数字图像处理 图像的频域变换
- 格式:pptx
- 大小:836.97 KB
- 文档页数:5
数字图像处理中的频域滤波数学原理探索数字图像处理是一门涉及图像获取、图像处理和图像分析的学科,其中频域滤波是其中一个重要的技术。
频域滤波通过将图像从空域转换到频域,利用频域的特性对图像进行处理。
本文将探索数字图像处理中的频域滤波的数学原理。
一、傅里叶变换傅里叶变换是频域滤波的基础,它将一个函数表示为正弦和余弦函数的和。
对于一维信号,傅里叶变换可以表示为以下公式:F(u) = ∫[f(x)e^(-i2πux)]dx其中F(u)表示信号f(x)在频率域的表示,u表示频率,x表示空间位置。
对于二维图像,傅里叶变换可以表示为以下公式:F(u,v) = ∬[f(x,y)e^(-i2π(ux+vy))]dxdy其中F(u,v)表示图像f(x,y)在频率域的表示,u和v表示频率,x和y表示图像的空间位置。
二、频域滤波在频域中,对图像进行滤波意味着对图像的频率分量进行操作。
常见的频域滤波操作包括低通滤波和高通滤波。
1. 低通滤波低通滤波器允许通过低频分量,并抑制高频分量。
在图像中,低频分量通常表示图像的平滑部分,而高频分量则表示图像的细节部分。
低通滤波器可以用于去除图像中的噪声和细节,使图像变得更加平滑。
2. 高通滤波高通滤波器允许通过高频分量,并抑制低频分量。
在图像中,高频分量通常表示图像的边缘和纹理部分,而低频分量则表示图像的整体亮度分布。
高通滤波器可以用于增强图像的边缘和纹理特征。
三、频域滤波的步骤频域滤波的一般步骤包括图像的傅里叶变换、滤波器的设计、滤波器与图像的乘积、逆傅里叶变换。
1. 图像的傅里叶变换首先,将原始图像转换为频域表示。
通过对图像进行傅里叶变换,可以得到图像在频率域中的表示。
2. 滤波器的设计根据需要进行滤波器的设计。
滤波器可以是低通滤波器或高通滤波器,具体设计方法可以根据应用需求选择。
3. 滤波器与图像的乘积将滤波器与图像在频域中的表示进行乘积操作。
乘积的结果是滤波后的频域图像。
4. 逆傅里叶变换对滤波后的频域图像进行逆傅里叶变换,将其转换回空域表示。
第三章图像增强一.填空题1. 我们将照相机拍摄到的某个瞬间场景中的亮度变化范围,即一幅图像中所描述的从最暗到最亮的变化范围称为____动态范围__。
2.所谓动态范围调整,就是利用动态范围对人类视觉的影响的特性,将动态范围进行__压缩____,将所关心部分的灰度级的变化范围扩大,由此达到改善画面效果的目的。
3. 动态范围调整分为线性动态范围调整和__非线性调整___两种。
4. 直方图均衡化把原始图的直方图变换为分布均匀的形式,这样就增加了象素灰度值的动态范围从而可达到增强图像整体对比度的效果。
基本思想是:对图像中像素个数多的灰度值进行__展宽_____,而对像素个数少的灰度值进行归并,从而达到清晰图像的目的。
5. 数字图像处理包含很多方面的研究内容。
其中,__图像增强_的目的是将一幅图像中有用的信息进行增强,同时将无用的信息进行抑制,提高图像的可观察性。
6. 灰级窗,是只将灰度值落在一定范围内的目标进行__对比度增强___,就好像开窗观察只落在视野内的目标内容一样。
二.选择题1. 下面说法正确的是:(B )A、基于像素的图像增强方法是一种线性灰度变换;B、基于像素的图像增强方法是基于空间域的图像增强方法的一种;C、基于频域的图像增强方法由于常用到傅里叶变换和傅里叶反变换,所以总比基于图像域的方法计算复杂较高;D、基于频域的图像增强方法比基于空域的图像增强方法的增强效果好。
2. 指出下面正确的说法:(D )A、基于像素的图像增强方法是一种非线性灰度变换。
B、基于像素的图像增强方法是基于频域的图像增强方法的一种。
C、基于频域的图像增强方法由于常用到傅里叶变换和傅里叶反变换,所以总比基于图像域的方法计算复杂较高。
D、基于频域的图像增强方法可以获得和基于空域的图像增强方法同样的图像增强效果。
3.指出下面正确的说法:(D )①基于像素的图像增强方法是一种非线性灰度变换。
②基于像素的图像增强方法是基于空域的图像增强方法的一种。
图像的频域变换处理1 实验目的 1. 掌握Fourier ,DCT 和Radon 变换与反变换的原理及算法实现,并初步理解Fourier 、Radon和DCT 变换的物理意义。
2、 利用傅里叶变换、离散余弦变换等处理图像,理解图像变换系数的特点。
3、 掌握图像的频谱分析方法。
4、 掌握图像频域压缩的方法。
5、 掌握二维数字滤波器处理图像的方法。
2 实验原理1、傅里叶变换 fft2函数:F=fft2(A);fftshift 函数:F1=fftshift(F);ifft2函数:M=ifft2(F);2、离散余弦变换:dct2函数 :F=dct2(f2);idct2函数:M=idct2(F);3、 小波变换对静态二维数字图像,可先对其进行若干次二维DWT 变换, 将图像信息分解为高频成分H 、V 和D 和低频成分A 。
