭圆的定义及△ABF 2的周长知4a =16,则a =4,又ca =22,所以c =22a =22,所以b 2=a 2-c 2=16-8=8.当焦点在x 轴上时,椭圆C 的方程为x 216+y 28=1;当焦点在y 轴上时,椭圆C 的方程为y 216+x 28=1.综上可知,椭圆C 的方程为x 216+y 28=1或x 28+y 216=1.典例2(2017·江西模拟)椭圆x 2a 2+y 2b 2=1(a >b >0),F 1,F 2为椭圆的左、右焦点,且焦距为23,O 为坐标原点,点P 为椭圆上一点,|OP |=24a ,且|PF 1|,|F 1F 2|,|PF 2|成等比数列,求椭圆的方程.用待定系数法,根据已知列出方程组.解 设P (x ,y ),则|OP |2=x 2+y 2=a28,由椭圆定义,|PF 1|+|PF 2|=2a ,|PF 1|2+2|PF 1|·|PF 2|+|PF 2|2=4a 2, 又∵|PF 1|,|F 1F 2|,|PF 2|成等比数列, ∴|PF 1|·|PF 2|=|F 1F 2|2=4c 2, |PF 1|2+|PF 2|2+8c 2=4a 2,∴(x +c )2+y 2+(x -c )2+y 2+8c 2=4a 2,整理得x 2+y 2+5c 2=2a 2,即a 28+5c 2=2a 2,整理得c 2a 2=38,又∵2c =23,∴c =3, ∴a 2=8,b 2=5.85方法技巧求椭圆标准方程的步骤1.判断椭圆焦点位置. 2.设出椭圆方程.3.根据已知条件,建立方程(组)求待定系数,注意a 2=b 2+c 2的应用.4.根据焦点写出椭圆方程.见典例1,2.提醒:当椭圆焦点位置不明确时,可设为x 2m +y 2n =1(m >0,n >0,m ≠n ),也可设为Ax 2+By 2=1(A >0,B >0,且A ≠B ).可简记为“先定型,再定量”.冲关针对训练已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2.P 为椭圆上的一点,PF 1与y 轴相交于M ⎝ ⎛⎭⎪⎫0,14,且M 为PF 1的中点,S △PF 1F 2=32.求椭圆的方程.解 设P (x 0,y 0)∵M 为PF 1的中点,O 为F 1F 2的中点. ∴x 0=c ,y 0=12.PF 2∥y 轴,△PF 1F 2是∠PF 2F 1=90°的直角三角形,由题意得,⎩⎪⎨⎪⎧c 2a 2+14b 2=1,12·2c ·12=32,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.4题型3 椭圆的几何性质典例 F 1,F 2是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若椭圆上存在点P ,使∠F 1PF 2=90°,则椭圆的离心率的取值范围是________.由∠F 1PF 2=90°,求出x 20=a 2(c 2-b 2)c 2后,利用x 20∈[0,a 2]求解.答案 ⎣⎢⎡⎭⎪⎫22,1解析 设P (x 0,y 0)为椭圆上一点,则x 20a 2+y 20b 2=1.PF 1→=(-c -x 0,-y 0),PF 2→=(c -x 0,-y 0), 若∠F 1PF 2=90°,则PF 1→·PF 2→=x 20+y 20-c 2=0.∴x 20+b 2⎝ ⎛⎭⎪⎫1-x 20a 2=c 2,∴x 20=a 2(c 2-b 2)c 2. ∵0≤x 20≤a 2,∴0≤c 2-b 2c 2≤1.∴b 2≤c 2,∴a 2≤2c 2,∴22≤e <1.[条件探究] 将典例2中条件“∠F 1PF 2=90°”改为“∠F 1PF 2为钝角”,求离心率的取值范围.解椭圆上存在点P 使∠F 1PF 2为钝角⇔以原点O 为圆心,以c 为半径的圆与椭圆有四个不同的交点⇔b <c ,如图,由b <c ,得a 2-c 2<c 2,即a 2<2c 2,解得e =c a >22,又0<e <1,故椭圆C 的离心率的取值范围是⎝ ⎛⎭⎪⎫22,1. 方法技巧求解椭圆离心率(或其范围)常用的方法1.若给定椭圆的方程,则根据椭圆方程确定a 2,b 2,进而求出a ,c 的值,从而利用公式e =ca 直接求解.2.若椭圆的方程未知,则根据条件及几何图形建立关于a ,b ,c 的齐次等式(或不等式),化为关于a ,c 的齐次方程(或不等式),进而化为关于e 的方程(或不等式)进行求解.见典例.冲关针对训练(2015·重庆高考)如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆于P ,Q 两点,且PQ ⊥PF 1.(1)若|PF 1|=2+2,|PF 2|=2-2,求椭圆的标准方程; (2)若|PF 1|=|PQ |,求椭圆的离心率e .解 (1)由椭圆的定义,有2a =|PF 1|+|PF 2|=(2+2)+(2-2)=4,故a =2.设椭圆的半焦距为c ,由已知PF 1⊥PF 2, 得2c =|F 1F 2| =|PF 1|2+|PF 2|2 =(2+2)2+(2-2)2=23,即c =3,从而b =a 2-c 2=1. 故所求椭圆的标准方程为x 24+y 2=1.(2)连接QF 1,由椭圆的定义,|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a .从而由|PF 1|=|PQ |=|PF 2|+|QF 2|,有|QF 1|=4a -2|PF 1|.又由PF 1⊥PQ ,|PF 1|=|PQ |,知|QF 1|=2|PF 1|,因此,4a -2|PF 1|=2|PF 1|.|PF 1|=2(2-2)a ,从而|PF 2|=2a -|PF 1|=2a -2(2-2)a =2(2-1)a .