方差及其性质
- 格式:doc
- 大小:210.50 KB
- 文档页数:13
初二数学知识点归纳:方差方差的计算、知识点归纳方差在考试中考察不是很难,记住基本公式往里带就能解答正确,但是方差的概念让不少同学为此很是头痛。
那方差到底是什么,怎样计算呢,下面小编就为大家整理一些题型和解题方法技巧。
一、概念和公式方差的概念与计算公式,例1两人的5次测验成绩如下:X:50,100,100,60,50E=72;y:73,70,75,72,70E=72。
平均成绩相同,但X不稳定,对平均值的偏离大。
方差描述随机变量对于数学期望的偏离程度。
单个偏离是消除符号影响方差即偏离平方的均值,记为D:直接计算公式分离散型和连续型,具体为:这里是一个数。
推导另一种计算公式得到:“方差等于平方的均值减去均值的平方”。
其中,分别为离散型和连续型计算公式。
称为标准差或均方差,方差描述波动程度。
基本定义:设X是一个随机变量,若E{[X-E]2}存在,则称E{[X-E]2}为X的方差,记为D,Var或DX。
即D=E{[X-E]2}称为方差,而σ=D0.5称为标准差。
即用来衡量一组数据的离散程度的统计量。
方差刻画了随机变量的取值对于其数学期望的离散程度。
若X的取值比较集中,则方差D较小,若X 的取值比较分散,则方差D较大。
因此,D是刻画X取值分散程度的一个量,它是衡量取值分散程度的一个尺度。
当数据分布比较分散时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。
因此方差越大,数据的波动越大;方差越小,数据的波动就越小二、计算方法和原理若x1,x2,x3......xn的平均数为m则方差方差公式方差公式例1两人的5次测验成绩如下:X:50,100,100,60,50E=72;y:73,70,75,72,70E=72。
平均成绩相同,但X不稳定,对平均值的偏离大。
方差描述随机变量对于数学期望的偏离程度。
单个偏离是消除符号影响方差即偏离平方的均值,记为D:直接计算公式分离散型和连续型,具体为:这里是一个数。
均值、方差和协方差的定义和基本性质1 数学期望(均值)的定义和性质定义:设离散型随机变量X 的分布律为{}, 1,2,k k P X x p k === 若级数1k k k xp ∞=∑绝对收敛,则称级数1k k k xp ∞=∑的和为随机变量X 的数学期望,记为()E X 。
即()1k k k E X x p ∞==∑。
设连续型随机变量X 的概率密度为()f x ,若积分()xf x dx ∞−∞⎰ 绝对收敛,则称积分()xf x dx ∞−∞⎰的值为随机变量X 的数学期望,记为()E X 。
即 ()()E X xf x dx ∞−∞=⎰ 数学期望简称期望,又称为均值。
性质:下面给出数学期望的几个重要的性质(1)设C 是常数,则有()E C C =;(2)设X 是一个随机变量,C 是常数,则有()()E CX CE X =;(3)设X 和Y 是两个随机变量,则有()()()E X Y E X E Y +=+,这一性质可以推广至任意有限个随机变量之和的情况;(4)设X 和Y 是相互独立的随机变量,则有()()()E XY E X E Y =。
2 方差的定义和性质定义:设X 是一个随机变量,若(){}2E X E X −⎡⎤⎣⎦存在,则称(){}2E X E X −⎡⎤⎣⎦为X的方差,记为()D X 或()Var X ,即性质:下面给出方差的几个重要性质(1)设C 是常数,则有()0D C =;(2)设X 是一个随机变量,C 是常数,则有()()2D CX C D X =,()()D X C D X +=;(3)设X 和Y 是两个随机变量,则有()()()()()()(){}2D X Y D X D Y E X E X Y E Y +=++−−特别地,若X 和Y 相互独立,则有()()()D X Y D X D Y +=+ (4)()0D X =的充分必要条件是以概率1取常数()E X ,即(){}1P X E X ==。
高斯随机变量的均值和方差高斯随机变量的均值和方差概述:高斯随机变量是一种常见的概率分布,也被称为正态分布。
它在各个科学领域中都有广泛的应用,具有很强的实用价值。
均值和方差是高斯随机变量的两个重要统计特征,对于了解它的分布特性和应用具有重要意义。
一、高斯随机变量的定义和性质高斯随机变量的定义是指数学上服从正态分布的随机变量。
它的概率密度函数可以表示为一个钟形曲线,呈现出对称性和峰值集中的特点。
正态分布的概率密度函数可由均值和方差唯一确定。
1. 对称性:高斯随机变量的概率密度函数关于均值对称,即曲线在均值处达到峰值。
2. 峰值集中:均值是高斯随机变量的分布特征之一,它确定了曲线的中心位置。