对低频部分A ,由于它对压缩的结果影响很大,因此可采用无损编码方法, 如Huffman 、 DPCM 等;对H 、V 和D 部分,可对不同的层次采用不同策略的向量量化编码方法,这样便可大大减少数据量,而图像的解码过程刚好相反。
(1)dwt2[CA,CH,CV,CD]=dwt2(X,’wname’)[CA,CH,CV,CD]=dwt2(X,LO_D,HI_D’)()()⎰⎥⎦⎤⎢⎣⎡-ψ=dt a b t t Rf a 1b ,a W *()⎪⎭⎫ ⎝⎛-ψ=ψa b t a 1t b ,a 112()00(,)[(,)](,)ux vy M N j M N x y f x y eF f x y F u v π---+====∑∑1100(21)(21)(,)(,)()()cos cos 22M N x y x u y v F u v f x y C u C v M Nππ--==++=∑∑CA 图像分解的近似分量,CH 水平分量,CV 垂直分量,CD 细节分量; dwt2(X,’wname ’) 使用小波基wname 对X 进行小波分解。
南京信息工程大学 计算机图像处理 实验(实习)报告 实验(实习)名称 图像变换与频域处理 实验(实习)日期 得分 指导老师 系 专业 班级 姓名 学号一、 实验目的1.了解离散傅里叶变换的基本性质;2.熟练掌握图像傅里叶变换的方法及应用;3.通过实验了解二维频谱的分布特点;4.熟悉图像频域处理的意义和手段;5.通过本实验掌握利用MATLAB 的工具箱实现数字图像的频域处理。
二、 实验原理(一)傅立叶变换傅立叶变换是数字图像处理中应用最广的一种变换,其中图像增强、图像复原 和图像分析与描述等,每一类处理方法都要用到图像变换,尤其是图像的傅立 叶变换。
离散傅立叶(Fourier )变换的定义:二维离散傅立叶变换(DFT )为:逆变换为:式中,在DFT 变换对中, 称为离散信号 的频谱,而 称为幅度谱, 为相位角,功率谱为频谱的平方,它们之间的关系为:图像的傅立叶变换有快速算法。
(二)图像的频域增强常用的图像增强技术可分为基于空域和基于变换域的两类方法。
最常用的变换域是频域空间。
在频域空间,图像的信息表现为不同频率分量的组合。
如果能让某个范围内的分量或某些频率的分量受到抑制而让其他分量不受影响,就可以改变输出图像的频率分布,达到不同的增强目的。
频域增强的工作流程:频域空间的增强方法对应的三个步骤:(1) 将图像f(x,y)从图像空间转换到频域空间,得到F(u,v);(2) 在频域空间中通过不同的滤波函数H(u,v)对图像进行不同的增强,得到G(u,v)(注:不同的滤波器滤除的频率和保留的频率不同,因而可获得不同的增强效果);(3) 将增强后的图像再从频域空间转换到图像空间,得到图像g(x,y)。
),(v u F ),(v u G ),(y x f ∑∑-=-=+-=1010)(2exp ),(1),(M x N y N vy M ux j y x f MN v u F π∑∑-=-=+=101)(2exp ),(1),(M u N v N vy M ux j v u F MN y x f π}1,,1,0{,-∈M x u }1,,1,0{,-∈N y v ),(v u F ),(y x f ),(v u F ),(v u ϕ),(),()],(exp[),(),(v u jI v u R v u j v u F v u F +==ϕ1.低通滤波图像中的边缘和噪声都对应图像傅立叶变换中的高频部分,如要在频域中消弱其影响,设法减弱这部分频率的分量。
实验四频域滤波与图像变换编码实验目的通过实验了解频域高频和低频滤波器对图像处理的效果,了解离散余弦变换在图像变换编码中的作用。
1.载入图像’cameraman.tif’,加入椒盐噪声,编程设计一阶巴特沃斯低通滤波器,改变滤波器的参数,观察并比较滤波效果。
