等式的性质(一)
- 格式:ppt
- 大小:1.36 MB
- 文档页数:19
课题:等式性质(一)第 1 周第3课时课型新授课教学方法讲授法、探究法、归纳法教学内容课本5---7页内容教学目标1、在具体的活动中,体验和理解等式的性质,会用等式的性质解简单的方程;2、理解方程的解(得数)和解方程(过程)的意义并能正确的求出方程的解。
3、掌握解方程的方法,并能正确的解加减法方程。
4、能用解方程方法解决一些简单的现实问题,在解决问题的过程中,感受方程与现实生活的紧密联系,形成应用意识。
教学重难点重点:掌握解方程的一般步骤。
难点:能正确解方程。
教具准备天平、砝码、课件教学活动过程一、情境导入,提出问题(一)观察信息,提出问题师:同学们,你们喜欢小动物吗?今天老师带来了几幅国家一级保护动物的图片,你们认识它们吗?预设:金丝猴。
师:今天这节课,就以金丝猴为话题,来研究其中的数学问题。
课件出示。
(见图1)师:从图中你能发现哪些数学信息?图1预设1:笼重150克。
预设2:小金丝猴和笼的总质量是500克。
师:根据以上信息,你能提出什么数学问题?教师根据学生的表述,筛选出“小金丝猴重多少克”,其他的问题放到问题口袋留待以后解决。
【设计意图】以濒临灭绝的珍稀动物金丝猴的真实数据为素材,一方面提高学生数学的兴趣,同时培养学生保护珍稀动物的意识。
(二)分析数量关系,列出方程你能根据情境图中的信息写出等量关系式吗?预设1:500-150=350(克)预设2:小金丝猴的质量+笼子的质量 =小金丝猴和笼的总质量预设3:小金丝猴和笼的总质量-小金丝猴的质量=笼子的质量若有学生说出预设2的数量关系,教师有选择的板出第1种并适当引导:第1种思路相对更简单一些。
板书:小金丝猴的质量+笼子的质量 =小金丝猴和笼的总质量师:如果用X表示小金丝猴的质量,你能列方程解答吗?先自己想一想,再把你的想法在小组里交流。
学生汇报:如用x表示小金丝猴的质量,上面的等式可写成x+150=500 师:怎样求未知数x呢?请大家一起借助教具天平来研究一下。
3.1.2等式的性质(第一课时)濮阳县农三中:郭志庚学习目标知识:(1)理解等式的两个性质;(2)会用等式的性质解简单的(用等式的一条性质)一元一次方程;;(3)培养学生观察、分析、概括及逻辑思维能力;;方法:(1)通过观察、分析、推理,理解等式性质;(2)初步体会有条理的推理。
(3)初步学会从数学的角度分析解决问题;情感:(1)体验数学活动充满着探索和创造;(2)初步形成实事求是的态度与独立思考合作交流的习惯。
学习重点理解和应用等式的性质学习难点应用等式的性质把简单的一元一次方程化成“x=a”的形式。
教具准备天平、砝码教学流程【导课】1、师:从上节可知,简单的方程可以估算出其解,你能用这种方法求出方程(1)5x+2=7 (2)0.28-0.13y=0.27y+1的解吗?生:第(1)题能解答,第(2)题不好估算。
师:要想得到方程的答案,第(1)题估算很容易,但第(2)题估算比较困难,对于复杂的方程的解,我们必须学习解一元一次方程的方法.在这之前,我们必须先学习等式的性质----板书课题。
2、阅读质疑,自主探究实验演示师:请同学们仔细观察实验的过程,对实验中发现的疑惑提出来。
(教师可以进行两次不同物体的实验,学生独立思考,小组交流,代表发言.)【阅读质疑,自主探究】师:通过上述实验,从中你能发现什么规律?从左往右看,如果在天平两边都加上同样的量,结果会怎样?从右往左看呢?【阅读质疑,自主探究】师:请同学们仔细阅读P82,回忆刚才的实验,完成以上的问题。
【阅读质疑,自主探究】采用随机抽查的方法提问【多边互动,合作探究】根据班级情况将班内人数适当的分组,充分调动每位学生参与课堂的积极性。
【阅读质疑,自主探究】在学生叙述发现的规律后,教师进一步引导:等式就像平衡的天平,它具有与上面的事实同样的性质.比如“8=8”,我们在两边都加上6,就有“8+6=8+6”;两边都减去11,就有“8-11=8-11”师:问题1:你能用文字来叙述等式的这个性质吗?生:可以,学生叙述(教师板书展示:等式性质1,在学生回答的基础上,教师必须说明:等式两边加上的可以是同一个数,也可以是同一个式子.)师:问题2:等式一般可以用a=b来表示.等式的性质1怎样用式子的形式来表示?生:叙述(教师给与补充)【多边互动,合作探究】例1.利用等式的性质解方程(1)x+7=26分析:所谓“解方程”,就是要求出方程的解“x=?’’因此我们需要把方程转化为“x=a(a为常数)”形式。