由PF 1⊥PF 2,知|PF 1|2+|PF 2|2=|F 1F 2|2=(2c )2, 因此e =c a =|PF 1|2+|PF 2|22a = (2-2)2+(2-1)2=9-62=6- 3.题型4 直线与椭圆的综合问题角度1 利用直线与椭圆的位置关系研究椭圆的标准方程及性质典例(2014·全国卷Ⅱ)设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直.直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .本题(2)用代入法列出方程,用方程组法求解.解 (1)根据c =a 2-b 2及题设知M ⎝ ⎛⎭⎪⎫c ,b 2a , 2b 2=3ac .将b 2=a 2-c 2代入2b 2=3ac ,解得c a =12或ca =-2(舍去).故C 的离心率为12.(2)由题意,得原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,故b 2a =4,即b 2=4a .①由|MN |=5|F 1N |得|DF 1|=2|F 1N |. 设N (x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧2(-c -x 1)=c ,-2y 1=2,即⎩⎨⎧x 1=-32c ,y 1=-1.代入C 的方程,得9c 24a 2+1b 2=1.②将①及c =a 2-b 2代入②得9(a 2-4a )4a 2+14a =1.解得a =7,b 2=4a =28,故a =7,b =27.角度2 利用直线与椭圆的位置关系研究直线及弦的问题 典例 (2014·全国卷Ⅰ)已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程.直线与椭圆构成方程组,用设而不求的方法求弦长,再求△OPQ 的面积.解 (1)设F (c,0),由条件知,2c =233,得c = 3. 又c a =32,所以a =2,b 2=a 2-c 2=1.故E 的方程为x 24+y 2=1.(2)当l ⊥x 轴时不合题意,故设l :y =kx -2,P (x 1,y 1),Q (x 2,y 2).将y =kx -2代入x 24+y 2=1得(1+4k 2)x 2-16kx +12=0.当Δ=16(4k 2-3)>0,即k 2>34时,x 1,2=8k ±24k 2-34k 2+1.从而|PQ |=k 2+1|x 1-x 2|=4k 2+1·4k 2-34k 2+1.又点O 到直线PQ 的距离d =2k 2+1,所以△OPQ 的面积 S △OPQ =12d ·|PQ |=44k 2-34k 2+1.设4k 2-3=t ,则t >0,S △OPQ =4t t 2+4=4t +4t.因为t +4t ≥4,当且仅当t =2,即k =±72时等号成立,且满足Δ>0, 所以,当△OPQ 的面积最大时,l 的方程为y =72x -2或y =-72x -2.方法技巧直线与椭圆相交时有关弦问题的处理方法1.合理消元,消元时可以选择消去y ,也可以消去x .见角度1典例.2.利用弦长公式、点到直线的距离公式等将所求量表示出来. 3.构造基本不等式或利用函数知识求最值.见角度2典例. 4.涉及弦中点的问题常用“点差法”解决.冲关针对训练(2015·陕西高考)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的半焦距为c ,原点O 到经过两点(c,0),(0,b )的直线的距离为12c .(1)求椭圆E 的离心率;(2)如图,AB 是圆M :(x +2)2+(y -1)2=52的一条直径,若椭圆E经过A ,B 两点,求椭圆E 的方程.解 (1)过点(c,0),(0,b )的直线方程为bx +cy -bc =0,则原点O 到该直线的距离d =bc b 2+c2=bca ,由d =12c ,得a =2b =2a 2-c 2,解得离心率c a =32. (2)由(1)知,椭圆E 的方程为 x 2+4y 2=4b 2.①依题意,圆心M (-2,1)是线段AB 的中点,且|AB |=10. 易知,AB 与x 轴不垂直,设其方程为y =k (x +2)+1,代入①得 (1+4k 2)x 2+8k (2k +1)x +4(2k +1)2-4b 2=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=-8k (2k +1)1+4k 2,x 1x 2=4(2k +1)2-4b 21+4k 2.由x 1+x 2=-4,得-8k (2k +1)1+4k 2=-4,解得k =12. 从而x 1x 2=8-2b 2. 于是|AB |=1+⎝ ⎛⎭⎪⎫122|x 1-x 2| =52(x 1+x 2)2-4x 1x 2=10(b 2-2).由|AB |=10,得10(b 2-2)=10,解得b 2=3.故椭圆E 的方程为x 212+y 23=1.1.(2017·浙江高考)椭圆x 29+y 24=1的离心率是( ) A.133 B.53 C.23 D.59答案 B解析 ∵椭圆方程为x 29+y 24=1,∴a =3,c =a 2-b 2=9-4=5.∴e =c a =53.故选B.2.(2017·河北衡水中学二调)设椭圆x 216+y 212=1的左、右焦点分别为F 1,F 2,点P 在椭圆上,且满足PF 1→·PF 2→=9,则|PF 1|·|PF 2|的值为( )A .8B .10C .12D .15 答案 D解析 由椭圆方程x 216+y 212=1,可得c 2=4,所以|F 1F 2|=2c =4,而F 1F 2→=PF 2→-PF 1→,所以|F 1F 2→|=|PF 2→-PF 1→|,两边同时平方,得|F 1F 2→|2=|PF 1→|2-2PF 1→·PF 2→+|PF 2→|2,所以|PF 1→|2+|PF 2→|2=|F 1F 2→|2+2PF 1→·PF 2→=16+18=34,根据椭圆定义得|PF 1|+|PF 2|=2a =8,所以34+2|PF 1||PF 2|=64,所以|PF 1|·|PF 2|=15.