函数与方程
- 格式:ppt
- 大小:790.50 KB
- 文档页数:15
函数和方程
函数(function)表示每个输入值对应唯一输出值的一种对应关系。
方程(英文:equation)是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式
函数f中对应输入值的输出值x的标准符号为f(x).包含某个函数所有的输入值的集合被称作这个函数的定义域,包含所有的输出值的集合被称作值域.若先定义映射的概念,可以简单定义函数为,定义在非空数集之间的映射称为函数。
方程(equation)是指含有未知数的等式。
是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,使等式成立的未知数的值称为“解”或“根”。
求方程的解的过程称为“解方程”。
通过方程求解可以免去逆向思考的不易,直接正向列出含有欲求解的量的等式即可。
方程具有多种形式,如一元一次方程、二元一次方程、一元二次方程等等,还可组成方程组求解多个未知数。
函数(function),最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。
之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。
函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的。
=,求正整数1000【课堂练习】2.已知函数()1f x x =-,关于x 的方程2()()0f x f x k -+=,给出下列四个命题: ① 存在实数k ,使得方程恰有2个不同的实根;② 存在实数k ,使得方程恰有4个不同的实根;③ 存在实数k ,使得方程恰有5个不同的实根;④ 存在实数k ,使得方程恰有8个不同的实根.其中真命题的序号是 .1.关于x 的方程(x 2-1)2-|x 2-1|+k =0,给出下列四个命题:①存在实数k ,使得方程恰有2个不同的实根;②存在实数k ,使得方程恰有4个不同的实根;③存在实数k ,使得方程恰有5个不同的实根;④存在实数k ,使得方程恰有8个不同的实根。
其中假命题的个数是 ( )A . 0B . 1C . 2D . 42.如果函数y ax b x =++21的最大值是4,最小值是-1,求实数a 、b 的值。
解:课后作业总结回顾3.已知函数的定义域和值域都是(其图像如下图所示),函数.定义:当且时,称是方程的一个实数根.则方程的所有不同实数根的个数是 .4.已知()()20,f x ax bx c a =++≠且方程()f x x =无实数根,下列命题:① 方程x x f f =)]([也一定没有实数根;② 若0>a ,则不等式x x f f >)]([对一切实数x 都成立;③ 若0<a ,则必存在实数0x ,使00)]([x x f f >;④ 若0=++c b a ,则不等式x x f f <)]([对一切实数x 都成立。
其中正确命题的序号是 .已知,若关于的方程有实根,则的取值范围是 .6.(普陀区一模文理科14) 已知函数⎩⎨⎧<+≥-=0),1(0,2)(x x f x a x f x ,若方程0)(=+x x f 有且仅有两个解,则实数a 的取值范围是 .)(x f y =]1,1[-],[,sin )(ππ-∈=x x x g ])1,1[(0)(11-∈=x x f ]),[()(212ππ-∈=x x x g 2x 0))((=x g f 0))((=x g f a ∈R x 2104x x a a ++-+=a。
高考数学总复习第一讲:函数与方程函数描述了自然界中量的依存关系,反映了一个事物随着另一个事物变化而变化的关系和规律.函数思想的实质是剔除问题的非数学特征,用联系和变化的观点提出数学对象,抽象其数学特征,建立函数关系.在解决某些数字问题时,先设定一些未知数,然后把它们当作数,根据题设本身各量间的制约,列出等式,所设未知数沟通了变量之间的关系,这就是方程的思想.函数与方程是两个不同的概念,但它们之间有着密切的联系,一个函数假设有解析表达式,那么这个表达式就可看成是一个方程.一个二元方程,两个变量存在着对应关系,如果这个对应关系是函数,那么这个方程可以看成是一个函数,一个一元方程,它的两端可以分别看成函数,方程的解即为两个函数图象交点的横坐标,因此,许多有关方程的问题可以用函数的方法解决;反之,许多有关函数的问题那么可以用方程的方法解决.总之,在复习中要注意领悟蕴含在知识和解题过程中函数和方程的思想,用它来指导解题.在解题中,同时要注意从不同的角度去观察探索,寻求多种方法,从而得到最正确解题方案.一、例题分析例1.F(x)=xα-xβ在x∈(0,1)时函数值为正数,试比拟α,β的大小.分析:一般情况下,F〔x〕可以看成两个幂函数的差.函数值为正数,即f1(x)=xα的图象在x∈(0,1)上位于f2(x)=xβ的图象的上方,这时为了判断幂指数α,β的大小,就需要讨论α,β的值在〔1,+∞〕上,或是在〔0,1〕上,或是在〔0,1〕内的常数,于是F〔x〕成为两个同底数指数函数之差,由于指数函数y=a t(0<α<1)是减函数,又由于xα-xβ>0,所以得α<β.例2.0<a<1,试比拟的大小.分析:为比拟aα与(aα) α的大小,将它们看成指数相同的两个幂,由于幂函数在区间[0,+∞]上是增函数,因此只须比拟底数a与aα的大小,由于指数函数y=a x(0<a<1)为减函数,且1>a,所以a<aα,从而aα<(aα) α.比拟aα与(aα) α的大小,也可以将它们看成底数相同〔都是aα〕的两个幂,于是可以利用指数函数是减函数,由于1>a,得到aα<(aα) α.由于a<aα,函数y=a x(0<a<1)是减函数,因此aα>(aα) α.综上, .解以上两个例题的关键都在于适当地选取某一个函数,函数选得恰当,解决问题简单.例3.关于x的方程有实根,且根大于3,求实数a的范围.分析:先将原方程化简为a x=3,但要注意0<x<3且x≠1.现将a x看成以a为底的指数函数,考虑底数a为何值时,函数值为3.如图〔1〕,过〔3,3〕点的指数函数的底,现要求0<x<3时,a x=3,所以,又由于x≠1,在图〔1〕中,过〔1,3〕点的指数函数的底a=3,所以.假设将a x=3变形为,令,现研究指数函数a=3t,由0<x<1且x≠1,得,如图〔2〕,很容易得到:.通过本例,说明有些问题可借助函数来解决,函数选择得当,解决就便利.例4.函数f(x)是定义在实数集上的周期函数,且是偶函数,当x∈[2,3]时,f(x)=x,那么当x∈[-2,0]时,f(x)的解析式是〔〕.〔A〕f(x)=x+4 〔B〕f(x)=2-x〔C〕f(x)=3-|x+1| 〔D〕f(x)=3+|x+1|解法一、∵f(-2)=f(2)=2 f(-1)=f(3)=3,∴只有〔A〕、〔C〕可能正确.又∵f(0)=f(2)=2,∴〔A〕错,〔C〕对,选〔C〕.解法二、依题意,在区间[2,3]上,函数的图象是线段AB, ∵函数周期是2, ∴线段AB左移两个单位得[0,1]上的图象线段CD;再左移两个单位得[–2,1]上的图象线段EF .∵函数是偶函数, ∴把线段CD沿y轴翻折到左边,得[–1,0]上的图象线段FC.于是由直线的点斜式方程,得函数在[–2,0]上的解析式:即由于x∈[-2,-1]时,x+1≤0,x∈(-1,0)时,x+1>0, 所以y=3-|x+1|, x∈[-2,0].解法三、当x∈[-2,-1]时,x+4∈[2,3],∵函数周期是2,∴f(x+4)=f(x).而f(x+4)=x+4, ∴x∈[-2,-1]时,f(x)=x+4=3+(x+1).当x∈[-1,0]时,-x∈[0,1], 且-x+2∈[2,3].