初中数学什么是等式的性质等式是数学中的基本概念,它表示两个表达式的值相等。
等式的性质是指等式在代数运算中具有的一些基本性质和规律。
了解等式的性质对于理解和解决数学问题非常重要。
下面将详细介绍等式的性质。
一、等式的基本性质1. 反身性:任何数与自身相等,即a = a。
2. 对称性:如果a = b,那么b = a。
等式两边的值可以互相交换位置。
3. 传递性:如果a = b,b = c,那么a = c。
等式的传递性表示如果两个等式具有相同的值,那么它们之间也相等。
二、等式的运算性质1. 等式的加法性质:如果a = b,那么a + c = b + c。
等式两边同时加上(或减去)相同的数,等式仍然成立。
2. 等式的乘法性质:如果a = b,那么a * c = b * c。
等式两边同时乘以(或除以)相同的数,等式仍然成立。
需要注意的是,除数不能为零。
3. 等式的幂运算性质:如果a = b,那么a^n = b^n。
等式两边同时进行相同的幂运算,等式仍然成立。
4. 等式的根号运算性质:如果a = b,那么√a = √b。
等式两边同时进行相同的根号运算,等式仍然成立。
5. 等式的倒数性质:如果a = b,那么1/a = 1/b。
等式两边取倒数,等式仍然成立。
需要注意的是,a 和 b 都不能为零。
三、等式的替代性质1. 等式的代入性质:如果a = b,那么在等式中可以用a 替代b,或用b 替代a。
等式的代入性质可以简化计算,方便求解问题。
2. 等式的合并性质:如果a = b,c = d,那么a + c = b + d 或a * c = b * d。
等式的合并性质可以将多个等式合并成一个等式,简化计算过程。
四、等式的消去性质1. 等式的加法消去性质:如果a + c = b + c,那么a = b。
等式两边同时减去相同的数,等式仍然成立。
2. 等式的乘法消去性质:如果a * c = b * c,且c ≠ 0,那么a = b。
七年级等式的性质1听课记录教学中我先利用课件演示了天平两端同时加上或减去同样的重量,同时扩大或缩小相同倍数,天平任然保持平衡,目的是让学生直观感受天平保持平衡原理,为学生迁移类推到方程中打基础。
然后出示例1,让学生列出方程x+3=9,用课件演示x+3个方块=9个方块,提问:“如果要称出x有多种,改怎么办?”,引导学生思考,只要将天平两端同时减去3个方块,天平仍平衡,得到一个x相当于6个方块,从而得到x=6。
你能把称的过程用算式表示出来吗?大部分学生快速的写出了我想要的答案:x+3-3=9-3,于是我问:为什么方程两边要同时减去3,而不减去其它数呢?学生沉默,终于有两双小手举起来了,“为了得到一个x得多少”,我又强调了一遍,我们的目标是求一个x的多少,所以要把多余的3减去,为了不耽误更多的时间,我没有继续深入探究。
接下来教学例2,同样我利用天平原理帮助学生理解,在学生说出要把天平两端平均分成3分,得到每份是6的基础上,我用课件演示了分的过程,让学生把演示过程写出来,从而解出方程。
在此基础上我引导学生总结天平保持平衡的道理,得到等式的基本性质:方程的两边同时加上或减去相同的数,除以或乘上同一个不为0的数,方程两边仍然相等。
按理说,只要稍加类推,学生应该能掌握方程的解法。
但接下来的练出人意料,除了少数成绩较好的学生能按照要求完成外,大部分几乎不会做,甚至动不了笔。
问题出在哪里?经过认真反思总结如下:一是从天平过渡到方程,类推的过程学生理解不透,天平两端同时减去3个方块,就相当于方程两边同时减去3,这个过程写下来时,要强调左右两边原来状态保持不变,要原样写下来,如果这样的话就不会造成有的学生不会格式。
二是对为什么要减去3讨论不够,虽然有学生回答上来了,我应该能觉察出学生理解有困难,课件和天平能让学生懂得方程两边要同时减去相同的数,至于为什么这里要减去3却还似懂非懂,如果当时举例说明也许很有效果,比如:x-3=6,我们该怎么办呢?学生通过对比讨论,就会发现我们要求出一个x是多少,就要根据方程的具体情况,若比x多余的就要减去,不足x的就要补足,这样效果肯定好些。