精选七年级数学上册第七章一元一次方程7-3一元一次方程的解法同步练习新版青岛版
- 格式:doc
- 大小:68.50 KB
- 文档页数:4
青岛版数学七年级上册《7.2 一元一次方程》教学设计一. 教材分析《7.2 一元一次方程》是青岛版数学七年级上册的一个重要内容。
本节内容主要让学生了解一元一次方程的概念、性质和解法,培养学生解决实际问题的能力。
教材通过引入实际问题,引导学生认识一元一次方程,并通过对方程的变形和求解,使学生掌握一元一次方程的解法。
二. 学情分析七年级的学生已具备了一定的数学基础,对代数知识有一定的了解。
但部分学生对代数式的运算和方程的解法还不够熟练。
因此,在教学过程中,教师需要关注学生的个体差异,引导学生逐步掌握一元一次方程的解法,并能够运用到实际问题中。
三. 教学目标1.理解一元一次方程的概念,掌握一元一次方程的解法。
2.能够运用一元一次方程解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.重难点:一元一次方程的概念、性质和解法。
2.难点:一元一次方程的解法和实际问题的运用。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动参与课堂。
2.讲授法:教师讲解一元一次方程的概念、性质和解法,引导学生理解和掌握。
3.实践操作法:让学生通过实际操作,巩固一元一次方程的解法。
4.小组合作学习:学生分组讨论,共同解决问题,培养学生的团队协作能力。
六. 教学准备1.课件:制作课件,展示一元一次方程的相关概念、性质和解法。
2.练习题:准备一些一元一次方程的实际问题,用于巩固所学知识。
3.教学工具:黑板、粉笔、投影仪等。
七. 教学过程1.导入(5分钟)利用课件展示一些实际问题,引导学生思考如何用数学方法解决问题。
例如,某商场举行打折活动,原价100元的商品现价80元,问打几折?2.呈现(10分钟)介绍一元一次方程的概念、性质和解法。
通过示例,讲解一元一次方程的解法步骤:去分母、去括号、移项、合并同类项、系数化为1。
3.操练(10分钟)让学生分组讨论,解决一些实际问题。
教师巡回指导,解答学生的疑问。
北师⼤版七年级数学上册章节同步练习题(全册-共57页)北师⼤版七年级数学上册章节同步练习题(全册,共57页)⽬录第⼀章丰富的图形世界1 ⽣活中的⽴体图形2 展开与折叠3 截⼀个⼏何体4 从三个⽅向看物体的形状单元测验第⼆章有理数及其运算1 有理数2 数轴3 绝对值4 有理数的加法5 有理数的减法6 有理数加减混合运算7 有理数的乘法 8 有理数的除法9 有理数的乘⽅ 10 科学记数法11 有理数的混合运算 12 ⽤计算器进⾏运算单元测验第三章整式及其加减1 字母表⽰数2 代数式3 整式4 整式的加减5 探索与表达规律单元测验第四章基本平⾯图形1 线段射线直线2 ⽐较线段的长短3 ⾓ 4⾓的⽐较5 多边形和圆的初步认识单元测验第五章⼀元⼀次⽅程1 认识⼀元⼀次⽅程2 求解⼀元⼀次⽅程3 应⽤⼀元⼀次⽅程——⽔箱变⾼了4 应⽤⼀元⼀次⽅程——打折销售5 应⽤⼀元⼀次⽅程——“希望⼯程”义演6 应⽤⼀元⼀次⽅程——追赶⼩明单元测验第六章数据的收集与整理1 数据的收集2 普查和抽样调查3 数据的表⽰4 统计图的选择第⼀章丰富的图形世界1.1⽣活中的⽴体图形(1)基础题:1.如下图中为棱柱的是()2.⼀个⼏何体的侧⾯是由若⼲个长⽅形组成的,则这个⼏何体是()A.棱柱 B.圆柱 C.棱锥 D.圆锥3.下列说法错误的是()A.长⽅体、正⽅体都是棱柱 B.三棱柱的侧⾯是三⾓形C.直六棱柱有六个侧⾯、侧⾯为矩形 D.球体和圆是不同的图形4.数学课本类似于,⾦字塔类似于,西⽠类似于,⽇光灯管类似于。
5.⼋棱柱有个⾯,个顶点,条棱。
6.⼀个漏⽃可以看做是由⼀个________和⼀个________组成的。
7.如图是⼀个正六棱柱,它的底⾯边长是3cm,⾼是5cm.(1)这个棱柱共有个⾯,它的侧⾯积是。
(2)这个棱柱共有条棱,所有棱的长度是。
提⾼题:⼀只⼩蚂蚁从如图所⽰的正⽅体的顶点A沿着棱爬向有蜜糖的点B,它只能经过三条棱,请你数⼀数,⼩蚂蚁有种爬⾏路线。