∵函数是偶函数,周期又是2,∴ ,于是在[–2,0]上, .由于x∈[-2,-1]时,x+1≤0,x∈(-1,0)时,x+1>0, 根据绝对值定义有x∈[-2,0]时,f(x)=3-|x+1|.此题应抓住“偶函数〞“周期性〞这两个概念的实质去解决问题.例5.y=log a(2-ax)在[0,1]上是x的减函数,那么a的取值范围是〔〕.〔A〕〔0,1〕〔B〕〔1,2〕〔C〕〔0,2〕〔D〕[2,+∞]分析:设t=2-ax,那么y=log a t, 因此,函数是上面这两个函数的复合函数,其增减性要考查这两个函数的单调性,另外,还要考虑零和负数无对数以及参数a对底数和真数的制约作用.解法一、由于a≠1,所以〔C〕是错误的.又a=2时,真数为2–2x,于是x≠1,这和矛盾,所以〔D〕是错的.当0<a<1时,t=2-ax是减函数,而y=log a t也是减函数, 故y=log a(2-ax)是x的增函数,所以〔A〕是错的.于是应选〔B〕.解法二、设t=2-ax,y=log a t 由于a>0,所以t=2-ax是x的减函数, 因此,只有当a>1,y=log a t是增函数时,y=log a(2-ax)在[0,1]上才是减函数;又x=1时,y=log a(2-a), 依题意,此时,函数有定义,故2–a>0 综上可知:1<a<2, 故应选〔B〕.例6. ,函数y=g(x)的图象与函数y=f-1(x+1)的图象关于y’=x对称,那么g(5)=_____________-解法一、由去分母,得 ,解出x,得 , 故 ,于是 , 设 ,去分母得, ,解出x,得 ,∴的反函数.∴.解法二、由 ,那么 , ∴ ,∴.即的反函数为 ,根据:∴.解法三、如图,f(x)和f-1(x)互为反函数,当f-1(x)的图象沿x轴负方向平移一个单位时,做为“镜面〞的另一侧的“象〞f(x)的图象一定向下平移1个单位,因此f-1(x+1)的图象与f(x)-1的图象关于y=x对称.故f-1(x+1)的反函数是g(x)=f(x)-1,∴.本解法从图象的运动变化中,探求出f-1(x+1)的反函数,表达了数形结合的优势出二、稳固练习(1)函数在区间上的最大值为1,求实数a的值.〔1〕解:f(x)在区间上最大值可能在端点外取得,也可能在顶点外取得, , ,而顶点横坐标 ,最大值在顶点外取得,故此解舍去.当最大值为f(2)时,f(2)=1, ,顶点在应在区间右端点取得最大值,此解合理.当最大值在顶点处取得时,由 ,解得 ,当,此时,顶点不在区间内,应舍去.综上,.〔2〕函数的定义域是[a,b],值域也是[a,b],求a.b的值.2〕解:y=f(x)的图象如图,分三种情况讨论.当a<b≤0时,f(x)为递增函数,有 ,解得, ,由于b>0,应舍去.当0≤a<b时,f(x)为递减函数,有 ,解得:a=1,b=2.当a<0<b时,f(x)最大值在顶点处取得,故 , ,所以最小值应在a处取得.〔2〕解:y=f(x)的图象如图,分三种情况讨论.当a<b≤0时,f(x)为递增函数,有 ,解得, ,由于b>0,应舍去.当0≤a<b时,f(x)为递减函数,有 ,解得:a=1,b=2.当a<0<b时,f(x)最大值在顶点处取得,故 , ,所以最小值应在a处取得.,解得: ,综上,或〔3〕求函数的最小值.解〔3〕分析:由于对数的底已明确是2,所以只须求的最小值.〔3〕解法一:∵ ,∴x>2.设 ,那么 ,由于该方程有实根,且实根大于2,∴解之,μ≥8.当μ=8时,x=4,故等号能成立.于是log2≥0且x=4时,等号成立,因此的最小值是3.解法二:∵ ,∴x>2设 ,那么 =∴μ≥8且 ,即x=4时,等号成立,∴log2μ≥3且x=4时,等号成立.故的最小值是3.〔4〕a>0,a≠1,试求方程有解时k的取值范围. 4〕解法一:原方程由②可得:③,当k=0时,③无解,原方程无解;当k≠0时,③解为 ,代入①式,.解法二:原方程 ,原方程有解,应方程组,即两曲线有交点,那么ak<-a或0<ak<a(a>0)∴k<-1或0<k<1.〔5〕设函数〔Ⅰ〕解不等式f(x)≤1〔Ⅱ〕求a的取值范围,使f(x)在[0,+∞]上是单调函数.5〕解〔Ⅰ〕,不等式f(x≤1),即由此得:1≤1+ax即ax≥0,其中常数a>0, ∴原不等式即∴当0<a<1时,所给不等式解集为 ,当a≥1时,所给不等式解集为{x|x≥0}.〔Ⅱ〕在区间[0,+∞)上任取x1,x2,使得x1<x2,〔ⅰ〕当a≥1时,∵∴又∴所以,当a≥1时,函数f(x)在区间[0,+∞)上是单调递减函数.〔ⅱ〕当0<a<1时,在[0,+∞)上存在两点满足f(x1)=1,f(x2)=1 ,即f(x1)=f(x2),∴函数f(x)在区间[0,+∞)上不是单调函数.。
函数和方程的区别和联系
函数和方程是数学中常见的概念,它们有一些区别和联系。
首先,函数是一种映射关系,它把一个自变量映射成一个因变量。
函数可以用一个公式或者一张图像来表示,比如 y=x^2 或者一条曲线。
而方程则是一个等式,它表示两个表达式之间的关系,比如 y=x+2。
其次,函数和方程可以相互转换。
一个函数可以被表示成一个方程,比如 y=x^2 可以转换为 x^2-y=0。
同样地,一个方程也可以被
表示成一个函数的形式,比如 x+y=3 可以表示成 y=3-x。
另外,函数和方程的解的含义也有所不同。
一个方程的解是使等式成立的变量值,而一个函数的解则是使函数取到某个特定值的自变量值。
比如,对于方程 x^2=4,它的解是 x=2 或者 x=-2;而对于函数 y=x^2,它的解是使 y=4 的 x 值,即 x=2 或者 x=-2。
总之,函数和方程是数学中基础的概念,它们之间有相互转换的关系,但是解的含义有所不同。
在数学中,我们经常使用这两个概念来描述自然界和社会现象中的规律和关系。
- 1 -。
函数与方程知识点总结函数与方程是数学中的重要概念和工具,它们在解决实际问题和数学推理中起着关键的作用。
本文将对函数与方程的知识点进行总结。
一、函数的概念与性质:1. 函数的定义:函数是一个或多个自变量和因变量之间的一种变化规律,它将每一个自变量值映射到唯一的因变量值。
在函数中,自变量通常表示为x,因变量表示为y或f(x)。
2. 函数的性质:函数有以下几个重要性质:a. 定义域:函数的自变量取值范围的集合。
b. 值域:函数的因变量的取值范围的集合。
c. 单调性:函数的增减关系。
可以分为增函数和减函数。
d. 奇偶性:函数关于y轴的对称性。
可以分为奇函数和偶函数。
e. 周期性:函数在一个周期内的性质重复出现。
3. 常见函数类型:a. 线性函数:y = kx + b,其中k和b是常数,描述了一条直线的方程。
b. 幂函数:y = ax^b,其中a和b是常数,x的指数为整数。
c. 指数函数:y = a^x,其中a为常数,指数为变量。
d. 对数函数:y = log_a(x),其中a为常数。
e. 三角函数:如sin(x)、cos(x)和tan(x)等。
4. 函数的运算:a. 函数的加法和减法:当两个函数具有相同的定义域时,可以通过函数的加法和减法得到新的函数。
b. 函数的乘法和除法:当两个函数具有相同的定义域时,可以通过函数的乘法和除法得到新的函数。
二、方程的概念与性质:1. 方程的定义:方程是一个等式,其中包含未知数和已知的数之间的关系。
在方程中,通常需要求解未知数的值使等式成立。
2. 方程的解:方程的解是能够使方程成立的未知数的值。
根据方程不同类型的解,可以将其分为实数解、复数解和无解。
3. 一元方程:只含有一个未知数的方程称为一元方程。
求解一元方程的方法包括等式两边同时加减、乘除相同的数等。
4. 二元方程:含有两个未知数的方程称为二元方程。
求解二元方程的方法包括代入法、消元法和配方法等。
