概率论和数理统计知识点总结(超详细版)
- 格式:doc
- 大小:336.02 KB
- 文档页数:11
《概率论与数理统计》第一章概率论的基本概念§ 2 •样本空间、随机事件1•事件间的关系 A B 则称事件B包含事件A,指事件A发生必然导致事件B发生A、」B ={x x w A或x w B}称为事件A与事件B的和事件,指当且仅当A, B中至少有一个发生时,事件 A B发生Ac B ={x x E A且x E B}称为事件A与事件B的积事件,指当A, B同时发生时,事件A'B发生A —B ={x x乏A且x更B}称为事件A与事件B的差事件,指当且仅当A发生、B不发生时,事件A —B发生A* B •:,则称事件A与B是互不相容的,或互斥的,指事件A与事件B不能同时发生,基本事件是两两互不相容的A B = 5且 B =•,则称事件A与事件B互为逆事件,又称事件A与事件B互为对立事件2•运算规则交换律A _• B二B _• A A ' B二B - A结合律(A B) 一C = A 一(B 一C) (A 一B)C = A(B 一C)分配律A _( B - C)二(A 一B厂(A C)A -(B 一 C) =(A - B)(A - C)徳摩根律A = A - B A - B = A B§ 3 .频率与概率定义在相同的条件下,进行了n次试验,在这n次试验中,事件A发生的次数n A称为事件A发生的频数,比值n A n称为事件A发生的频率概率:设E是随机试验,S是它的样本空间,对于E的每一事件A赋予一个实数,记为P(A), 称为事件的概率1 •概率P(A)满足下列条件:(1)非负性:对于每一个事件 A 0乞P(A)乞1(2)规范性:对于必然事件S P(S) =1(3)可列可加性:设A I,A2,…,A n是两两互不相容的事件,有P( A k)=7 P(A k)( n可k」k=1以取::)2.概率的一些重要性质:(i)P( ) =0n n(ii)若A I,A2,…,A n是两两互不相容的事件,则有P( A k)二二P(A k)( n可以取::)k4 k 4(iii )设A,B是两个事件若A B,则P(B _ A) = P(B) _ P(A),P(B) _ P(A)(iv )对于任意事件A, P(A) <1(v)P(A j=1—P(A) (逆事件的概率)(vi )对于任意事件A, B有P(A 一B)二P(A) P(B) - P(AB)§ 4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同若事件A包含k个基本事件,即人=3打}2{気}2…U{e J ,里i i, iz…,i k是1,2, n中某k个不同的数,则有/F \ k A包含的基本事件数巳厲./^卫「飞中基本事件的总数§ 5.条件概率(1)定义:设A,B是两个事件,且P(A) 0,称P(B| 为事件A发生的条P(A)件下事件B发生的条件概率(2)条件概率符合概率定义中的三个条件1。
《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21Λ是两两互不相容的事件,有∑===nk kn k kA P A P 11)()(Y (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21Λ是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()(Y (n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A Y ΛY Y =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21ΛΛ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。
《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B A ⊂ 称为事件A 与事件B 的和事件,指当且仅B}x x x { ∈∈=⋃或A B A 当A ,B 中至少有一个发生时,事件发生B A ⋃称为事件A 与事件B 的积事件,指当B}x x x { ∈∈=⋂且A B A A ,B 同时发生时,事件发生B A ⋂ 称为事件A 与事件B 的差事件,指当且仅B}x x x { ∉∈=且—A B A 当A 发生、B 不发生时,事件发生B A —,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事φ=⋂B A 件B 不能同时发生,基本事件是两两互不相容的,则称事件A 与事件B 互为逆事件,又称事件且S =⋃B A φ=⋂B A A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃ 结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃分配律)()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂徳摩根律BA B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数称为A n 事件A 发生的频数,比值称为事件A 发生的频率n n A 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率1.