故选D.3.(2018·武汉调研)已知直线MN 过椭圆x 22+y 2=1的右焦点F ,与椭圆交于M ,N 两点.直线PQ 过原点O 且与直线MN 平行,直线PQ 与椭圆交于P ,Q 两点,则|PQ |2|MN |=________.答案 2 2解析 解法一:由题意知,直线MN 的斜率不为0,设直线MN :x =my +1,则直线PQ :x =my .设M (x 1,y 1),N (x 2,y 2),P (x 3,y 3),Q (x 4,y 4).⎩⎨⎧x =my +1,x 22+y 2=1⇒(m 2+2)y 2+2my -1=0⇒y 1+y 2=-2mm 2+2,y 1y 2=-1m 2+2.∴|MN |=1+m 2|y 1-y 2|=22·m 2+1m 2+2.⎩⎨⎧x =my ,x 22+y 2=1⇒(m 2+2)y 2-2=0⇒y 3+y 4=0,y 3y 4=-2m 2+2.∴|PQ |=1+m 2|y 3-y 4|=2 2m 2+1m 2+2.故|PQ |2|MN |=2 2. 解法二:取特殊位置,当直线MN 垂直于x 轴时,易得|MN |=2b 2a =2,|PQ |=2b =2,则|PQ |2|MN |=2 2.4.(2015·安徽高考)设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),点O 为坐标原点,点A 的坐标为(a,0),点B 的坐标为(0,b ),点M 在线段AB 上,满足|BM |=2|MA |,直线OM 的斜率为510.(1)求E 的离心率e ;(2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求E 的方程.解 (1)由题设条件知,点M 的坐标为⎝ ⎛⎭⎪⎫23a ,13b ,又k OM =510,从而b 2a =510,进而得a =5b ,c =a 2-b 2=2b ,故e =c a =255.(2)由题设条件和(1)的计算结果可得,直线AB 的方程为x 5b +yb=1,点N 的坐标为⎝ ⎛⎭⎪⎫52b ,-12b .设点N 关于直线AB 的对称点S 的坐标为⎝ ⎛⎭⎪⎫x 1,72,则线段NS 的中点T 的坐标为⎝ ⎛⎭⎪⎫54b +x 12,-14b +74.又点T 在直线AB 上,且k NS ·k AB =-1,从而有⎩⎪⎪⎨⎪⎪⎧5b 4+x 125b+-14b +74b =1,72+12b x 1-52b=5,解得b =3.所以a =35, 故椭圆E 的方程为x 245+y 29=1.[重点保分 两级优选练]A 级一、选择题1.(2018·江西五市八校模拟)已知正数m 是2和8的等比中项,则圆锥曲线x 2+y2m =1的焦点坐标为( )A .(±3,0)B .(0,±3)C .(±3,0)或(±5,0)D .(0,±3)或(±5,0)答案 B解析 因为正数m 是2和8的等比中项,所以m 2=16,则m =4,所以圆锥曲线x 2+y 2m =1即为椭圆x 2+y 24=1,易知其焦点坐标为(0,±3),故选B.2.(2017·湖北荆门一模)已知θ是△ABC 的一个内角,且sin θ+cos θ=34,则方程x 2sin θ-y 2cos θ=1表示( )A .焦点在x 轴上的双曲线B .焦点在y 轴上的双曲线C .焦点在x 轴上的椭圆D .焦点在y 轴上的椭圆 答案 D解析 因为(sin θ+cos θ)2=1+2sin θcos θ=916,所以sin θcos θ=-732<0,结合θ∈(0,π),知sin θ>0,cos θ<0,又sin θ+cos θ=34>0,所以sin θ>-cos θ>0,故1-cos θ>1sin θ>0,因为x 2sin θ-y 2cos θ=1可化为y 2-1cos θ+x 21sin θ=1,所以方程x 2sin θ-y 2cos θ=1表示焦点在y 轴上的椭圆.故选D.3.(2018·湖北八校联考)设F 1,F 2为椭圆x 29+y 25=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则|PF 2||PF 1|的值为( )A.514B.513C.49D.59答案 B解析 由题意知a =3,b =5,c =2.设线段PF 1的中点为M ,则有OM ∥PF 2,∵OM ⊥F 1F 2,∴PF 2⊥F 1F 2,∴|PF 2|=b 2a =53.又∵|PF 1|+|PF 2|=2a =6,∴|PF 1|=2a -|PF 2|=133,∴|PF 2||PF 1|=53×313=513,故选B.4.(2017·全国卷Ⅲ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为( )A.63B.33C.23D.13答案 A解析 由题意知以A 1A 2为直径的圆的圆心为(0,0),半径为a . 又直线bx -ay +2ab =0与圆相切, ∴圆心到直线的距离d =2ab a 2+b2=a ,解得a =3b , ∴b a =13,∴e =ca =a 2-b 2a =1-⎝ ⎛⎭⎪⎫b a 2= 1-⎝ ⎛⎭⎪⎫132=63.故选A. 5.已知椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 2n 2=1(m >0,n >0)有相同的焦点(-c,0)和(c,0),若c 是a ,m 的等比中项,n 2是2m 2与c 2的等差中项,则椭圆的离心率为( )A.32B.22C.12D.14答案 C解析 因为椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 2n 2=1(m >0,n >0)有相同的焦点(-c,0)和(c,0),所以c 2=a 2-b 2=m 2+n 2.