2021-2022学年度 秋季 七年级上学期 人教版数学解一元一次方程练习题1.解方程(1)162=+x (2)7233+=+x x 2.解方程:22141+-=x x 3. 解方程:17)5.0(4=++x x4. 解方程:4)1(2=--x5. 解方程:)20(41)14(71+=+x x6. 解方程:)7(3121)15(51--=+x x 7. 解方程:x x x 65)2132(342=⎥⎦⎤⎢⎣⎡--8. 解方程:3.05.03.02.03.05.0x x -=- 9. 解方程:3)7(2235)3(2--=+x x x10. 解方程:)2(512)1(21+-=-x x 11. 解方程: 1615312=--+x x人教版七年级数学上册必须要记、背的知识点1.有理数:(1)凡能写成)0p q ,p (pq≠为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数; (2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ; (3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. (4)相反数的商为-1.(5)相反数的绝对值相等 4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ;(3)0a 1aa >⇔= ;0a 1aa <⇔-=;(4) |a|是重要的非负数,即|a|≥0; 5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。
3.2.1 一元一次方程的解法(一)合并同类项 分层作业1.对于方程8x +6x -10x =8,合并同类项正确的是( )A .3x =8B .4x =8C -4x =8D .2x =82.下列方程中可直接用合并同类项解的是( )A. 0.562B. 32111C. 5237 D. 724x x x x x x y y y +=--=++=+=+ 3.下列解为x =4的方程是( )A .7x -3x =-4B .x +x =5+3C .x =-1+3D .-2x =84.方程353122x x --=-的解为( ) A.x=-3 B.x=−13 C.x=3 D.x=135.下列解方程的过程中,正确的是( )A .-2m +3m =4,得-5m =4B .4y -2y +y =4,得(4-2)y =4C .-12x =0,得x =0 D .2x =-3,得x =-236.下列各方程合并同类项不正确的是( ) A.由3x-2x=4合并同类项,得x=4 B.由2x-3x=3合并同类项,得-x=3C.由5x-2x+3x=12合并同类项,得x=-2D.由7252x x -+=合并同类项,得352x -= 7. 挖一条长为1200米的水渠,由甲、乙两队从两头同时施工,甲队每天挖150米,乙队每天挖90米,需要几天才能挖好?设需要x 天才能挖好,则列出的方程为( )A .150x +90x =1200B .150+90x =1200C .150x +90=1200D .150x -90x =12008.解方程8x -3x =10,合并同类项得__________,解得x =_____;若3a -1与1-2a 互为相反数,则a =_____.9.某数的5倍比这个数的8倍少12,则这个数是_________.10.若关于x 的方程231mx m +=-与363x x +=-的解相同,则m 的值为 .11.某校三年共购买计算机140台,去年购买的数量是前年的2倍,今年购买的数量是去年的2倍,则前年这个学校购买了 台计算机;12.小王的妈妈买回一筐苹果,小王吃了13,弟弟吃了12,还剩下4个苹果,则妈妈买回的这筐苹果共有_______个.13.某班学生共40人,外出参加植树活动,根据任务不同,要分成三个小组且使甲、乙、丙三个小组人数之比为1︰2︰5,则甲组有________人.14.一个长方体的长、宽、高之比为5:4:3,长比高长4cm ,那么这个长方体的体积是 ;15.在日历中圈出一竖列上相邻的3个数,使它们的和为42,则所圈数中最小的是 .16.解下列方程:(1)4x +6x =2+6; (2)23y -y =10-5; (3)2.4x -3x -1.4x =5.2-8;17.同一个箱子,如果装橙子可以装 18 个,如果装梨可以装 16个,现有橙子、梨共 400个而且装梨的箱子的个数是装橙子的箱子的 2 倍请问装橙子和装梨的箱子各有多少个?18.某校为开展乒乓球运动,花钱购买了一些乒兵球运动器材,其中购买球网、球拍和乒兵球的总费用是1320 元,购买这三样器材的费用之比是3:6:2那么购买球网的费用是多少元?19.某种药含有甲、乙、丙3种草药,这3种草药的质量比是2:3:7,现在要配制1440g 这种中药,这3种草药分别需要多少克?20.若x m =是关于x 的方程112x m -=的解,则m 的值为( ) A.0 B.2 C.-2 D.-621.若三个连续偶数的和为24,则它们的积为( )A.48B.480C.240D.12022.小涵在 2020 年某月的月历上圈出了三个数 a ,b ,c ,并求出了它们的和为 30,则这三个数在月历中的排列位置不可能是()23.对任意四个有理数a ,b ,c ,d ,定义新运算:⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,已知⎪⎪⎪⎪⎪⎪2x -4x 1=18,则x 的值是_____. 