概率满足下列条件:)(A P (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设是两两互不相容的事件,有n A A A ,,,21 (可以取)∑===nk k n k k A P A P 11)()( n ∞2.概率的一些重要性质:(i )0)(=φP (ii )若是两两互不相容的事件,则有(可以取)n A A A ,,,21 ∑===nk knk kA P A P 11)()(n ∞(iii )设A ,B 是两个事件若,则,B A ⊂)()()(A P B P A B P -=-)A ()B (P P ≥(iv )对于任意事件A ,1)(≤A P (v ) (逆事件的概率))(1)(A P A P -=(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同若事件A 包含k 个基本事件,即,里}{}{}{2]1k i i i e e e A =个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑=§5.条件概率(1)定义:设A,B 是两个事件,且,称为事件A 发生的0)(>A P )()()|(A P AB P A B P =条件下事件B 发生的条件概率(2)条件概率符合概率定义中的三个条件1。
《概率论与数理统计》第一章概率论的基本概念§2.样本空间、随机事件1.事件间的关系 A B 则称事件 B 包含事件 A ,指事件 A 发生必然导致事件 B 发生A B {x x A或x B} 称为事件 A 与事件 B 的和事件,指当且仅当 A ,B 中至少有一个发生时,事件 A B 发生A B {x x A且x B} 称为事件 A 与事件 B 的积事件,指当A,B 同时发生时,事件A B 发生A—B {x x A且x B} 称为事件A 与事件 B 的差事件,指当且仅当 A 发生、B 不发生时,事件 A — B 发生A B ,则称事件 A 与B 是互不相容的,或互斥的,指事件 A 与事件 B 不能同时发生,基本事件是两两互不相容的A B S A B ,则称事件 A 与事件 B 互为逆事件,又称事件 A 与事件 B 互为且对立事件2.运算规则交换律 A B B A A B B A结合律(A B) C A (B C) ( A B)C A(B C)分配律 A (B C)(A B) ( A C)A (B C)(A B)( A C)—徳摩根律 A B A B A B A B§3.频率与概率定义在相同的条件下,进行了n 次试验,在这n 次试验中,事件 A 发生的次数n称为事件AA 发生的频数,比值n nA 称为事件 A 发生的频率概率:设E是随机试验,S 是它的样本空间,对于E 的每一事件A赋予一个实数,记为P(A),称为事件的概率1.概率P( A)满足下列条件:(1)非负性:对于每一个事件 A 0 P( A) 1(2)规范性:对于必然事件S P (S) 11(3)可列可加性:设A1, A2 , ,A是两两互不相容的事件,有nn nP A k ) P( A) ( (n可kk 1 k 1以取)2.概率的一些重要性质:(i )P( ) 0(ii )若A1, A2 , ,A是两两互不相容的事件,则有n Pn n( (n可以取)A k ) P( A )kk 1 k 1(iii )设A,B 是两个事件若 A B ,则P(B A) P( B) P( A) ,P( B) P(A) (iv)对于任意事件A,P(A) 1(v)P( A) 1 P(A) (逆事件的概率)(vi)对于任意事件A,B 有P(A B) P( A) P( B) P( A B)§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同若事件 A 包含k 个基本事件,即{e i } {e } {e }A ,里1 i i k] 2,k是,中某个不同的数,则有i1 i 2, ,i k 1,2 nP( A)j k1P { eij}knA包含的基本事件数S中基本事件的总数§5.条件概率(1)定义:设A,B 是两个事件,且P( A) 0 ,称P( A B)P(B | A) 为事件 A 发生的条P(A)件下事件 B 发生的条件概率(2)条件概率符合概率定义中的三个条件。
概率论与数理统计知识点一、概率论知识点1.1 概率基本概念概率是研究事物变化规律的一门学科。
在概率学中,我们需要掌握一些基本概念:•随机试验:一种在相同条件下重复的可以观察到不同结果的试验。
•样本空间:随机试验所有可能结果的集合。
•事件:样本空间的子集。
•频率和概率:在大量重复实验中,某个事件出现的频率称为频率,其极限称为概率。