close all;clear all;I1=imread('pout.tif');subplot(2,3,1),imshow(I1);title('原始图像')I2=imnoise(I1,'salt & pepper');subplot(2,3,2)imshow(I2);title('加噪图像');f=double(I2);g=fft2(f);g=fftshift(g);[N1,N2]=size(g);n=1;d0=5;n1=fix(N1/2);n2=fix(N2/2);for i=1:N1for j=1:N2d=sqrt((i-n1)^2+(j-n2)^2);h=1/(1+0.414*(d/d0)^(2*n));result(i,j)=h*g(i,j);endendresult=ifftshift(result);X2=ifft2(result);X3=uint8(real(X2));subplot(2,3,3),imshow(X3);title('Butterworth 低通滤波器,d0=5');d0=11;n1=fix(N1/2);n2=fix(N2/2);for i=1:N1for j=1:N2d=sqrt((i-n1)^2+(j-n2)^2);h=1/(1+0.414*(d/d0)^(2*n));result(i,j)=h*g(i,j);endendresult=ifftshift(result);X2=ifft2(result);X3=uint8(real(X2));subplot(2,3,4),imshow(X3);title('d0=11');d0=25n1=fix(N1/2);n2=fix(N2/2);for i=1:N1for j=1:N2d=sqrt((i-n1)^2+(j-n2)^2);h=1/(1+0.414*(d/d0)^(2*n));result(i,j)=h*g(i,j);endendresult=ifftshift(result);X2=ifft2(result);X3=uint8(real(X2));subplot(2,3,5),imshow(X3);title('d0=25');d0=50n1=fix(N1/2);n2=fix(N2/2);for i=1:N1for j=1:N2d=sqrt((i-n1)^2+(j-n2)^2);h=1/(1+0.414*(d/d0)^(2*n));result(i,j)=h*g(i,j);endendresult=ifftshift(result);X2=ifft2(result);X3=uint8(real(X2));subplot(2,3,6),imshow(X3);title('d0=50');由图可知,由于对噪声模型的估计不准确,使用巴特沃斯滤波器在平滑了噪声的同时,也使图像模糊了,随着截断频率的增加,图像的模糊程度减小,滤除噪声的效果也越来越差。
姓名:朱慧娟班级:电子二班学号:410109060325实验2 图像频谱分析一、实验目的1、了解图像变换的意义和手段。
2、熟悉及掌握图像的变换原理及性质,实现图像的傅里叶变换。
二、实验内容1、分别显示图像Bridge.bmp、cameraman.tif(自带图像)、blood.tif及其频谱,观察图像频谱的特点。
2、生成一幅图像,图像中背景黑色,目标为一亮条;平移亮条,观察其频谱的变化。
3、对lena.bmp图像进行旋转,显示原始图像与旋转后图像,及其傅里叶频谱,分析旋转前、后傅里叶频谱的对应关系。
三、实验程序及结果1.1 实验程序clear; %清除以前实验变量a=imread('e:\ZHJ\Bridge.bmp'); %读入图像Bridge.bmp,并记为ab=imread('cameraman.tif'); %读入图像cameraman.tif,并记为bc=imread('e:\ZHJ\blood.tif'); %读入图像blood.tif,并记为cd=fft2(a); %对图像a进行傅里叶变换,并记为de=fftshift(d); %将变换后图像频谱中心从矩阵的原点移动到矩阵的中心,并记为e A=abs(e); %对e取绝对值,及得到图像a的幅度谱,并记为AB=log(1+A); %对幅度谱A取对数,并记为Bf=fft2(b); %对图像b进行傅里叶变换,并记为fg=fftshift(f); %将变换后图像频谱中心从矩阵的原点移动到矩阵的中心,并记为g C=abs(g); %对g取绝对值,及得到图像b的幅度谱,并记为CD=log(1+C); %对幅度谱C取对数,并记为Dh=fft2(c); %对图像c进行傅里叶变换,并记为hi=fftshift(h); %将变换后图像频谱中心从矩阵的原点移动到矩阵的中心,并记为i