24.如图,8块相同的长方形地砖拼成了一个长方形图案(地砖间的缝隙忽略不计),求每块地砖的宽.设每块地砖的宽为x cm ,根据题意,列出的方程为_______________________.25.现有一些分别标有-1,2,-4,8,-16,32,…的卡片,这些卡片上的数字是按一定规律排列的,小明拿到了相邻的三张卡片,且卡片上的数字之和为96,则小明拿到的三张卡片上分别标有什么数字?26.某体育场的环形跑道长400 米,二人在跑道练习跑步,已知甲平均每分钟跑250 米,乙平均每分钟跑290米.(1)两人同时从同一地点同向而行,经过多长时间两人才能第一次相遇?(2)两人同时从同一地点出发,相向而行,经过多少分钟两人第一次相遇?3.2.1 一元一次方程的解法(一)合并同类项 分层作业1.对于方程8x +6x -10x =8,合并同类项正确的是( )A .3x =8B .4x =8C -4x =8D .2x =8【答案】B.【分析】根据合并同类项法则,即可判断【详解】8x +6x -10x =8合并同类项,得 4x=8故选B.【点睛】本题主要考查了利用合并同类项的方法解一元一次方程,熟练掌握合并同类项法则是解题的关键.2.下列方程中可直接用合并同类项解的是( )A. 0.562B. 32111C. 5237 D. 724x x x x x x y y y +=--=++=+=+ 【答案】B.【分析】根据合并同类项解一元一次方程的特征,即可判断【详解】略【点睛】本题主要考查了利用合并同类项的方法解一元一次方程,熟练掌握合并同类项法则是解题的关键.3.下列解为x =4的方程是( )A .7x -3x =-4B .x +x =5+3C .x =-1+3D .-2x =8【答案】B.【分析】根据合并同类项法则,求出解,即可判断【详解】A .7x -3x =-4 合并同类项,得4x=-4,系数化为1,得 x=-1B .x +x =5+3 合并同类项,得2x=8,系数化为1,得 x=4C .x =-1+3 合并同类项,得x=2D .-2x =8 系数化为1,得 x=-4故选B.题的关键.4.方程353122x x --=-的解为( ) A.x=-3 B.x=−13 C.x=3 D.x=13【答案】A.【分析】根据合并同类项法则,求出解,即可判断【详解】353122--=-x x 合并同类项,得−92x=32.系数化为1,得 x=-3.故选A.【点睛】本题主要考查了利用合并同类项的方法解一元一次方程,熟练掌握合并同类项和系数化为1是解题的关键.5.下列解方程的过程中,正确的是( )A .-2m +3m =4,得-5m =4B .4y -2y +y =4,得(4-2)y =4C .-12x =0,得x =0 D .2x =-3,得x =-23【答案】C.【分析】根据合并同类项法则和系数化为1,求出解,即可判断【详解】A .-2m +3m =4,得-m =4B .4y -2y +y =4,得(4-2+1)y =4,3y=4C .-12x =0,得x =0 D .2x =-3,得x =-32故选C.题的关键.6.下列各方程合并同类项不正确的是()A.由3x-2x=4合并同类项,得x=4B.由2x-3x=3合并同类项,得-x=3C.由5x-2x+3x=12合并同类项,得x=-2D.由7252x x-+=合并同类项,得352x-=【答案】C.【分析】根据合并同类项法则,求出解,即可判断【详解】A.由3x-2x=4合并同类项,得x=4 ,正确;B.由2x-3x=3合并同类项,得-x=3,正确;C.由5x-2x+3x=12合并同类项,得x=-2,合并后应为6x=12,解得x=2,错误;D.由7252x x-+=合并同类项,得352x-=,正确.故选C【点睛】本题主要考查了利用合并同类项的方法解一元一次方程,熟练掌握合并同类项和系数化为1是解题的关键.7. 挖一条长为1200米的水渠,由甲、乙两队从两头同时施工,甲队每天挖150米,乙队每天挖90米,需要几天才能挖好?设需要x天才能挖好,则列出的方程为( )A.150x+90x=1200 B.150+90x=1200 C.150x+90=1200 D.150x-90x=1200【答案】A.【分析】根据题意,找等量关系,设未知数,列方程.【详解】解设需要x天才能挖好.由题意得,150x+90x=1200故选A8.解方程8x-3x=10,合并同类项得__________,解得x=_____;若3a-1与1-2a互为相反数,则a=_____.【答案】5x=10;2;0.【分析】根据合并同类项法则,求出解.【详解】8x -3x =10,合并同类项,得5x=10系数化为1,得x =2.因为若3a -1与1-2a 互为相反数,∴3a-1+1-2a=0合并同类项,得a=0【点睛】本题主要考查了利用合并同类项的方法解一元一次方程,熟练掌握合并同类项和系数化为1是解题的关键.9.