因为c 是a ,m 的等比中项,n 2是2m 2与c 2的等差中项,所以c 2=am,2n 2=2m 2+c 2,所以m 2=c 4a 2,n 2=c 4a 2+c 22,所以2c 4a 2+c 22=c 2,化为c 2a 2=14,所以e =c a =12.故选C.6.(2017·荔湾区期末)某宇宙飞船运行的轨道是以地球中心为一焦点的椭圆,测得近地点距地面m 千米,远地点距地面n 千米,地球半径为r 千米,则该飞船运行轨道的短轴长为( )A .2(m +r )(n +r )千米 B.(m +r )(n +r )千米 C .2mn 千米 D .mn 千米答案 A解析 ∵某宇宙飞船的运行轨道是以地球的中心F 2为一个焦点的椭圆,设长半轴长为a ,短半轴长为b ,半焦距为c , 则近地点A 距地心为a -c ,远地点B 距地心为a +c . ∴a -c =m +r ,a +c =n +r , ∴a =m +n 2+r ,c =n -m 2.又∵b 2=a 2-c 2=⎝ ⎛⎭⎪⎫m +n 2+r2-⎝ ⎛⎭⎪⎫n -m 22=mn +(m +n )r +r 2=(m +r )(n +r ).∴b =(m +r )(n +r ),∴短轴长为2b =2(m +r )(n +r )千米,故选A.7.(2017·九江期末)如图,F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点,A 和B 是以O 为圆心,以|OF 1|为半径的圆与该椭圆左半部分的两个交点,且△F 2AB 是等边三角形,则该椭圆的离心率为( )A.32B.12C.3-1D.22答案 C解析 连接AF 1,∵F 1F 2是圆O 的直径,∴∠F 1AF 2=90°, 即F 1A ⊥AF 2,又∵△F 2AB 是等边三角形,F 1F 2⊥AB , ∴∠AF 2F 1=12∠AF 2B =30°, 因此,在Rt △F 1AF 2中,|F 1F 2|=2c , |F 1A |=12|F 1F 2|=c ,|F 2A |=32|F 1F 2|=3c .根据椭圆的定义,得2a =|F 1A |+|F 2A |=(1+3)c ,解得a =1+32c ,∴椭圆的离心率为e =ca =3-1.故选C.8.(2018·郑州质检)椭圆x 25+y 24=1的左焦点为F ,直线x =a 与椭圆相交于点M ,N ,当△FMN 的周长最大时,△FMN 的面积是( )A.55B.655C.855D.455答案 C解析 设椭圆的右焦点为E ,由椭圆的定义知△FMN 的周长为L =|MN |+|MF |+|NF |=|MN |+(25-|ME |)+(25-|NE |).因为|ME |+|NE |≥|MN |,所以|MN |-|ME |-|NE |≤0,当直线MN 过点E 时取等号,所以L =45+|MN |-|ME |-|NE |≤45,即直线x =a 过椭圆的右焦点E 时,△FMN 的周长最大,此时S △FMN =12×|MN |×|EF |=12×2×45×2=855,故选C.9.如图所示,内外两个椭圆的离心率相同,从外层椭圆顶点向内层椭圆引切线AC ,BD ,设内层椭圆方程为x 2a 2+y 2b 2=1(a >b >0),若直线AC 与BD 的斜率之积为-14,则椭圆的离心率为( )A.12B.22 C.32 D.34答案 C解析 设外层椭圆方程为x 2(ma )2+y 2(mb )2=1(a >b >0,m >1),则切线AC 的方程为y =k 1(x -ma ),切线BD 的方程为y =k 2x +mb ,则由⎩⎪⎨⎪⎧y =k 1(x -ma ),(bx )2+(ay )2=a 2b 2,消去y ,得(b 2+a 2k 21)x 2-2ma 3k 21x +m 2a 4k 21-a 2b 2=0.因为Δ=(2ma 3k 21)2-4(b 2+a 2k 21)(m 2a 4k 21-a 2b 2)=0,整理,得k 21=b 2a 2·1m 2-1. 由⎩⎪⎨⎪⎧y =k 2x +mb ,(bx )2+(ay )2=a 2b 2,消去y ,得(b 2+a 2k 22)x 2+2a 2mbk 2x +a 2m 2b 2-a 2b 2=0,因为Δ2=(2a 2mbk 2)2-4×(b 2+a 2k 22)(a 2m 2b 2-a 2b 2)=0,整理,得k 22=b 2a 2·(m 2-1).所以k 21·k 22=b 4a 4.因为k 1k 2=-14,所以b 2a 2=14,e 2=c 2a 2=a 2-b 2a 2=34,所以e =32,故选C.10.(2018·永康市模拟)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)和圆x 2+y 2=b 2,若椭圆C 上存在点P ,使得过点P 引圆O 的两条切线,切点分别为A ,B ,满足∠APB =60°,则椭圆的离心率e 的取值范围是( )A .0<e ≤32 B.12≤e <1 C.32<e <1 D.32≤e <1答案 D解析 由椭圆C :x 2a 2+y 2b 2=1(a >b >0)焦点在x 轴上, 连接OA ,OB ,OP ,依题意,O ,P ,A ,B 四点共圆, ∵∠APB =60°,∠APO =∠BPO =30°, 在直角三角形OAP 中,∠AOP =60°, ∴cos ∠AOP =b |OP |=12,∴|OP |=b12=2b ,∴b <|OP |≤a ,∴2b ≤a ,∴4b 2≤a 2, 由a 2=b 2+c 2,即4(a 2-c 2)≤a 2,∴3a 2≤4c 2,即c 2a 2≥34,∴e ≥32,又0<e <1, ∴32≤e <1,∴椭圆C 的离心率的取值范围是32≤e <1.