E=abs(i); %对i取绝对值,及得到图像c的幅度谱,并记为EF=log(1+E); %对幅度谱E取对数,并记为Ffigure(1); %建立图表1subplot(2,1,1); %将图表1分成两部分,第一部分imshow(a); %显示图像atitle('Bridge.bmp'); %给图像a加标题‘Bridge.bmp’subplot(2,1,2); %将图表1分成两部分,第二部分imshow(B,[]); %显示B即图像a的频谱图title('Bridge.bmp频谱图'); %给图像B加标题‘Bridge.bmp频谱图’figure(2); %建立图表2subplot(2,1,1); %将图表2分成两部分,第一部分imshow(b); %显示图像btitle('cameraman.tif'); %给图像b加标题‘cameraman.tif’subplot(2,1,2); %将图表2分成两部分,第二部分imshow(D,[]); %显示D即图像b的频谱图title('cameraman.tif频谱图'); %给图像D加标题‘cameraman.tif频谱图’figure(3); %建立图表3subplot(2,1,1); %将图表3分成两部分,第一部分imshow(c); %显示图像ctitle('blood.tif'); %给图像c加标题‘blood.tif’subplot(2,1,2); %将图表3分成两部分,第二部分imshow(F,[]); %显示F即图像c的频谱图title('blood.tif频谱图'); %给图像F加标题‘blood.tif频谱图’1.2 实验结果2.1 实验程序clear; %清除以前实验变量A= zeros(256,256); %建立行列都是256的0矩阵,即建立黑色图,并记为AA(10:20,:)=256; %矩阵A中第十到二十行数据改为256,即在黑色图像上加上亮条纹B=circshift(A,[50, 0]); %将矩阵A行向移动50行,得到新矩阵记为Ba=fft2(A); %对矩阵A进行傅里叶变换,并记为ab=fftshift(a); %将变换后图像频谱中心从矩阵的原点移动到矩阵的中心,并记为b M=abs(b); %对b取绝对值,及得到矩阵A的幅度谱,并记为MN=log(1+M); %对幅度谱M取对数,并记为Nc=fft2(B); %对矩阵B进行傅里叶变换,并记为cd=fftshift(c); %将变换后图像频谱中心从矩阵的原点移动到矩阵的中心,并记为d S=abs(d); %对d取绝对值,及得到矩阵B的幅度谱,并记为ST=log(1+S); %对幅度谱S取对数,并记为Tfigure; %建立图表subplot(2,2,1); %将图表分成四部分,第一部分imshow(A); %显示图像Atitle('原图像'); %给所显示图像加标题‘原图像’subplot(2,2,2); %将图表分成四部分,第二部分imshow(B); %显示图像Btitle('平移后图像'); %给所显示图像加标题‘平移后图像’subplot(2,2,3); %将图表分成四部分,第三部分imshow(N,[]); %显示图像A的频谱图title('原图像频谱图'); %给所显示图像加标题‘原图像频谱图’subplot(2,2,4); %将图表分成四部分,第四部分imshow(T,[]); %显示图像B的频谱图title('平移后图像频谱图'); %给所显示图像加标题‘平移后图像频谱图’2.2 实验结果3.1 实验程序clear; %清除以前实验变量a=imread('e:\ZHJ\lena.bmp'); %读入图像lena.bmp,并记为ab=imrotate(a,-45); %将图像a顺时针旋转45度c=fft2(a); %对图像a进行傅里叶变换,并记为cd=fftshift(c); %将变换后图像频谱中心从矩阵的原点移动到矩阵的中心,并记为d A=abs(d); %对d取绝对值,及得到图像a的幅度谱,并记为AB=log(1+A); %对幅度谱A取对数,并记为Be=fft2(b); %对图像b进行傅里叶变换,并记为ef=fftshift(e); %将变换后图像频谱中心从矩阵的原点移动到矩阵的中心,并记为f C=abs(f); %对f取绝对值,及得到图像b的幅度谱,并记为CD=log(1+C); %对幅度谱C取对数,并记为Dfigure; %建立图表subplot(2,2,1); %将图表分成四部分,第一部分imshow(a); %显示图像atitle('原图像'); %给所显示图像加标题‘原图像’subplot(2,2,2); %将图表分成四部分,第二部分imshow(b); %显示图像btitle('旋转后图像'); %给所显示图像加标题‘旋转后图像’subplot(2,2,3); %将图表分成四部分,第三部分imshow(B,[]); %显示图像a的频谱图title('原图像频谱图'); %给所显示图像加标题‘原图像频谱图’subplot(2,2,4); %将图表分成四部分,第四部分imshow(D,[]); %显示图像b的频谱图title('旋转后平移后图像频谱图'); %给所显示图像加标题‘旋转后平移后图像频谱图’3.2 实验结果四、思考题1.图像频谱有哪些特点?答:频谱图,四个角对应低频成分,中央部分对应高频成分;图像亮条的平移影响频谱的分布,但当频谱搬移到中心时,图像亮条的平移后频谱图是相同的。