某数的5倍比这个数的8倍少12,则这个数是_________.【答案】4.【分析】列出方程,根据合并同类项法则,求出解.【详解】8x -5x =12,合并同类项,得3x=12系数化为1,得x=4.【点睛】本题主要考查了利用合并同类项的方法解一元一次方程,熟练掌握合并同类项和系数化为1是解题的关键.10.若关于x 的方程231mx m +=-与363x x +=-的解相同,则m 的值为 . 【答案】37- 【分析】同解方程,根据合并同类项法则,求出363+=-x x 的解.再把解代入到231+=-mx m 中,求出m 的值.【详解】363+=-x x合并同类项,得9x=-3系数化为1,得x=-13.把x=-13代入231+=-mx m 中,得-23m+3m=-1解得m=-3711.某校三年共购买计算机140台,去年购买的数量是前年的2倍,今年购买的数量是去年的2倍,则前年这个学校购买了 台计算机;【答案】20【分析】根据题意,找等量关系,设未知数,列方程,利用合并同类项的方法解方程,即可求解.【详解】解设前年购买x 台计算机,则去年购买2x 台,今年购买4x 台。
解一元一次方程阶段性练习1.已知关于x 的方程234=-m x 的解是m x =,则m 的值是( )A 2B 2- C72 D 72- 2.把方程2133123+-=-+x x x 去分母,正确的是( ) A )1(318)12(218+-=-+x x x B )1(3)12(3+-=-+x x xC )1(18)12(218+-=-+x x xD )1(33)12(3+-=-+x x x3.关于x 的一元一次方程032312=--=+xa x 和的解相同,则a 的值是( ) A 7B 0C 3D 54.若关于x 的方程x k x 32)322(3-=--的解与关于x 的方程)3(226+=-x k 的解相同,则k 的值为( ) A.94 B.94- C.35 D.35- 5.下列变形正确的是( )A.方程1214+=+x x ,移项得024=+x xB.方程121321--=+x x ,去分母得1131--=+x x C.565-=-x ,系数化为1得6-=xD.方程15.710710+=+x x ,合并得5.8780=x 6.下列变形正确的是( )A. 从4x=2x -1可得到4x -2x=1B. 从得15x -5=8x+4-1C. 从1-3(2x -1)=2x 得1-6x -3=2xD. 从-3x -2=2x+3得-3x -2x=3+27.已知18)3(2=--m x m 是关于x 的一元一次方程,则( )A.2=mB.3-=mC.3±=mD.1=m 8.已知3是关于x 的方程12=-a x 的解,则a 的值是( )A.5-B.5C.7D.2 9.解下列方程①-2x=4,x=________. ②-3x=0,x=________ ③3x-4=-1,x=________.10.已知关于x 的方程ax+4=0的解是x=-2,则a=________. 11.当a 时,方程043)1(=-++a x a 是关于x 的一元一次方程. 12.若25+x 与92+-x 互为相反数,则2-x 的值为 . 13.已知关于x 的方程4422-=-bx x a 的解是2=x ,其中0≠a 且0≠b ,则代数式abb a -的值为 .14.如果()01122=+++-y x x ,则21xy -的值是 . 15.当=x ___时,代数式24+x 与93-x 的值互为相反数.16.已知08)1()1(22=++--x m x m 是关于x 的一元一次方程,则m= . 17.已知2-=x 是方程042=-+m x 的根,则m = .18.下面的移项对不对?如果不对,应如何改正?(1)从x +5=7,得到x =7+5 (2)从5x =2x -4,得到5x -2x =4 (3)从8+x =-2x -1到x +2x =-1-8 19、请说出下列方程的第一步的解题步骤和依据① x –3=12 ② -3y=-15③ 11x+3=5(2x+1) ④ 13223-=--x x20、下面是某位同学解的一个方程,请你判断一下是否正确.若不正确,请你找出所有错误之处,并说出错误的原因,然后写出正确的解法. 解方程:16110312=+-+x x 解:去分母,得 2(2x+1)-10x+1=1 去括号,得 4x+1-10x+1=1移项,得 4x -10x=1-1-1合并同类项,得-6x=-1系数化为1,得 x=620.解方程:(1)3x=12+2x ; (2)-6x-7=-7x+1(3)3(2x+5)=2(4x+3)–3 (4)x 4352x =+(5))2(2)1(5121+-=-x x (6) -x=-152+x(7)1)23(2151=--x x (8)62x 12x 23x +-=--(9)(10)413)1(2121-=⎥⎦⎤⎢⎣⎡--x x x21.