故选D. 二、填空题11.(2017·湖南东部六校联考)设P ,Q 分别是圆x 2+(y -1)2=3和椭圆x 24+y 2=1上的点,则P ,Q 两点间的最大距离是________.答案 733解析 依据圆的性质可知,P ,Q 两点间的最大距离可以转化为圆心到椭圆上点的距离的最大值加上圆的半径3,设Q (x ,y ),则圆心(0,1)到椭圆上点的距离为d =x 2+(y -1)2=-3y 2-2y +5=-3⎝ ⎛⎭⎪⎫y +132+163,∵-1≤y ≤1,∴当y =-13时,d 取最大值433,所以P ,Q 两点间的最大距离为d max +3=733.12.(2018·广州二测)已知中心在坐标原点的椭圆C 的右焦点为F (1,0),点F 关于直线y =12x 的对称点在椭圆C 上,则椭圆C 的方程为________.答案 5x 29+5y 24=1解析 设F (1,0)关于直线y =12x 的对称点为(x ,y ),则⎩⎨⎧0+y 2=12×1+x 2,y -0x -1×12=-1,解得⎩⎪⎨⎪⎧x =35,y =45,由于椭圆的两个焦点为(-1,0),(1,0),所以2a =⎝ ⎛⎭⎪⎫35-12+⎝ ⎛⎭⎪⎫452+⎝ ⎛⎭⎪⎫35+12+⎝ ⎛⎭⎪⎫452=655,a =355,又c =1,所以b 2=a 2-c 2=95-1=45,所以椭圆C 的方程为x 295+y 245=1,即5x 29+5y 24=1.13.(2018·江西五市联考)已知椭圆x 2a 2+y 2b 2=1(a >b >0),A ,B 为椭圆上的两点,线段AB 的垂直平分线交x 轴于点M ⎝ ⎛⎭⎪⎫a 5,0,则椭圆的离心率e 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫55,1 解析 设A (x 1,y 1),B (x 2,y 2),x 1≠x 2,则⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫x 1-a 52+y 21=⎝ ⎛⎭⎪⎫x 2-a 52+y 22,x 21a 2+y21b 2=1,x 22a 2+y 22b2=1,即⎩⎪⎨⎪⎧2a 5(x 1-x 2)=x 21-x 22+y 21-y 22,y 21=b 2-b2a 2x 21,y 22=b 2-b 2a2x 22,所以2a 5(x 1-x 2)=a 2-b 2a 2(x 21-x 22),所以2a 35(a 2-b 2)=x 1+x 2.又-a ≤x 1≤a ,-a ≤x 2≤a ,x 1≠x 2,所以-2a <x 1+x 2<2a ,则2a 35(a 2-b 2)<2a ,即b 2a 2<45,所以e 2>15.又0<e <1,所以55<e <1. 14.(2016·江苏高考)如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.答案 63解析 由已知条件易得B ⎝ ⎛⎭⎪⎫-32a ,b 2,C ⎝ ⎛⎭⎪⎫32a ,b 2,F (c,0),∴BF →=⎝ ⎛⎭⎪⎫c +32a ,-b 2,CF →=⎝⎛⎭⎪⎫c -32a ,-b 2,由∠BFC =90°,可得BF →·CF→=0, 所以⎝⎛⎭⎪⎫c -32a ⎝ ⎛⎭⎪⎫c +32a +⎝ ⎛⎭⎪⎫-b 22=0,c 2-34a 2+14b 2=0,即4c 2-3a 2+(a 2-c 2)=0,亦即3c 2=2a 2, 所以c 2a 2=23,则e =c a =63.B 级三、解答题15.(2018·安徽合肥三校联考)已知椭圆的中心在原点,焦点在x 轴上,离心率为22,且椭圆经过圆C :x 2+y 2-4x +22y =0的圆心C .(1)求椭圆的方程;(2)设直线l 过椭圆的焦点且与圆C 相切,求直线l 的方程. 解 (1)圆C 方程化为(x -2)2+(y +2)2=6, 圆心C (2,-2),半径r = 6. 设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),则⎩⎨⎧4a 2+2b 2=1,1-⎝ ⎛⎭⎪⎫b a 2=⎝ ⎛⎭⎪⎫222,所以⎩⎪⎨⎪⎧a 2=8,b 2=4.所以所求的椭圆方程是x 28+y 24=1.(2)由(1)得椭圆的左、右焦点分别是F 1(-2,0),F 2 (2,0), |F 2C |=(2-2)2+(0+2)2=2<r = 6.F 2在圆C 内,故过F 2没有圆C 的切线,所以直线l 过焦点F 1. 设l 的方程为y =k (x +2),即kx -y +2k =0, 点C (2,-2)到直线l 的距离为d =|2k +2+2k |1+k 2, 由d =6,得|2k +2+2k |1+k2= 6. 化简,得5k 2+42k -2=0,解得k =25或k =- 2.故l 的方程为2x -5y +22=0或2x +y +22=0.16.(2018·陕西咸阳模拟)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点P (2,1),且离心率e =32.(1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B 两点.求△P AB 面积的最大值.解 (1)∵e 2=c 2a 2=a 2-b 2a 2=34,∴a 2=4b 2.又椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点P (2,1), ∴4a 2+1b 2=1.∴a 2=8,b 2=2. 故所求椭圆方程为x 28+y 22=1.