5. 线性方程组:由多个线性方程组成的方程组称为线性方程组。
高二数学函数与方程的关系及应用高二数学: 函数与方程的关系及应用在高二数学学习中,函数与方程是两个重要的概念。
函数是一种特殊的关系,而方程则是未知数的等式。
本文将探讨函数与方程之间的关系,以及它们在实际问题中的应用。
一、函数与方程的基本概念函数是一种特殊的关系,其包含输入值和输出值之间的映射关系。
数学上,我们通常用 f(x) 或 y 来表示函数,其中 x 是自变量,y 是因变量。
函数可以用公式、图像或表格等形式来表示。
在函数中,每个输入值都对应唯一的输出值。
方程是一个等式,其中包含了一个或多个未知数。
方程是用来解决未知数的值的问题的。
数学中有各种各样的方程,包括一元一次方程、二次方程、指数方程等。
二、函数与方程的关系函数和方程之间存在着紧密的关联。
事实上,函数可以用来表示方程。
通常情况下,我们将函数表示为 f(x),其中 x 是自变量,y 是因变量。
在方程中,我们也可以将等式表示为 f(x) = 0 的形式。
例如,考虑一元二次方程 f(x) = ax^2 + bx + c = 0,其中 a、b、c 是已知常数。
这个方程是一个二次函数,其图像是抛物线。
方程的解即为使得方程成立的 x 值,在图像中,解对应了抛物线与 x 轴的交点。
三、函数与方程的应用函数与方程在实际问题中有广泛的应用。
它们可以帮助我们解决各种数学和实际问题。
1. 函数的图像分析:通过函数的图像,我们可以了解函数的性质,包括定义域、值域、增减性、奇偶性等。
我们可以利用这些性质来解答图像分析问题,例如求极值、交点等。
2. 方程的解析求解:方程可以用来解决各种未知数的值的问题。
通过解方程,我们可以求得未知数的具体值,例如求一元一次方程的解、二次方程的解等。
3. 函数的应用问题:函数可以帮助我们解决各种实际问题,包括数学建模、物理问题等。
例如,通过建立数学模型,我们可以利用函数来描述和分析实际问题,如弹射问题、物体运动问题等。
4. 方程的几何应用:方程可以与几何图形相结合,帮助我们解决几何问题。
函数与方程一、考点聚焦1.函数零点的概念对于函数))((D x x f y ∈=,我们把使0)(=x f 的实数x 叫做函数)(x f y =的零点,注意以下几点:(1)函数的零点是一个实数,当函数的自变量取这个实数时,其函数值等于零。
(2)函数的零点也就是函数)(x f y =的图象与x 轴的交点的横坐标。
(3)求零点就是求方程0)(=x f 的实数根。
2、函数零点的判断如果函数)(x f y =在区间],[b a 上的图象是连续不断的曲线,并且有0)()(<∙b f a f ,那么,函数)(x f y =在区间),(b a 内有零点,即存在),(0b a x ∈,使得0)(0=x f ,这个0x 也就是方程0)(=x f 的根。
但要注意:如果函数)(x f y =在],[b a 上的图象是连续不断的曲线,且0x 是函数在这个区间上的一个零点,却不一定有.0)()(<∙b f a f3.函数零点与方程的根的关系根据函数零点的定义可知:函数)(x f 的零点,就是方程0)(=x f 的根,因此判断一个函数是否有零点,有几个零点,就是判断方程0)(=x f 是否有实数根,有几个实数根。
函数零点的求法:解方程0)(=x f ,所得实数根就是)(x f 的零点。
4.函数零点具有的性质注意:①函数是否有零点是针对方程是否有实数根而言的,若方程0)(=x f 没有实数根,则函数)(x f 没有零点。
5、二分法,就是通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步副近零点,进而得到零点近似值的方法。
二、点击考点[考题1]若一次函数b ax x f +=)(有一个零点2,则二次函数ax bx x g -=2)(的零点是。
[考题2]求函数673+-=x x y 的零点。
[考题3]若方程0=--a x a x 有两个根,则a 的取值范围是( )A .)1(∞+B .)1,0(C .),0(+∞D .∅[考题4]无论m 取哪个实数值,函数)23(}23{2--+-=x m x x y 的零点个数都是( )A .1B .2C .3D .不确定[考题5]3.方程|x 2-2x |=a 2+1(a >0)的解的个数是( ).A .1B .2C .3D .4 [考点6]已知2>a ,且函数131)(23+-=ax x x f 在区间)2,0(上是减函数,则方程013123=+-ax x 在区间)2,0(上的实根个数为( ) A .0B .1C .2D .3[考题7]函数xx x f 2ln )(-=的零点所在的大致区间是( ) A .)2,1(B .)3,2(C .)1,1(e和)4,3( D .),(+∞e[考题8]已知)1)(1(+-=x x x y 的图象如图所示,因考虑01.0)1)(1()(++-=x x x x f ,则方程式0)(=x f ( )A .有三个实根B .当1-<x 时,恰有一实根C .当01<<-x 时,恰有一实根D .当1>x 时,恰有一实根三、夯实双基1.下列函数中,不能用二分法求零点的是( )2.已知函数22)(m mx x x f --=,则)(x f ( ) A .有一个零点B .有两个零点C .有一个或两个零点D .无零点 3函数)(x f 在区间]6,1[上的零点至少有( )A .2个B .3个C .4个D .5个4.下列方程在区间)1,0(内存在实数解的是( ) A .012=-+x xB .032=-+x xC .012=-xD .0212=+x x 5.若函数)(x f 的图象是连续不间断的,且0)4()2()1(,0)0(<∙∙>f f f f ,则下列命题正确的是( )A .函数)(x f 在区间)1,0(内有零点B .函数)(x f 在区间)2,1(内有零点C .函数)(x f 在区间)2,0(内有零点D .函数)(x f 在区间)4,0(内有零点6.函数1)(23+--=x x x x f 在]2,0[上( ) A .有三个零点 B .有两个零点C .有一个零点D .没有零点7.已知方程x x -=-521,则该方程的解会落在区间( )内。
人教版八年级数学知识点梳理函数与方程式函数与方程是数学中的重要概念,是数学建模与解决实际问题的工具。
在人教版八年级数学课程中,函数与方程也是重要的知识点。
本文将对八年级数学课程中的函数与方程进行梳理,旨在帮助学生全面了解和掌握相关知识。
一、函数的概念和性质函数是数学中的基本概念之一,指的是两个集合之间的映射关系。
在八年级数学课程中,学生将学习到函数的定义、表达方式和性质等内容。
1. 函数的定义函数是两个集合A和B之间的映射关系,设A中的元素为x,B中的元素为y,则函数f的定义可以表达为:y = f(x),其中x∈A,y∈B。
2. 函数的表达方式函数可以通过函数图像、解析式和数据表等方式进行表达。
3. 函数的性质八年级数学课程中涉及的函数性质有:定义域、值域、单调性、奇偶性以及最值等。
二、线性函数与一元一次方程线性函数和一元一次方程是八年级数学中的重要内容,两者之间有着密切的联系。
在学习线性函数时,学生也需要掌握一元一次方程的相关知识。
1. 线性函数的概念和性质线性函数是一个特殊的函数,其解析式可以表示为y = kx + b,其中k为斜率,b为截距。
学生需要掌握线性函数的图像特征和数学性质,如平行、垂直、斜率等。
2. 一元一次方程的概念和解法一元一次方程是方程的一种,也称为一元线性方程。
其解法包括等式转化、消元法和代入法等。
三、二次函数与一元二次方程二次函数和一元二次方程是八年级数学中的重点内容,涉及到二次函数的图像特征和一元二次方程的解法。