已知y 1=4x+8,y 2=3x –7 (1) 当x 取何值时,y 1=y 2?(2) 当x 取何值时,y 1与y 2 互为相反数?22、已知代数式2166+-x 的值与43614-x 的值互为相反数,求代数式x 的值?23、已知x=2是关于x 的方程7+2(m -x )=2x 的解,那么关于y 的方程m (y -1)=(m+2)(3y -4)的解是多少?24.若关于x 的方程m x m x =+=-2342和有相同的解,求m 的值.25、一名七年级的小学生,一次解方程2121011326x x m x -++-=-去分母时由于忽视了分数线的作用而变形为4x-2-6x+3m=10x+1-6, 从而求得方程的解喂x=0.5求m 的值和方程正确解26. 若对于任意的两个有理数m, n 都有m ※n=43nm +,解方程3x ※4=2.。
人教版七年级上册 一元一次方程计算题专练(含答案)1.解方程:212132x x -+=+2.解方程:(1)()104x 32x 1+-=-; (2)14y 2y 1y 25-+=-.3.解方程(1)2x 13x 2x 1124+--=-. (2)x 0.160.1x 80.50.03--=4.解方程.(1)()83520x x -+= (2)1:225%:0.753x =(3) 2940%316x ÷=5.解方程(1)5322x -=; (2)3254x x -=-(2)5(31)2(42)8-=+-x x ; (4)2114135-+=-x x6.解下列方程或方程组(1)2x ﹣1=x+9 (2)x+5=2(x ﹣1)(3)43135x x --=- (4)3717245x x -+-=-7.解方程:(1)()12142x x x ⎛⎫--=- ⎪⎝⎭ (2)132123x x +-+=8.解方程:(1) 2534x x -=+ (2)341125x x -+-=9.解方程(1)2x+5=5x -7; (2)3(x -2)=2-5(x+2);(4)12x + +43x -=2; (4)12311463x x x -++-=+.10.解方程:(1)4(x﹣2)=2﹣x;(2)3121243y y+-=-.11.解方程:21122 323 x xx-++=-12.解方程:(1)2x+3=x+5;(2)2(3y–1)–3(2–4y)=9y+10;(3)3157146y y-+-=;(4)3(1)1126x x++=+.13.解方程25321 68x x+--=14.解方程:(1)51312423-+--=x x x;(2)30.4110.50.3---=x x15.解方程x ﹣13x -=36x -﹣116.解方程:(1)3x 158+=; (2)()7x 22x 310--=; (3)x 22x 1146+--=17.解方程 (1)5y ﹣2(y +4)=6 (2)2121136x x -+-=-18.111(9)(9)339x x x x ⎡⎤---=-⎢⎥⎣⎦19.解方程并在每一步后面写出你的依据.212163+--x x =120.解方程:32384x -=.21.解下列方程:(1)11(32)152x x --=; (2)131122x x +-=--;(3)243148x x --=-; (4)113(1)(21)234x x x ⎡⎤--=+⎢⎥⎣⎦ 参考答案1.14x =【解析】【分析】按照解一元一次方程的步骤,去分母,去括号,移项,合并同类项,系数化为1,即可求出解.【详解】解:去分母得:2(21)3(2)6x x -=++,去括号得:42366x x -=++,移项得:43662x x -=++,合并同类项得:14x =.【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤是解题关键.2.(1)1x 2=;(2)y 2=-. 【解析】【分析】 ()1方程去括号,移项合并,把x 系数化为1,即可求出解;()2方程去分母,去括号,移项合并,把y 系数化为1,即可求出解..【详解】解:()1去括号得:104x 122x 1+-=-,移项得:4x 2x 11012-=--+,合并得:2x 1=, 解得:1x 2=; ()2去分母得:()5y 1024y 210y +=--,去括号得:5y 108y 410y +=--,移项得:5y 8y 10y 410-+=--,合并得:7y 14=-,解得:y 2=-.此题考查了解一元一次方程,解题关键在于掌握其步骤为:去分母,去括号,移项合并,把x 系数化为1,求出解.3.(1)x=1(2)x=52【解析】【分析】(1)先分母,再去括号,合并移项即可求解;(2)先把分母化成整数,再求解方程的解.