(2)设l 的方程为y =12x +m ,点A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =12x +m ,x 28+y 22=1,整理得x 2+2mx +2m 2-4=0.∵Δ=4m 2-8m 2+16>0,解得|m |<2. ∴x 1+x 2=-2m ,x 1x 2=2m 2-4. 则|AB |=1+14×(x 1+x 2)2-4x 1x 2=5(4-m 2).点P 到直线l 的距离d =|m |1+14=2|m |5. ∴S△P AB=12d |AB |=12×2|m |5×5(4-m 2)=m 2(4-m 2)≤m 2+4-m 22=2.而且仅当m 2=2,即m =±2时取得最大值. ∴△P AB 面积的最大值为2.17.(2018·兰州模拟)已知椭圆C 的中心在坐标原点,焦点在x 轴上,左顶点为A ,左焦点为F 1(-2,0),点B (2,2)在椭圆C 上,直线y =kx (k ≠0)与椭圆C 交于P ,Q 两点,直线AP ,AQ 分别与y 轴交于点M ,N .(1)求椭圆C 的方程;(2)以MN 为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.解 (1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0), ∵椭圆的左焦点为F 1(-2,0),∴a 2-b 2=4. ∵点B (2,2)在椭圆C 上,∴4a 2+2b 2=1, 解得a 2=8,b 2=4, ∴椭圆C 的方程为x 28+y 24=1.(2)依题意点A 的坐标为(-22,0),设P (x 0,y 0)(不妨设x 0>0),则Q (-x 0,-y 0),由⎩⎨⎧y =kx ,x 28+y 24=1,得x 0=221+2k 2,y 0=22k1+2k2, ∴直线AP 的方程为y =k1+1+2k 2(x +22), 直线AQ 的方程为y =k1-1+2k2(x +22), ∴M ⎝ ⎛⎭⎪⎪⎫0,22k 1+1+2k 2,N ⎝ ⎛⎭⎪⎪⎫0,22k 1-1+2k 2, ∴|MN |=⎪⎪⎪⎪⎪⎪⎪⎪22k 1+1+2k2-22k 1-1+2k 2=22(1+2k 2)|k |. 设MN 的中点为E ,则点E 的坐标为⎝⎛⎭⎪⎫0,-2k , 则以MN 为直径的圆的方程为x 2+⎝⎛⎭⎪⎫y +2k 2=2(1+2k 2)k 2,即x 2+y 2+22k y =4, 令y =0得x =2或x =-2,即以MN 为直径的圆经过两定点P 1(-2,0),P 2(2,0).18.(2018·湖南十校联考)如图,设点A ,B 的坐标分别为(-3,0),(3,0),直线AP ,BP 相交于点P ,且它们的斜率之积为-23.(1)求点P 的轨迹方程;(2)设点P 的轨迹为C ,点M ,N 是轨迹C 上不同于A ,B 的两点,且满足AP ∥OM ,BP ∥ON ,求证:△MON 的面积为定值.解 (1)设点P 的坐标为(x ,y ),由题意得,k AP ·k BP =y x +3·y x -3=-23(x ≠±3), 化简得,点P 的轨迹方程为x 23+y 22=1(x ≠±3).(2)证明:由题意知,M ,N 是椭圆C 上不同于A ,B 的两点,且AP ∥OM ,BP ∥ON ,则直线AP ,BP 的斜率必存在且不为0.因为AP ∥OM ,BP ∥ON ,所以k OM ·k ON =k AP ·k BP =-23.设直线MN 的方程为x =my +t ,代入椭圆方程x 23+y 22=1,得(3+2m 2)y 2+4mty +2t 2-6=0,①设M ,N 的坐标分别为(x 1,y 1),(x 2,y 2),则y 1,y 2是方程①的两根,所以y 1+y 2=-4mt 3+2m 2,y 2y 2=2t 2-63+2m 2. 又k OM ·k ON =y 1y 2x 1x 2=y 1y 2m 2y 1y 2+mt (y 1+y 2)+t 2=2t 2-63t 2-6m 2, 所以2t 2-63t 2-6m 2=-23,即2t 2=2m 2+3. 又S △MON =12|t ||y 1-y 2|=12·|t |-24t 2+48m 2+723+2m 2, 所以S △MON =26t 24t 2=62,即△MON 的面积为定值62.。
平面几何(四点共圆)冲刺讲义________班_______号姓名________________一、知识预备以下简单介绍讲义可能涉及的一些简单的知识:1.欧拉线:的垂心,重心,外心三点共线.此线称为欧拉线,且有关系:2.九点圆定理:三角形的三条高的垂足、三边的中点,和垂心与极点的三条连接线段的中点,共九点共圆。
此圆称为三角形的九点圆,或称欧拉圆.①的九点圆的圆心是其外心与垂心所连线段的中点②九点圆的半径是的外接圆半径的.3.三角形内心与旁心的性质:的内心为,而边外的旁心别离为;别离是三条内角平分线,交三角形外接圆于,交于,那么:①三角形过同一极点的内、外角平分线彼此垂直;②,;③(角平分线定理);④(“鸡爪”定理).二、例题分析例1.是的外接圆的直径,过作圆的切线交于,连接并延长别离交、于、,求证:.证明:过作的平行线别离交、于、,那么.取中点,连接、、、.,四点共圆.,而由,有.,四点共圆.,而,,.而是的中点,是的中点,..例2.等腰梯形中,∥,,别离是,的内心,是直线上的一点,,的外接圆交的延长线于.证明:.证明:,故共圆,则,因此,而,因此,,由此,.例3. 在中,,内心为,内切圆在,边上的切点别离为,,设是关于点的对称点,是关于点的对称点.求证:四点共圆.证明:设直线交的外接圆于点,易知是的中点,记的中点为,那么.设点在直线上的射影为,由于那么半周长,于是,又因此∽,且相似比为,熟知:。