1. 二次函数的概念和性质二次函数的解析式可以表示为y = ax^2 + bx + c,其中a、b和c为常数,a不等于0。
学生需要掌握二次函数的开口方向、顶点坐标、对称轴和最值等性质。
2. 一元二次方程的概念和解法一元二次方程是形如ax^2 + bx + c = 0的方程,其中a、b和c为常数,a不等于0。
解一元二次方程可以使用因式分解法、配方法和求根公式等方法。
函数与方程(1)知识要点: 命题人: 程奋权 1.函数的零点:方程0)(=x f 的根也称作函数)(x f y =的零点.(1)方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点.(2)零点存在性定理:如果函数)(x f y =在区间],[b a 上的图象是连续不断的一条曲线,并且有 ,那么函数)(x f y =在区间),(b a 内有零点.即存在),(b a c ∈,使得0)(=c f ,这个c 也就是方程的根.① 定理中函数)(x f y =不一定有唯一的零点,当函数)(x f 在),(b a 上是单调函数时,有唯一的零点.② 如果函数)(x f y =在区间),(b a 内有零点,不一定有0)()(<b f a f . 2.二分法:对于在区间a [,]b 上连续且满足)(a f ·)(b f 0<的函数)(x f y =,通过不断地把函数)(x f 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.3.二次函数)0()(2≠++=a c bx ax x f 的零点:(1)当0>∆时,方程0)(=x f 有两不等实根,二次函数)(x f 的图象与x 轴有两个交点,即有两个零点.(2)当0=∆时,方程0)(=x f 有两相等实根,二次函数)(x f 的图象与x 轴有一个交点,即有一个零点.(3)当0<∆时,方程0)(=x f 无实根,二次函数)(x f 的图象与x 轴无交点,即无零点. 4.二次方程)0(02≠=++a c bx ax 的实根分布及条件. 典型习题:1.函数xx x f 2ln )(-=的零点所在的大致区间是 ( ) A .)2,1( B .)3,2( C .)4,3( D .),(+∞e2.方程xx12=的解0x 所在的区间是 ( )A .)2.0,1.0(B .)4.0,3.0(C .)7.0,5.0(D .)1,9.0(3.函数()⎩⎨⎧>+-≤-=1,341,442x x x x x x f 的图象和函数()x x g 2log =的图象的交点个数是( )A .4B .3C .2D .1 4.关于x 的方程()011222=+---k x x ,给出下列四个命题:①存在实数k ,使得方程恰有2个不同的实根;②存在实数k ,使得方程恰有4个不同的实根;③存在实数k ,使得方程恰有5个不同的实根;④存在实数k ,使得方程恰有8个不同的实根.其中假命题的个数是( )A .0B .1C .2D .35.设函数⎩⎨⎧>≤++=0,20,)(2x x c bx x x f ,且2)2(),0()4(-=-=-f f f ,则关于x 的方程x x f =)(解的个数为( )A .1B .2C .3D .46.已知函数)(x f y =和)(x g y =在]2,2[-的图象如下图所示,给出下列四个命题:(1)方程0)]([=x g f 有且仅有6个根;(2)方程0)]([=x f g 有且仅有3个根; (3)方程0)]([=x g f 有且仅有5个根;(4)方程0)]([=x f g 有且仅有4个根其中正确的命题个数是 ( ) A .4个 B .3个 C . 2个 D .1个 7.设函数)(||1)(R x x xx f ∈+-=,区间],[b a M =)(b a <,集合}),(|{M x x f y y N ∈==,则使N M =成立的实数对),(b a 有 ( )A .0个B .1个C .2个D .无数个8.函数)(x f y =的反函数)(1x f y -=的图象与y 轴交于点)2,0(P ,则方程0)(=x f 的根是=x ( ) A .4 B .3 C .2 D .1 9.设()f x 是连续的偶函数,且当0>x 时()f x 是单调函数,则满足3()4x f x f x +⎛⎫=⎪+⎝⎭的所有x 之和为 ( ) A .3- B .3 C .8- D .810.设c b a ,,均为正数,且a a21log 2=,b b 21log 21=⎪⎭⎫ ⎝⎛,c c2log 21=⎪⎭⎫⎝⎛.则( )A .c b a <<B .a b c <<C .b a c <<D .c a b <<11.已知函数2()22(4)1f x mx m x =--+,()g x mx =,若对于任一实数x ,()f x 与()g x 至少有一个为正数,则实数m 的取值范围是 ( ) A .(0,2) B .(0,8) C .(2,8) D .(,0)-∞12.设定义域为R 的函数111()11x x f x x ⎧≠⎪-=⎨⎪=⎩,, ,若关于x 的方程2()()0f x bf x c ++=有3个不同的整数解123,,x x x ,则222123x x x ++等于 ( )A .5B .2222b b +C .13D .2222c c +函数与方程(2)13.已知)(x f y =是偶函数,且其图象C 与x 轴有4个交点,则方程0)(=x f 的所有实根之和为 .14.设⎩⎨⎧>-≤-=-0,)1(0,2)(1x x f x a x f x ,若x x f =)(有且只有两个实数根,则实数a 的取值范围是_ __.15.已知关于x 的方程016)82(22=-+--m x m x 的两个实根21,x x 满足2123x x <<,则实数m 的取值范围_______________.16.二次函数c bx ax y ++=2中,0<ac ,则函数的零点个数为 .17.若方程2210ax x ++=至少有一个负数根,则实数a 的取值范围_______________. 18.关于x 的方程x a x x =-+-|34|2恰有三个不同的实根,则实数a 的取值范围_____. 19.已知1x 是方程27lg =+x x 的解,2x 是方程2710=+xx 的解,则=+21x x 三.解答题20.确定下列方程的解的个数(1)62lg =+x x (2)0133=--x x(3)0ln 31=--x x (4)x x e x82-=思考:方程x a a xlog =0(>a 且)1≠a 的解的个数.21.如果二次函数1)3()(2+-+=x m mx x f 的图象与x 轴的交点至少有一个在原点的右侧,试求m 的取值范围.22. 已知关于x 的方程03)3()13)(1(3112=⋅----+++x x x m m 有两个不同的实数根,求m 的取值范围.23.已知a 是实数,函数()a x ax x f --+=3222,如果函数()x f y =在区间[]1,1-上有零点,求a 的取值范围.24.已知二次函数)0()(2≠+=a bx ax x f 满足条件:)3()1(x f x f -=-且方程x x f 2)((=有等根. (1)求)(x f 的解析式;(2)是否存在实数n m ,)(n m <,使)(x f 定义域和值域分别为],[n m 和]4,4[n m ,如果存在,求出n m ,的值;如果不存在,说明理由.。
高中数学函数与方程归纳高中数学:函数与方程归纳导言:函数与方程是高中数学中的重要内容,它们在数学建模、科学研究以及日常生活中都有广泛的应用。
本文将围绕函数与方程进行归纳总结,从基本概念、性质、图像、解法等方面进行讨论,帮助读者更好地理解和掌握这一重要知识点。
一、函数的基本概念与性质1.1 函数的定义函数是一种特殊的关系,它将两个集合之间的元素按照某种规律进行对应。