【详解】(1)2x 13x 2x 1124+--=-()12x 21123(32)x x -+=--12x -2x -1=12-9x+619x=19,x=1(2)x 0.160.1x80.50.03--=1610x283x --=6x -16+10x=2416x=40 x=52此题主要考查一元一次方程的求解,解题的关键是熟知一元一次方程的解法.4.(1)20x;(2)12x =;(3)1516x = 【解析】【分析】(1)原式去括号,移项然后系数化为1即可得出答案;(2)把原式中的百分数转化为分数的形式,然后比例转化为乘法计算,运用乘法法则计算即可得出答案;(3)把原式中的百分数转化为分数的形式,然后等式两边乘以23,再利用除法法则计算即可得出结果.【详解】(1)解:83520x x --= 20x(2)解:1120.7543x ⨯=⨯ 12x = (3)解:2925163x =⨯ 1516x = 【点睛】本题主要考查解一元一次方程,根据等式的性质进行解答即可.5.(1)5x =;(2)1x =;(3)17x =;(4)72x =.【分析】(1)(2)依次移项,合并同类项,系数化为1即可得解;(3)依次去括号、移项,合并同类项,系数化为1即可得解;(4)依次去分母、去括号、移项,合并同类项,系数化为1即可得解【详解】解:(1)移项得5223x =+,合并同类项得525x =系数化为1得5x =;(2)移项得3524x x -=-合并同类项得22x -=-系数化为1得1x =;(3)去括号得155848x x -=+-移项得158485x x -=+-+合并同类项得71x =系数化为1得17x =;(4)去分母得5(21)3(14)15x x -=+-去括号得10531215x x -=+-移项得10123515x x -=+-合并同类项得27x -=-系数化为1得72x =.本题考查解一元一次方程,需注意,移项要变号,去分母时,没有分母的项也要乘以分母的最小公倍数,去括号时,括号外面的数与括号里面的每一项都要相乘.6.(1)10x = (2)7x = (3) 5.5x = (4)13x =【解析】【分析】解:(1)对移项合并2x ﹣1=x+9即可得到答案;(2)先去括号得x+5=2x ﹣2,移项合并,再系数化为1即可得到答案;(3)去分母得20﹣5x =3x ﹣9﹣15,移项合并,再系数化为1即可得到答案;(4)去分母得40﹣15x+35=﹣4x ﹣68,移项合并,再系数化为1即可得到答案.【详解】解:(1)对2x ﹣1=x+9移项合并得:x =10;(2)去括号得:x+5=2x ﹣2,移项合并得:﹣x =﹣7,系数化为1得:x =7;(3)去分母得:20﹣5x =3x ﹣9﹣15,移项合并得:﹣8x =﹣44,系数化为1得:x =5.5;(4)去分母得:40﹣15x+35=﹣4x ﹣68,移项合并得:﹣11x =﹣143,系数化为1得:x =13.本题考查解一元一次方程,解题的关键是掌握解一元一次方程的基本解题步骤.7.(1)1x =;(2)3x =【解析】【分析】利用等式的性质解一元一次方程即可解答.【详解】(1)()12142x x x ⎛⎫--=- ⎪⎝⎭解:去括号得:2142x x x -+=-移项合并同类项得:33x -=-系数化为1得:1x =(2)132123x x +-+= 解:去分母得:3(1)2(32)6x x ++-=去括号得:33646x x ++-=移项合并同类项得:3x -=-系数化为1得:3x =【点睛】本题考查了解一元一次方程,难度较低,熟练掌握等式的性质以及解一元一次方程是解题关键. 8.(1)x=14-(2)x=-9【分析】(1)根据一元一次方程移项合并即可求解;(2)去分母后,再根据一元一次方程的解法即可求解.【详解】(1) 2534x x -=+-8x=2 x=14- (2)341125x x -+-= 5(x -3)-2(4x+1)=105x -15-8x -2=10-3x=27x=-9【点睛】此题主要考查一元一次方程的求解,解题的关键是熟知一元一次方程的解法.9.(1)x=4;(2)14x =-;(3)751x =;(4)5x =-. 【解析】【分析】(1)通过移项、合并同类项、系数化为1即可得解;(2)通过去括号、移项、合并同类项、系数化为1即可得解;(3)(4)都是通过去分母去括号、移项、合并同类项、系数化为1即可得解.【详解】(1)2x+5=5x−7移项得:2x−5x=−7−5合并同类项得:−3x=−12系数化为1得:x=4.(2)3(x−2)=2−5(x+2)去括号得:3x−6=2−5x -10移项得:3x+5x=2-10+6合并同类项得:8x=-2系数化为1得:x=14- .(3)12x + +43x -=2;去分母得: 3(1)2(4)12x x ++-=去括号得: 332812x x ++-=移项得: 321283x x +=+-合并同类项得: 517x =.系数化为1得751x =.(4)12311463x x x -++-=+去分母得: 3(1)122(23)4(1)x x x --=+++去括号得: 33124644x x x --=+++移项得: 34464312x x x --=+++合并同类项得: 525x -=系数化为1得: 5x =-.【点睛】本题考查解一元一次方程,解一元一次方程的一般步骤是:(1)去分母(即在方程两边都乘以各分母的最小公倍数,去各项中的分母);(2)去括号(即按先去小括号,再去中括号,最后去大括号的顺序,逐层把括号去掉);(3)移项(即把含有未知数的项都移到方程的一边,其它项都移到方程的另一边。