又∽,因此,即是的中点进而,因此都在以为圆心的同一个圆周上.例4.设A、B为圆℘上两点,X为℘在A和B处切线的交点,在圆℘上选取两点C、D使得C、D、X依次位于同一直线上,且CA⊥BD,再设F、G别离为CA和BD、CD和AB的交点,H为GX的中垂线与BD 的交点.证明:X、F、G、H四点共圆.证明:设O为圆心,AB∩XO = M.∵△XOA∽△XAM,∴OX·XM = XA2 = XC·XD.∴O、M、C、D四点共圆.∴∠XMO = ∠OCD = ∠ODC = ∠OMC.∴∠CMG = ∠GMD.在CM上选取一点E使MX∥DE,那么MD = ME..在GX上取点X2,使∠GFD = ∠DFX2,在X2F上取W使CF∥GW.由得CG·X2D = X2C·GD.由上面两式得= ,故X = X2.∴∠GFD = ∠XFD.又∵ = < 1和∠XPB = ∠CDF < 1.∴H和B在CX的同一侧.设H2为直线BF与△GFX外接圆的交点,那么∠H2XG = ∠H2FG = ∠H2FX = ∠H2GX.∴H2G = H2X,∴H2 = H.∴X、F、G、H四点共圆,得证.注:上述证法比较麻烦,此题实质如下:易知为调和点列,又,可得为的平分线,设外接圆交于点,由“鸡爪”定理知,从而在的中垂线上,此题得证.例 5.△ABC中,E、F别离为AB、AC中点,CM、BN为高,EF交MN于P,O、H别离为三角形的外心与垂心.求证:AP⊥OH.证明:由∠BMC = ∠BNC = 90︒知B、C、N、M四点共圆.∴AM·AB = AN·AC.又AE = AB, AF = AC,∴AM·AE = AN·AF,即E、F、N、M共圆.注意到由∠AMH = ∠ANH = ∠AEO = ∠AFO = 90︒知AH、AO别离为△AMN、△AEF外接圆的直径.过AH中点H2与AO中点O2别离为△AMN与△AEF的外心,且易知O2H2∥OH.∴只需证AP⊥O2H2,只需证A、O为△AMN、△AEF外接圆的等幂点即可.注意到A为两圆公共点,而由E、F、N、M共圆知PM·PN = PE·PF.故P也为等幂点.综上所述,原命题成立.例6.设△ABC内接于圆O,过A作切线PD,D在射线BC上,P在射线DA上,过P作圆O的割线PU,U在BD上,PU交圆O于Q、T且交AB、AC于R、S.证明:假设QR = ST,那么PQ = UT.证明:过O作OK⊥PU = K,OF⊥BU = F,连结AK延长交⊙O于另一点E,过C作CH∥PU交AE于G,交AB于H,连GF、OP、OU、OA、OE.由垂径定理知BF = FC, QK = KT,且QR = ST.∴RK = KS即K是RS的中点,且CH∥PU.∴ = = ® = = 1 ®HG = GC.由中位线定理知FG∥BH.∴∠FGE = ∠BAE = ∠BCE®F、G、C、E共圆.∴∠EFC = ∠EGC = ∠AGH = ∠UKG.∴∠EFO + ∠OKE = ∠OFC + ∠CFE + ∠OKE= 90︒ + (∠UKG + ∠OKE)= 90︒ + 90︒ = 180︒.∴K、O、F、E四点共圆…①又∵∠OKU + ∠OFU = 2×90︒ = 180︒,∴K、O、F、U四点共圆…②结合①②知K、O、F、E、U五点共圆,∴∠KUO = ∠KEO.又∵PA为⊙O切线®OA⊥PA,且OK⊥PU®∠KEO = ∠KAO.∴∠KPO = ∠KUO®OP = OU.又∵OK⊥PU,∴PK = UK.而QK = TU,∴PQ = UT,得证.例、AC为⊙O切线,ADE为一条割线,M为DE中点,P为一动点,知足M、O、P三点共线,⊙P为以P点为圆心、PD为半径的圆.证明:C点在△BMP外接圆与⊙P的根轴上.证明:作PR⊥AC,其延长线交BC延长线于S.∵∠OMA = ∠OBA = ∠OCA = 90︒,∴A、C、O、M、B五点共圆.∴∠BMP = ∠BMA + 90︒ = ∠BCA + 90︒ = 180︒-∠RSC.∴B、M、P、S四点共圆.∴C对△BMP外接圆的幂为-CB·CS = -2CA·CR.而C对⊙P的幂为CP2-PD2 = CP2-(AP2-AD·AE) = CP2-AP2 + AC2= CR2 + RP2-PR2-AR2 + AC2= CR2-(CR + CA)2 + CA2= -2RC·CA.∴C点对⊙P的幂等于C点到△BMP外接圆的幂.∴C点在上述两圆根轴上,得证.例8.设H为△ABC的垂心,D、E、F为△ABC的外接圆上三点,使AD∥BE∥CF,S、T、U别离为D、E、F关于边BC、CA、AB的对称点.求证:S、T、U、H四点共圆.证明:先证引理:ABC外接圆⊙O与它的九点圆⊙V关于△ABC的垂心H位似,且位似比为.引理的证明:设AH、BH、CH别离交边BC、CA、AB于O、E、F,交⊙O于D2、E2、F2.易知HD = HD2, HE = HE2, HF = HF2.∴△D2E2F2与△DEF关于H位似,位似比为.∴△D2E2F2外接圆与△DEF外接圆关于H位似,即⊙O与⊙V关于H位似,位似比为.回到原题:设BC、CA 、AB中点别离为X、Y、Z,过D作DP∥BC,交⊙O于P,设PH中点为W.易知SD⊥BC,设PS交BC于X2,那么由SD关于BC对称知SX2 = X2D.∴X2为BC中点,即X与X2重合,即P与S关于X对称.同理P与U、T别离关于Z、Y对称.∴四边形USHT与四边形ZYWX对称.由引理知Z、X、Y、W四点共圆.∴U、T、H、S四点共圆,得证.例9.给定锐角△ABC,过A作BC的垂线,垂足为D,记△ABC的垂心为H,在△ABC的外接圆上任取一动点P,延长PH交△APD的外接圆于Q.求Q点的轨迹.解:Q点轨迹为△ABC的九点圆.如图,取AH、BH、PH的中点M、N、K,延长AD交△ABC外接圆于G.那么熟知HD = DG,连接KN、MN、KD、PB、PG.因为各取中点有∠NKD = ∠BPG, ∠NMD = ∠BAG.∴K、N、M、D四点共圆.