通常用一个字母代表函数,如f(x),其中x是自变量,f(x)是因变量。
函数的定义域是自变量的取值范围,值域是因变量的取值范围。
1.2 函数的性质函数可以分为奇函数和偶函数、增函数和减函数等。
奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x);增函数满足f(x1)<f(x2),当x1<x2;减函数满足f(x1)>f(x2),当x1<x2。
二、常见函数类型的图像与性质2.1 一次函数一次函数的图像是一条直线,形如y=ax+b。
斜率a决定了直线的倾斜程度,截距b代表直线与y轴的交点。
一次函数的图像是一条斜率为a的直线。
2.2 二次函数二次函数的图像是一条抛物线,形如y=ax²+bx+c。
二次函数的开口方向由二次项的系数a的正负性决定,开口向上为a>0,开口向下为a<0。
顶点是抛物线的最高点或最低点。
2.3 幂函数幂函数的图像是一条曲线,形如y=ax^b。
幂函数的特点是,当b>1时曲线上升得越来越快,当0<b<1时曲线上升越来越慢。
2.4 指数函数指数函数的图像是一条曲线,形如y=a^x。
指数函数的特点是,当a>1时曲线上升得越来越快,当0<a<1时曲线上升越来越慢。
指数函数的导数等于函数值与自变量的乘积。
2.5 对数函数对数函数的图像是一条曲线,形如y=logₐx。
对数函数的特点是,曲线渐近于x轴和y轴,且当x趋近于无穷大时,对数函数值无限增大。
三、方程的解法与应用3.1 一元一次方程一元一次方程是形如ax+b=0的方程。
第8讲 函数与方程1.函数的零点(1)函数零点的定义:对于函数y =f (x ),把使f (x )=0的实数x 叫做函数y =f (x )的零点. (2)三个等价关系:方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点.2.函数零点的判定如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,那么函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是f (x )=0的根.我们把这一结论称为函数零点存在性定理. 3.二次函数y =ax 2+bx +c (a >0)的图象与零点的关系判断正误(正确的打“√”,错误的打“×”) (1)函数的零点就是函数的图象与x 轴的交点.( )(2)函数y =f (x )在区间(a ,b )内有零点(函数图象连续不断),则f (a )·f (b )<0.( ) (3)二次函数y =ax 2+bx +c (a ≠0)在b 2-4ac <0时没有零点.( )(4)若函数f (x )在(a ,b )上连续单调且f (a )·f (b )<0,则函数f (x )在[a ,b ]上有且只有一个零点.( )(教材习题改编)函数f (x )=ln x +2x -6的零点在下列哪个区间内( ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)(教材习题改编)函数f (x )=x 12-⎝⎛⎭⎫12x的零点个数为 ( ) A .0 B .1 C .2D .3若函数f (x )=ax +b 有一个零点是2,那么函数g (x )=bx 2-ax 的零点是________.(教材习题改编)函数f (x )=3x -7+ln x 的零点位于区间(n ,n +1)(n ∈N )内,则n =________.函数零点所在区间的判断[典例引领](1)函数f (x )=ln x -2x 的零点所在的大致区间是 ( )A .(1,2)B .(2,3)C .(1,e)和(3,4)D .(e ,+∞)(2)设f (x )=0.8x -1,g (x )=ln x ,则函数h (x )=f (x )-g (x )存在的零点一定位于下列哪个区间( ) A .(0,1) B .(1,2) C .(2,e)D .(e ,3)判断函数零点所在区间的3种方法(1)解方程法:当对应方程f (x )=0易解时,可先解方程,然后再看求得的根是否落在给定区间上.(2)定理法:利用函数零点的存在性定理,首先看函数y =f (x )在区间[a ,b ]上的图象是否连续,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )内必有零点.(3)图象法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断.[通关练习]1.(2018·金华十校联考)函数f (x )=πx +log 2x 的零点所在区间为( ) A .⎣⎡⎦⎤14,12 B .⎣⎡⎦⎤18,14 C .⎣⎡⎦⎤0,18 D .⎣⎡⎦⎤12,1 2.(2018·杭州市严州中学高三模拟)若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( ) A .(a ,b )和(b ,c )内 B .(-∞,a )和(a ,b )内 C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内函数零点个数的问题[典例引领]函数f (x )=⎩⎪⎨⎪⎧x 2+x -2,x ≤0,-1+ln x ,x >0的零点个数为( )A .3B .2C .1D .0判断函数零点个数的3种方法(1)方程法:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理法:利用定理不仅要求函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性、对称性)才能确定函数有多少个零点或零点值所具有的性质.(3)数形结合法:转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.[通关练习]1.函数f (x )=|x -2|-ln x 在定义域内的零点的个数为( ) A .0 B .1 C .2D .32.已知函数f (x )是定义在(-∞,0)∪(0,+∞)上的偶函数,当x >0时,f (x )=⎩⎪⎨⎪⎧2|x -1|-1,0<x ≤2,12f (x -2),x >2,则函数g (x )=4f (x )-1的零点个数为( ) A .4 B .6 C .8D .10函数零点的应用(高频考点)高考对函数零点的考查多以选择题或填空题的形式出现.主要命题角度有: (1)利用函数零点比较大小;(2)已知函数的零点(或方程的根)求参数的值或范围; (3)利用函数零点的性质求参数的范围.[典例引领]角度一 利用函数零点比较大小(2018·台州模拟)已知e 是自然对数的底数,函数f (x )=e x +x -2的零点为a ,函数g (x )=ln x +x -2的零点为b ,则下列不等式中成立的是( ) A .f (a )<f (1)<f (b ) B .f (a )<f (b )<f (1) C .f (1)<f (a )<f (b )D .f (b )<f (1)<f (a )角度二 已知函数的零点(或方程的根)求参数的值或范围(1)设函数f (x )=log 2(2x +1),g (x )=log 2(2x -1),若关于x 的函数F (x )=g (x )-f (x )-m 在[1,2]上有零点,则m 的取值范围为________.(2)已知函数f (x )=⎩⎪⎨⎪⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b有三个不同的根,则m 的取值范围是__________.