【精选】人教版七年级上册数学第三章《一元一次方程》知识点+典型例题知识点、概念总结1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。
3.条件:一元一次方程必须同时满足4个条件:(1)它是等式;(2)分母中不含有未知数;(3)未知数最高次项为1;(4)含未知数的项的系数不为0.4.等式的性质:等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。
等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。
等式的性质三:等式两边同时乘方(或开方),等式仍然成立。
解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立。
5.合并同类项(1)依据:乘法分配律(2)把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项(3)合并时次数不变,只是系数相加减。
6.移项(1)含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。
(2)依据:等式的性质(3)把方程一边某项移到另一边时,一定要变号。
7.一元一次方程解法的一般步骤:使方程左右两边相等的未知数的值叫做方程的解。
一般解法:(1)去分母:在方程两边都乘以各分母的最小公倍数;(2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号(4)合并同类项:把方程化成ax=b(a≠0)的形式;(5)系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.8.同解方程如果两个方程的解相同,那么这两个方程叫做同解方程。
9.方程的同解原理:(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。
(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。
7.3一元一次方程的解法
一、选择题
1.方程6x =3+5x 的解是( ).
A .x =2
B .x =3
C .x =-2
D .x =-3
2.下列方程中,是以x =4为根的方程为( ).
A .3x -5=x +1
B .=-x
C .3(x -7)=-9
D .-2
x =2 3.已知方程(m -1)+2=0是一元一次方程,则m 的值是( ).
A .1
B .-1
C .1或-1
D .0
4.下列变形中,属于移项的是( ).
A .由3x =-2,得x =-
23
B .由2x =3,得x =6
C .由5x -7=0,得5x =7
D .由-5x +2=0,得2-5x =0
5.已知x =2是方程ax +3bx +6=0的解,则3a +9b -5的值是( ).
A .15
B .12
C .-13
D .-14
二、填空题
6.把关于x 的方程ax +2=bx +1(a ≠b )化成一元一次方程的标准形式,是.
7.如果方程(6m -3)x n +3+1=0是关于x 的一元一次方程,那么m ,n .
8.如果x =5是方程ax +5=10-4x 的解,那么a =.
9.如果2a +4=a -3,那么代数式2a +1的值是.
10.如果(m +2)x 2+2x
n +2+m -2=0是关于x 的一元一次方程,那么将它写为不含m ,n 的
方程为.
11.经过移项,使得关于x 的方程mx -3.5=b -2x 中的已知项都在等号右边,未知项都在
等号左边为,当m 时,这个方程的解是
3.52b m ++. 12.方程-3x =16的解是. 三、解答题
13.解下列方程
(1)3x -2=x +1+6x : (2)25y -8=14-25
y .
14.已知x=-7是关于方程nx-3=5x+4的解,求n的值.
15.已知x=-9是方程1
2
(x-1)=
1
3
(2x+3)的解,试求出关于y的方程
1 2[(y+1)-1]=
1
3
[2(y+1)+3]的解.