又Q在△APD的外接圆上,∴PH·HQ = AH·HD,即2KH·HQ = 2MH·HD.∴KH·HQ = MH·HD.于是有K、D、Q、M、N五点共圆.又△DMN外接圆为九点圆,因此Q在九点圆上.反之,在如上所述九点圆上任取一点Q2,设Q2H延长线交△ABC外接圆于P2,取P2H中点R,同上可证R在九点圆上.故2RH·HQ2 = 2 MH·HD,即P2H·HQ2 = AH·HD.因此Q2在△AP2D外接圆上.得证.例10.在△ABC中,D是BC边上的一点,设O1、O2别离是△ABD、△ACD的外心,O2是通过A、O1、O2三点的圆的圆心.求证:O2D⊥BC™AD恰好通过△ABC的九点圆心.证明:连AO1、BO1、AO2、CO2,作AB、AC垂直平分线交于点O.∵∠AO2C = 2∠ADB = ∠AO1B, AO1 = BO1, AO2 = CO2,∴△AO1B∽△AO2C.∴△AO1O2∽△ABC.∴∠AO1O = 180︒-∠AO1B = 180︒-∠AO2C = 180︒-∠AO2O.故O在⊙O2上,O是△ABC的外心,故△AO2O∽△AO1B.又∠ADB = ∠1, ∠O1AB = ∠O2AO = ∠O2OA.∴O2D⊥BC™∠BAO1 = ∠ADO2™∠ADO2 = ∠O2DA™A、O2、O、D共圆™∠AO2O = 180︒-∠ADO = ∠ADB + ∠ODC™∠ADB = ∠ODC(∵∠AO2O = 2∠ADB)如图,设OH与AD交于点K,作BC中垂线OM,交AD延长线于点M,OM与BC交于点L.由∠ADB = ∠ODC™DL = LM™OM = 2OL = AH™△AKH≌△MKO™OK = KH™K为九点圆心™AD通过△ABC的九点圆心.综上所述,命题得证.例11. 内接于, 自作的切线, 又以为圆心,为半径作交直线于,交直线于;那么四边形的四条边所在直线别离通过的内心及三个旁心.以下,咱们仍按情形给出图形和解答(其实在所有情形下结论都成立)证明:、如图,设的平分线交于,因,那么点关于直线对称,又因在上,则,因此共圆,由于为的切线,那么,又由,因此,因此为的内心.、据条件知,为矩形,设角平分线交直线于,连,由(1)知, 点关于直线对称,故,则为的外角平分线,因此为边外的旁心.、设的外角平分线交直线于,由,那么共圆.故共线, 因此为边外的旁心.、设的外角平分线交直线于,连,因故共圆..因此共线, 即是的外角平分线, 因此为边外的旁心.例12. 三角形中,是的中点,别离是边上的点,且△的外接圆交线段于假设点知足:证明:证明:在圆中,由于弦故圆周角,因此,与别离共圆,于是设点在边上的射影别离为,则△∽△∽△,故由得,○1设△的内心为今证四点共圆:连因别离共圆,则,又由○1,,因此△∽△因此而因此因为故得,因此四点共圆,于是延长交的外接圆于则为该外接圆的直径,于是且因此, 点O是所在圆的圆心, 从而为的切线.延长交于T, 则∽,因此 , 又由∽,得, 因故 ... ②延长到,使,那么为平行四边形,... ③由②得 . ……④由③、④得∽.因此,, 即.三、巩固训练1.为正三角形的边上的任意一点,设与的内心别离为,外心别离为;证明:.证明:如图,据内心性质,有,因此共圆,即点在上,而,得点也在上,即五点共圆.圆的圆心即为的圆心;此注意的平分线也是的中垂线,即共线,因此;同理有五点共圆,圆心为,因此,且.由于,,那么;又在中,;在中,;因此,于是≌.从而,由于在直角三角形中,,因此有.2.△ABC内切圆与BC切于K,AD是BC边上的高,M为AD中点,MK与△ABC内切圆交于K、N.求证:△BNC外接圆与△ABC内切圆切于N.证明:设△ABC关于∠BAC的旁切圆为⊙I A,半径为r A,△ABC内心为I,⊙I半径为r,⊙I A切BC于T,KI交⊙I于K、S,那么∵ = = ,I A T∥IS(均垂直于BC),∴A、S、T共线.∵I为SK中点,M为AD中点,SK∥AD,∴T、I、M共线.∵ = = = , IK∥I A T,∴M、K、I A三点共线.设⊙I关于点K、N切线交于Q,那么QI⊥NK.设QI交NK于R,那么∵IB平分∠ABC,I A B平分∠ABC外角,∴∠IBI A = 90︒.又∵∠IRI A = 90︒,∴I、B、I A、R共圆.同理I、R、C、I A共圆,∴I、B、I A、C、R共圆.∴QB·QC = QR·QI.∵IQ⊥KN, IK⊥KQ,∴QR·QI = QK2.∴QB·QC = QK2 = QN2,∴△BNC外接圆有切线QN.又QN为⊙I切线,∴△BNC外接圆与△ABC内切圆切于N,证毕.3.已知△ABC的三边别离交⊙O于X、X2、Y、Y2、Z、Z2.假设△AYZ、△BXZ、△CXY的外接圆交于一点M,△AY2Z2、△BX2Z2、△CY2Z2的外接圆交于一点M2.求证:OM = OM2.证明:设M的等角共轭点为M1,在BC、AC、AB上别离取点X1、Y1、Z1使∠M1X1B = ∠M1Y1C = ∠M1Z1A = ∠MXC = ∠MYA = ∠MZB.∴A、Y1、Z1M四点共圆.∴∠AZ1Y1 = ∠AM1Y1 = ∠M1Y1C-∠M1AC= ∠MZB-∠MAB = ∠AMZ = ∠AYZ.∴Y1、Y、Z1、Z四点共圆⎤1.同理可得Y、X1、X、Y1共圆⎤2;X1、X、Z1、Z共圆⎤3.∴若⎤1≠⎤2,那么⎤3≠⎤1, ⎤2,与三圆根轴交于一点,矛盾!故⎤1 = ⎤2 = ⎤3,X、X1、Y、Y1、Z、Z1共圆,那么X1 = X2, Y1 = Y2, Z1 = Z2.设MX∩M2X2 = X0, MY∩M2Y2 = Y0, MZ∩M2Z2 = Z0,那么M、M2、X0、Y0、Z0三点共圆(∵∠XX0X2 = ∠YY0Y2 = ∠ZZ0Z2).又∠OX0M2 = ∠OY0M2(∵OX0⊥XX2, OY0⊥YY2).∴O、M、M2、X0、Y0、Z0共圆.而∠OM2M = ∠OX0M = ∠OMM2,故OM = OM2.。