角度三 利用函数零点的性质求参数的范围已知函数f (x )=|ln x |,若0<a <b ,且f (a )=f (b ),则a +2b 的取值范围是( ) A .(22,+∞) B .[22,+∞) C .(3,+∞)D .[3,+∞)已知函数的零点(或方程根)的情况求参数问题常用的三种方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围. (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中画出函数的图象,然后数形结合求解.[通关练习]1.设函数f (x )=e x +2x -4,g (x )=ln x +2x 2-5,若实数a ,b 分别是f (x ),g (x )的零点,则( ) A .g (a )<0<f (b ) B .f (b )<0<g (a ) C .0<g (a )<f (b )D .f (b )<g (a )<02.已知函数f (x )=⎩⎪⎨⎪⎧log 2(x +1),x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________.3.(2018·杭州学军中学高三质检)若函数f (x )=|2x -1|+ax -5(a 是常数,且a ∈R )恰有两个不同的零点,则a 的取值范围为________.转化思想在函数零点问题中的应用方程解的个数问题可转化为两个函数图象交点的个数问题;已知方程有解求参数范围问题可转化为函数值域问题.判断函数零点个数的常用方法 (1)通过解方程来判断.(2)根据零点存在性定理,结合函数性质来判断.(3)将函数y =f (x )-g (x )的零点个数转化为函数y =f (x )与y =g (x )图象公共点的个数来判断.已知函数零点情况求参数的一般步骤及方法 (1)一般步骤:①判断函数的单调性;②利用零点存在性定理,得到参数所满足的不等式(组);③解不等式(组),即得参数的取值范围. (2)方法:常利用数形结合法.易错防范(1)函数的零点不是点,是方程f (x )=0的实根.(2)函数零点存在性定理只能判断函数在某个区间上的变号零点,而不能判断函数的不变号零点,而且连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分不必要条件.1.(2018·温州十校联考(一))设函数f (x )=ln x +x -2,则函数f (x )的零点所在的区间为( ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)2.函数f (x )=2x -2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2)3.(2018·兰州模拟)已知奇函数f (x )是R 上的单调函数,若函数y =f (2x 2+1)+f (λ-x )只有一个零点,则实数λ的值是( ) A .14 B .18C .-78D .-384.已知函数f (x )=23x +1+a 的零点为1,则实数a 的值为________.5.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤0,|log 2x |,x >0,则函数g (x )=f (x )-12的零点所构成的集合为________.6.(2018·瑞安市龙翔高中高三月考)若关于x 的不等式x 2+|x -a |<2至少有一个正数解,则实数a 的取值范围是________.7.设函数f (x )=ax 2+bx +b -1(a ≠0). (1)当a =1,b =-2时,求函数f (x )的零点;(2)若对任意b ∈R ,函数f (x )恒有两个不同零点,求实数a 的取值范围.8.已知函数f (x )=-x 2-2x ,g (x )=⎩⎪⎨⎪⎧x +14x ,x >0,x +1,x ≤0.(1)求g (f (1))的值;(2)若方程g (f (x ))-a =0有4个实数根,求实数a 的取值范围.。
方程和函数思想1.方程和函数思想的概念。
方程和函数是初等数学代数领域的主要内容,也是解决实际问题的重要工具,它们都可以用来描述现实世界的各种数量关系,而且它们之间有着密切的联系,因此,本文将二者放在一起进行讨论。
(1)方程思想。
含有未知数的等式叫方程。
判断一个式子是不是方程,只需要同时满足两个条件:一个是含有未知数,另一个是必须是等式。
如有些小学老师经常有疑问的判断题:χ=0 和χ=1是不是方程?根据方程的定义,他们满足方程的条件,都是方程。
方程按照未知数的个数和未知数的最高次数,可以分为一元一次方程、一元二次方程、二元一次方程、三元一次方程等等,这些都是初等数学代数领域中最基本的内容。
方程思想的核心是将问题中的未知量用数字以外的数学符号(常用χ、y等字母)表示,根据相关数量之间的相等关系构建方程模型。
方程思想体现了已知与未知的对立统一。
(2)函数思想。
设集合A、B是两个非空的数集,如果按照某种确定的对应关系?,如果对于集合A中的任意一个数χ,在集合B中都有唯一确定的数y和它对应,那么就称y是χ的函数,记作y=f(χ)。
其中χ叫做自变量,χ的取值范围A叫做函数的定义域;y叫做函数或因变量,与χ相对应的y的值叫做函数值,y的取值范围B叫做值域。
以上函数的定义是从初等数学的角度出发的,自变量只有一个,与之对应的函数值也是唯一的。
这样的函数研究的是两个变量之间的对应关系,一个变量的取值发生了变化,另一个变量的取值也相应发生变化,中学里学习的正比例函数、一次函数、二次函数、幂函数、指数函数、对数函数和三角函数都是这类函数。
实际上现实生活中还有很多情况是一个变量会随着几个变量的变化而相应地变化,这样的函数是多元函数。
虽然在中小学里不学习多元函数,但实际上它是存在的,如圆柱的体积与底面半径r和圆柱的高的关系:V=πr2h。
半径和高有一对取值,体积就会相应地有一个取值;也就是说,体积随着半径和高的变化而变化。
函数与方程1. 函数的零点(1)函数零点的定义:对于函数y=f(x),我们把使________的实数x叫做函数y=f(x)的零点.(2)几个等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.2. 零点存有定理假如函数y=f(x)满足:(1)在闭区间[a,b]上连续;(图象不间断) (2)f(a)·f(b)<0;则函数y=f(x)在(a,b)上存有零点,即存有c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.图象4.二分法(1)二分法的定义 对于在区间[a ,b ]上连续持续且________的函数y =f (x ),通过持续地把函数f (x )的零点所在的区间________,使区间的两端点逐步逼近________,进而得到零点的近似值的方法叫做二分法.(2)用二分法求函数零点近似解的步骤第一步:确定区间[a ,b ],验证________,给定精确度ε; 第二步:求区间(a ,b )的中点c ; 第三步:计算f (c )①若f (c )=0,则c 就是函数的零点;②若f (a )·f (c )<0,则令b =c (此时零点x 0∈(a ,c )); ③若f (c )·f (b )<0,则令a =c (此时零点x 0∈(c ,b )).第四步:判断是否达到精确度ε,即若|a -b |<ε,则得到零点近似值a (或b ),否则重复第二、三、四步. 典型例题分析函数f (x )=2x +x 3-2在区间(0,1)内的零点个数是( ) A .0 B .1 C .2 D .3函数f (x )=ln(x -2)-2x的零点所在的大致区间是( )A .(1,2)B .(2,3)C .(3,4)D .