16.已知3x-6y-5=0,求2x-4y+6的值.
17.一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原两位数.
参考答案
一、
1.B 分析:能使方程左右两边的值相等的未知数的值,叫做方程的解,把各选项依次代入方程的左、右两边,能使左、右两边相等的是x=3,故方程6x=3+5x的解是x=3,故选B.
2.C 分析:根据方程解的定义,把x=4分别代入A、B、C、D中,只有C的左、右两边相等.
3.B 分析:一个方程具备了以下三个条件才能称之为一元一次方程:只含有一个未知数,未知数的次数是1,未知数的系数不等于0.未知数的次数为1,知m只可能是1或-1,由未知数系数不等于0,知m不能等于1,故选B,
点拨:未知数系数不能为0不能忽略.
4.C 分析:把方程中的某一项或某些项改变符号后,从方程的一边移到另一边,是所谓移项,解本题就要把握住两点:一是是否确实有“移”(从等号的一边移到另一边)发生,二是所移之项是否改变了符号,A、B、D中,都没有“移”发生,故选C.
5.D 分析:把x=2代入方程ax+3bx+6=0得2a+6b+6=0,即2a+6b=-6,a+3b=-3,所以3a+9b-5=3(a+3b)-5=3×(-3)-5=-14.
二、
6.(a-b)x+1=0 分析:方程ax+b=0(其中x是未知数,并且a≠0)是一元一次方程的标准形式,所以应移项使右边等于0,并且合并同类项便可得ax+2-bx-l=(a-b)x+1=0.
7.≠1
2
=-2 分析:由n+3=1,求出n=-2;由6m-3≠0,求出m(因为未知数的系数
不能为0),m≠1
2
.
8.-3 分析:因为x=5是方程ax+5=10-4x的解,所以把x=5代入已知方程后,解关于a的方程.解:把x=5代入ax+5=10-4x中则有5a+5=10-4×5,5a=-15,a=-3.
9.-13 分析:先解关于a的方程,求出a的值后代入2a+1.
解:2a+4=a-3,a=-7,把a=-7代入2a+1中得2×(一7)+1=-13.
10.2x-4=0 分析:因原式为一元一次方程,所以x2的系数为0,x的指数为1,则有m+2=0,n+2=1,解之得m=-2,n=-1,把m=-2,n=-1代入可得2x-2-2=0,2x-4=0.
11.mx+2x=b+3.5 ≠-2 分析:移项时注意“变号”,运用等式性质2时注意除数不能为0,则有mx-3.5=b-2xmx+2x=b+3.5(m+2)x=b+3.5,当m+2≠0
时(m≠-2),x=
3.5
2
b
m
+
+
.
12.x=-1
2
解:-
3
x
=
1
6
,两边都乘-3,x=-
1
2
,所以原方程的解为x=-
1
2
.
三、
13.(1)x=-3
4
解:3x-2=x+1+6x,合并:3x-2=7x+1,移项:7x-3x=-3,合并:
4x=-3,同除以4:x=-3
4
.
(2)y=165
16
解:
2
5
y-8=
1
4
-
2
5
y,移项:
2
5
y+
2
5
y=
1
4
+8,合并:
4
5
y=8
1
4
,同乘
5
16
:
y=165 16
.
14.4 分析:根据方程解的定义,把x=-7代入方程左右两边相等,这样就会得到一个含有n,而不含x和其他字母的等式,并且可以把该等式看成是关于n的方程,利用等式的性质把n求出来.解:把x=-7代入方程的左右两边得-7n-3=-35+4,即-7n -3=-31,两边都加上3,得-7n=-28,两边除以-7得n=4.
15.y=-10 分析:仔细观察题目中的两个方程,并且把二者加以比较,可以发现它们的一些相同之处:左右两边系数分别相同,再找他们相异之处,把第二个方程中的(y+1)换成x,就得到第一个方程.
解:∵x=-9是方程1
2
(x-1)=
1
3
(2x+3)的解.∴当y+1=-9时,方程
1
2
[(y+1)-1]
=1
3
[2(y+1)+3],左右两边相等,将y+1=-9的两边都减去1,得y=-10.∴y
=-10时,这个关于y的方程左右两边相等.故y=-10是这个关于y的方程的解.
16.91
3
分析:∵3x-6y-5=0,∴3x-6y=5,3(x-2y)=5,x-2y=
5
3
,而2x-4y+6=
2(x-2y)+6=2×5
3
+6=9
1
3
.
点拨:做题时,有时可以把一个代数式看为一个整体.。