方差则衡量了数据相对于均值的离散程度,决定了曲线的宽窄。
二、高斯随机变量的均值均值是一个概率分布的集中趋势的度量标准,对于高斯分布来说,均值是分布的中心位置。
1. 数学期望:高斯随机变量的均值也被称为数学期望,表示了随机变量的平均值。
对于高斯分布,其数学期望即为分布的均值。
2. 均值的性质:高斯随机变量的均值具有线性性质,即对于两个独立的高斯随机变量X和Y,它们的线性组合aX + bY的均值就是a和b的加权平均值。
三、高斯随机变量的方差方差是用来衡量数据的离散程度,对于高斯分布来说,方差决定了数据的分布宽度。
1. 方差的定义:高斯随机变量的方差是其概率分布关于均值的平均偏离程度的度量。
方差的数学定义为随机变量与均值的差的平方的期望。
2. 方差的性质:高斯随机变量的方差有以下几个性质:(1)方差非负,即方差的值大于等于0。
(2)方差为0表示所有数据都是相同的,即没有离散度。
(3)方差具有线性性质,对于两个独立的高斯随机变量X和Y,它们的线性组合aX + bY的方差为a^2Var(X) + b^2Var(Y)。
结论:高斯随机变量的均值和方差是衡量它分布特性的重要统计量。
均值决定了分布的中心位置,方差则表征了对中心位置的离散程度。
方差性质及应用方差是描述一组数据分布的离散程度的统计量,它可以帮助我们了解数据的波动程度和稳定性。
方差的计算方法是将每个数据点与数据的平均值相减,然后求平方,最后将这些差的平方求和并除以数据的个数。
方差的计算公式如下:\[s^2 = \frac{\sum_{i=1}^{n}(x_i - \bar{x})^2}{n}\]其中,\(s^2\)表示方差,\(x_i\)表示第i个数据点,\(\bar{x}\)表示数据的均值,n表示数据的个数。
方差的性质:1. 方差是非负数,即方差的值始终大于或等于零,当方差等于零时,表示数据的波动程度为零,即所有的数据点都与均值相等。
2. 如果一个常数k被加到数据中的每个数上,方差不变,即对数据进行平移对方差没有影响。
3. 如果一个常数k被乘到数据中的每个数上,方差成为原方差的k的平方倍,即对数据进行缩放会影响方差的值。
4. 如果我们有两组数据,第一组数据是第二组数据每个数据点的k倍,那么第一组数据的方差是第二组数据方差的k的平方倍。
5. 如果数据是独立的,那么它们的方差加起来等于它们的和的方差。
方差的应用:1. 方差可以用来衡量一组数据的离散程度,当数据的方差较大时,表示数据的波动较大,反之,当数据的方差较小时,表示数据的波动较小。
2. 方差可以用来比较不同组数据的稳定性,当两组数据的方差相差较大时,表示它们的波动程度不同,可以用来选择稳定性更好的数据。
3. 方差可以用来评估一个模型的拟合程度,当模型的预测值与实际值的方差较大时,表示模型的拟合程度较差,需要进一步优化。
4. 方差还可以用来进行假设检验,通过比较两组数据的方差来检验它们是否来自同一个总体,从而进行统计推断。
总而言之,方差是一种非常重要的统计量,它能够帮助我们全面了解数据的分布,衡量数据的稳定性和波动程度,评估模型的拟合程度,以及进行假设检验。
在实际应用中,方差被广泛应用于统计学、经济学、金融学等领域,是一种非常有用的工具。
平均数、方差的运算性质
一、 平均数、方差的性质:
⑴如果数据12,,,n x x x ⋯⋯的平均数为x ,方差为2s ,那么一组新数据12,,n x b x b x b ++⋯⋯+的平均数为x b +,方差是2s .
⑵如果一组数据12,,,n x x x ⋯⋯的平均数为x ,方差为2s ,那么一组新数据12,,,n ax ax ax ⋯⋯的平均数为ax ,方差是22a s .
⑶如果数据12,,,n x x x ⋯⋯的平均数为x ,方差为2s ,那么一组新数据12,,,n ax b ax b ax b ++⋯⋯+的平均数为ax b +,方差是22a s .
二、 典型例题:
例1、如果一组数据12,,,n a a a ⋯⋯的方差是2,那么一组新数据
122,2,,2n a a a ⋯⋯的方差是( )
.A 2 .B 4 .C 8 .D 16
【答案】:.C
例2、已知样本1235,35,,35n x x x ++⋯⋯+,若12,,,n x x x ⋯⋯的方差是2,则
1235,35,,35n x x x ++⋯⋯+的方差是( )
.A 11 .B 18 .C 23 .D 36
【答案】:.B
例3、某班期末英语考试的平均成绩为75分,方差为225分,若每个学生都多考5分,下列说法正确的是( )
.A 方差不变,
平均分不变 .B 平均分变大,方差不变 .C 平均分不变,方差变大 .D 平均分变大,方差变大
【答案】:.B。