(4,5)函数f (x )=x cos2x 在区间[0,2π]上的零点的个数为( ) A .2 B .3 C .4D .5在以下区间中,函数f (x )=e x+4x -3的零点所在的区间为( )A .(-14,0)B .(0,14)C .(14,12)D .(12,34)函数f (x )=mx 2-2x +1有且仅有一个为正实数的零点,则实数m 的取值范围是( ) A .(-∞,1] B .(-∞,0]∪{1} C .(-∞,0)∪(0,1] D .(-∞,1)设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若函数y =f (x )-g (x )在x ∈[a ,b ]上有两个不同的零点,则称f (x )和g (x )在[a ,b ]上是“关联函数”,区间[a ,b ]称为“关联区间”.若f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数”,则m 的取值范围为( )A .(-94,-2]B .[-1,0]C .(-∞,-2]D .(-94,+∞)设函数f (x )=13x -ln x (x >0),则y =f (x )( )A .在区间(1e ,1),(1,e)内均有零点B .在区间(1e,1),(1,e)内均无零点C .在区间(1e ,1)内有零点,在区间(1,e)内无零点D .在区间(1e,1)内无零点,在区间(1,e)内有零点函数f (x )=-⎝ ⎛⎭⎪⎫12x的零点个数为( ) A. 0 B. 1 C. 2D. 3已知a 是函数f (x )=2x-x 的零点,若0<x 0<a ,则f (x 0)的值满足( )A .f (x 0)=0B .f (x 0)<0C .f (x 0)>0D .不确定已知函数f (x )=log ax +x -b (a >0,且a ≠1).当2<a <3<b <4时,函数f (x )的零点x 0∈(n ,n +1),n ∈N *,则n =________.一、选择题1. [2013·广东四校联考]函数f (x )=x 3+2x -1的零点所在的大致区间是( ) A. (0,1) B. (1,2) C. (2,3) D. (3,4)答案:A解析:f (0)=-1<0,f (1)=2>0,f (2)=11>0,f (3)=32>0,f (4)=71>0,则f (0)·f (1)=-2<0且函数f (x )=x 3+2x -1的图象是连续曲线,所以f (x )在区间(0,1)内有零点.2. 若函数f (x )=bx +2有一个零点为13,则g (x )=x 2+5x +b 的零点是( )A. -13B. 1或-6C. -1或6D. 1或6答案:B解析:∵13是函数f (x )的零点,∴f (13)=0,即13b +2=0,解得b =-6.∴g (x )=x 2+5x -6.令g (x )=0,即x 2+5x -6=0,也就是(x -1)(x +6)=0, 解得x =1或x =-6.∴函数g (x )有两个零点1、-6.3. 如图是函数f (x )的图象,它与x 轴有4个不同的公共点.给出以下四个区间,不能用二分法求出函数f (x )零点的区间是( )A. [-2.1,-1]B. [1.9,2.3]C. [4.1,5]D. [5,6.1]答案:B解析:由图象易知,函数f (x )在区间[1.9,2.3]上不能用二分法求出函数的零点. 4. [2013·湖北八校二联]已知函数f (x )=2x-log 12x ,且实数a >b >c >0满足f (a )·f (b )·f (c )<0,若实数x 0是函数y =f (x )的一个零点,那么以下不等式中不可能成立的是( )A. x 0<aB. x 0>aC. x 0<bD. x 0<c答案:D解析:画出函数y =2x与y =log 12x 的图象可知,满足条件的c 只能在函数f (x )的零点的左边,故不可能出现x 0<c .5. 已知关于x 的方程x ln x =ax +1(a ∈R),以下说法准确的是( ) A. 有两不等根 B. 只有一正根 C. 无实数根 D. 不能确定 答案:B解析:由x ln x =ax +1(a ∈R)知x >0,∴ln x =a +1x ,作出函数y 1=ln x 与y 2=a +1x的图象,易知选B.6. [2013·深圳调研]已知符号函数sgn (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,则函数f (x )=sgn (ln x )-ln x 的零点个数为( )A. 1B. 2C. 3D. 4答案:C解析:当x >1时,ln x >0,sgn (ln x )=1; 当x =1时,ln x =0,sgn (ln x )=0; 当0<x <1,ln x <0,sgn (ln x )=-1.∴f (x )=sgn (ln x )-ln x =⎩⎪⎨⎪⎧1-ln x ,x >1,0,x =1,-1-ln x ,0<x <1.由f (x )=0得,x =e 或1或1e ,应选C.二、填空题7. [2012·浙江绍兴二模]若f (x )=⎩⎪⎨⎪⎧x 2-x -1,x ≥2或x ≤-1,1,-1<x <2,则函数g (x )=f (x )-x 的零点为________.答案:1+2,1解析:求函数g (x )=f (x )-x 的零点,即求f (x )=x 的根, ∴⎩⎪⎨⎪⎧x ≥2或x ≤-1,x 2-x -1=x或⎩⎪⎨⎪⎧-1<x <2,1=x .解得x =1+2或x =1. ∴g (x )的零点为1+2,1.8. [2013·南昌模拟]已知[x ] 表示不超过实数x 的最大整数,如[1.8]=1,[-1.2]=-2.x 0是函数f (x )=ln x -2x的零点,则[x 0]等于 ________.答案:2解析:∵函数f (x )的定义域为(0,+∞),∴函数f ′(x )=1x +2x2>0,即函数f (x )在(0,+∞)上单调递增.由f (2)=ln2-1<0,f (e)=lne -2e>0,知x 0∈(2,e),∴[x 0]=2.9. [2013·金版原创]已知函数f (x )=⎩⎪⎨⎪⎧2x-1,x ≥0-x 2-2x ,x <0,若函数y =f (x )-m 有3个零点,则实数m 的取值范围是________.答案:(0,1)解析:画出函数f (x )=⎩⎪⎨⎪⎧2x-1,x ≥0-x 2-2x ,x <0的图象,由图象可知,若函数y =f (x )-m 有3个零点,则0<m <1,所以m 的取值范围是(0,1).三、解答题10. 若g (x )=x +e2x(x >0),g (x )=m 有零点,求m 的取值范围.解:法一:∵g (x )=x +e 2x≥2e 2=2e ,等号成立的条件是x =e , 故g (x )的值域是[2e ,+∞),因而只需m ≥2e,则g (x )=m 就有零点. 法二:作出g (x )=x +e2x(x >0)的大致图象如图:可知若使g (x )=m 有零点,则只需m ≥2e.法三:由g (x )=m 得x 2-mx +e 2=0. 此方程有大于零的根且e 2>0, 故根据根与系数的关系得m >0,故⎩⎪⎨⎪⎧m >0,Δ=m 2-4e 2≥0等价于⎩⎪⎨⎪⎧m >0,m ≥2e或m ≤-2e ,故m ≥2e.11. [2013·苏州模拟]是否存有这样的实数a ,使函数f (x )=x 2+(3a -2)x +a -1在区间[-1,3]上与x 轴恒有一个交点,且只有一个交点?若存有,求出范围;若不存有,请说明理由.解:若实数a 满足条件,则只需f (-1)·f (3)≤0即可.f (-1)·f (3)=(1-3a +2+a -1)·(9+9a -6+a -1)=4(1-a )(5a +1)≤0,所以a ≤-15或a ≥1.检验:(1)当f (-1)=0时a =1,所以f (x )=x 2+x .令f (x )=0,即x 2+x =0,得x =0或x =-1. 方程在[-1,3]上有两根,不合题意,故a ≠1.(2)当f (3)=0时a =-15,此时f (x )=x 2-135x -65.令f (x )=0,即x 2-135x -65=0,解之x =-25或x =3.方程在[-1,3]上有两根,不合题意,故a ≠-15.综上所述,a <-15或a >1.12.[2013·揭阳联考]已知二次函数f (x )=x 2+2bx +c (b 、c ∈R). (1)若f (x )≤0的解集为{x |-1≤x ≤1},求实数b 、c 的值;(2)若f (x )满足f (1)=0,且关于x 的方程f (x )+x +b =0的两个实数根分别在区间(-3,-2),(0,1)内,求实数b 的取值范围.解:(1)依题意,x 1=-1,x 2=1是方程x 2+2bx +c =0的两个根.由韦达定理,得⎩⎪⎨⎪⎧x 1+x 2=-2b ,x 1x 2=c .即⎩⎪⎨⎪⎧-2b =0,c =-1.所以b =0,c =-1.(2)由题知,f (1)=1+2b +c =0,所以c =-1-2b .记g (x )=f (x )+x +b =x 2+(2b +1)x +b +c =x 2+(2b +1)x -b -1,则⎩⎪⎨⎪⎧g-3=5-7b >0,g -2=1-5b <0,g 0=-1-b <0,g1=b +1>0,解得15<b <57,所以实数b 的取值范围为15<b <57.。
函数与方程高考知识点总结一、函数的概念与性质1.函数的定义:函数是一个从一个集合到另一个集合的映射关系。
2.函数的表示方法:函数可以用函数解析式、函数图象、函数表等形式表示。
3.函数的性质:奇偶性、周期性、有界性、单调性、极值、最值等。
二、初等函数1.常数函数:y=c。
2. 一次函数:y=kx+b。
3. 二次函数:y=ax²+bx+c。
4.幂函数:y=xⁿ。
5.指数函数:y=aᵡ。
6. 对数函数:y=logₐx。
7.三角函数:正弦函数、余弦函数、正切函数等。
8.反三角函数:反正弦函数、反余弦函数、反正切函数等。
三、函数的运算1.函数的和、差、积、商的定义与性质。
2.复合函数的定义与性质。
3.反函数的定义与性质。
四、方程的概念与性质1.方程的定义:含有未知数的等式称为方程。
2.方程的根:使方程等式成立的未知数的值称为方程的根。
3.方程的解:满足方程的根的值的集合。
4.方程的性质:等价方程、可解性、唯一性等。
五、一元一次方程1.一元一次方程的定义与解的概念。
2.一元一次方程的解法:解方程的基本步骤、去分母、去项、整理方程等。
3.一元一次方程的应用:问题转化为一元一次方程。
六、一元二次方程1.一元二次方程的定义与解的概念。
2.一元二次方程的解法:配方法、因式分解法、求根公式、三角函数法等。
3.一元二次方程的判别式:判别式与方程根的关系。
七、一元高次方程1.一元高次方程的定义与解的概念。
2.一元高次方程的解法:因式分解法、整理方程法、二次根与系数关系、综合除法等。
3.一元高次方程的应用:问题转化为一元高次方程。
八、二元一次方程组1.二元一次方程组的定义与解的概念。
2.二元一次方程组的解法:方法一、方法二、方法三等。
3.二元一次方程组的应用:问题转化为二元一次方程组。
九、二元二次方程组1.二元二次方程组的定义与解的概念。
2.二元二次方程组的解法:消元法、代入法、加减消元法、变量代换法等。
3.二元二次方程组的应用:问题转化为二元二次方程组。
方程与函数的区别?代数式:用运算符号把数或表示数的字母连接而成的式子,叫代数式。
函数:如果对于一个变量(比如x)在某一范围内的每一个确定的值,变量(比如y)都有唯一确定的值和它对应,那么,就把y叫做x的函数。
函数式:用解析法(公式法)表示函数的式子叫函数式。
方程:含有未知数的等式叫方程。
解析式表示因变量与自变量的关系。
联系:函数式和方程式都是由代数式组成的。
没有代数式,就没有函数和方程.方程只是函数解析式在某一特定函数值的解。
方程表示特定的因变量的自变量解。
如5x+6=7这是方程; y=5x+6这是解析式。
区别:1。
概念不一样。
2。
代数式不用等号连接。
3。
函数表示两个变量之间的关系。
因变量(函数)随变量(自变量)的变化而变化.4.方程是含有未知数的等式.其未知数(变量)的个数不固定.未知数之间不存在自变和因变的关系. 方程重在说明几个未知数之间的在数字间的关系;方程可以通过求解得到未知数的大小;方程可以通过初等变换改变等号左右两边的方程。
方程的解是固定的,但函数无固定解值解.式;函数只可以化简,但不可以对函数进行初等变换。
5。
函数和方程本质区别就是:方程中未知数x是一个常量(虽然方程可能有多个解),函数中x是变量,因此y也是变量,并且是由于x的变化而变化。
6。
函数:重在说明某几个自变量的变化对因变量的影响;特定的自变量的值就可以决定因变量的值;就像平面解析几何里圆就是方程、区别在于函数就看他们的值是否一一对应。
就像圆的方程(x—a)^2+(y—b)^2=r^2就是方程,它们的值不是一一对应关系,所以不是函数是方程的一种,函数强调的是一一对应,及1个X值(自变量)只能有一个Y值(应变量)与之对应比如:y=x+1 它是函数, y^2=x 它不是函数,但它是方程.7.函数和方程是数学中的两个基本概念,在许多情况下它们可以相互转化。
例如在一元函数y = f(x)用一个解析式表示并且不需要区分自变量和因变量(函数)时,这个函数式就可以看作一个二元方程;反之,能够由方程F(x, y) = 0确定的函数关系称为隐函数([4], p。
函数与方程的紧密联系1. 引言函数和方程是数学中两个基本概念,它们在解决数学问题和实际应用中发挥着重要的作用。
函数是一种映射关系,它将一个集合中的元素映射到另一个集合中的元素;而方程则是等式的表示形式,在其中未知数与已知数之间建立了关系。
尽管它们在概念上有所不同,但函数和方程之间存在着紧密的联系。
本文将深入探讨函数与方程之间的这种联系,并提供一些观点和理解。
2. 函数与方程的定义及基本属性2.1 函数的定义函数可以看作是一种映射关系,它将集合A中的元素通过某种规则映射到集合B中的元素,记作f: A → B。
其中,A称为定义域,B称为值域。
函数的定义可以采用不同的表达方式,如显式表达、隐式表达或参数表达式。
2.2 方程的定义方程是等式的表达形式,其中包含一个或多个未知数和已知数之间的关系。
方程可以是线性的、非线性的,也可以是代数方程、函数方程等等。
3. 函数与方程的关系3.1 函数的图像与方程的解的关系函数的图像是函数在坐标平面上的表示,它展示了函数的性质和行为。
而方程的解是满足方程等式的未知数的取值。
函数的图像与方程的解之间存在着密切的联系。
对于给定的函数f(x),我们可以将其转化为方程f(x) = 0,并求解这个方程,得到函数的零点或根,也就是函数的图像与x轴的交点。
3.2 方程与函数图像的交点方程和函数图像的交点是方程的解和函数的零点。
通过解方程和求函数的零点,我们可以找到方程与函数图像的交点。
这些交点在坐标平面上有特定的位置和特征,它们揭示了方程和函数图像之间的关系。
4. 函数与方程的应用函数和方程在数学和现实生活中有广泛的应用。
例如:4.1 函数在数学分析中的应用函数作为数学分析的基础,广泛应用于微积分、实分析和复分析等领域。
函数的性质与方程的解密切相关,在数学分析中,我们需要研究函数的连续性、可导性以及函数的极值等等,这些问题与方程的解有着紧密的联系。
4.2 方程在物理学中的应用方程在物理学中有着重要的应用。