1.2 概率计算公式•加法公式:P(A∪B) = P(A) + P(B) - P(A∩B)•乘法公式:P(A∩B) = P(A|B)P(B) = P(B|A)P(A)•条件概率公式:P(A|B) = P(A∩B)/P(B)•全概率公式:P(B) = Σi=1nP(Ai)P(B|Ai)•贝叶斯公式:P(Ai|B) = P(Ai)P(B|Ai)/Σj=1nP(Aj)P(B|Aj)1.3 随机变量和分布随机变量是用来描述随机试验结果的数学量。
离散型随机变量和连续型随机变量是概率论中两个重要的概念。
•离散型随机变量:在一个范围内,只有有限个或无限个可能值的随机变量。
•连续型随机变量:在一个范围内,有无限个可能值的随机变量。
概率分布是反映随机变量取值情况的概率规律,可分为离散型概率分布和连续型概率分布。
•离散型概率分布:包括伯努利分布、二项分布、泊松分布等。
•连续型概率分布:包括正态分布、指数分布、卡方分布等。
1.4 常用概率分布概率论涉及到很多的分布,其中一些常用的分布如下:•二项分布•泊松分布•正态分布•均匀分布•指数分布1.5 统计推断在概率论中,统计推断是指根据样本数据来对总体进行参数估计和假设检验的方法。
统计推断主要涉及以下两个方面:•点估计:使用样本数据来推断总体参数的值。
•区间估计:使用样本数据来推断总体参数的一个区间。
二、数理统计知识点2.1 统计数据的描述为了更准确地描述数据,我们需要使用以下几个参数:•平均数:所有数据的和除以数据个数。
•中位数:将数据按大小排序,位于中间位置的数。
《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()((n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk knk kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑=§5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。
概率论与数理统计知识点总结(超详细版)eik则有P(A)=k/n,其中n为样本空间中元素的个数。
在概率论中,样本空间和随机事件是基本概念。
如果事件A发生必然导致事件B发生,则称事件B包含事件A,记作A⊂B。
当A和B中至少有一个发生时,称A∪B为事件A和事件B的和事件。
当A和B同时发生时,称A∩B为事件A和事件B的积事件。
当A发生、B不发生时,称A-B为事件A和事件B的差事件。
如果A和B互不相容,即A∩B=∅,则称A和B是互不相容的,或互斥的,基本事件是两两互不相容的。
如果A∪B=S且A∩B=∅,则称事件A和事件B互为逆事件,又称事件A和事件B互为对立事件。
在概率论中,还有一些运算规则。
交换律指A∪B=B∪A,A∩B=B∩A;结合律指(A∪B)∪C=A∪(B∪C),(A∩B)∩C=A∩(B∩C);分配律指A∪(B∩C)=(A∪B)∩(A∪C),A∩(B∪C)=(A∩B)∪(A∩C);德摩根律指A∪B=A∩B,A∩B=A∪B。
频率与概率是概率论的重要概念。
在相同的条件下,进行了n次试验,在这n次试验中,事件A发生的次数n A称为事件A发生的频数,比值nAn称为事件A发生的频率。
概率指对于随机试验E的每一事件A赋予一个实数P(A),称为事件的概率。
概率P(A)满足非负性,即对于每一个事件A,0≤P(A)≤1;规范性,即对于必然事件S,P(S)=1;可列可加性,即设A1,A2,…,An是两两互不相容的事件,则有P(∪Ai)=∑P(Ai)(n可以取∞)。
概率还有一些重要性质,包括P(∅)=0,P(∪Ai)=∑P(Ai)(n可以取∞),如果A⊂B,则P(B-A)=P(B)-P(A),P(A)≤1,P(A)=1-P(A'),以及P(A∪B)=P(A)+P(B)-P(A∩B)。
等可能概型又称为古典概型,是指试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同。
如果事件A 包含k个基本事件,即A={e1}∪{e2}∪…∪{ek},则有P(A)=k/n,其中n为样本空间中元素的个数。
概率论与数理统计知识点总结免费超详细版概率论与数理统计是一门研究随机现象及其统计规律的数学学科,在自然科学、工程技术、社会科学、经济管理等众多领域都有着广泛的应用。
以下是对概率论与数理统计中一些重要知识点的详细总结。
一、随机事件与概率1、随机试验随机试验是指在相同条件下可以重复进行,试验结果不止一个且事先不能确定的试验。
2、样本空间样本空间是随机试验所有可能结果组成的集合。
3、随机事件随机事件是样本空间的子集。
4、事件的关系与运算包括包含、相等、和事件、积事件、差事件、互斥事件、对立事件等。
5、概率的定义概率是对随机事件发生可能性大小的度量。
6、古典概型具有有限个等可能结果的随机试验。
7、几何概型样本空间是某个区域,且每个样本点出现的可能性与区域的面积、体积等成正比。
8、条件概率在已知某事件发生的条件下,另一事件发生的概率。
9、乘法公式用于计算两个事件同时发生的概率。
10、全概率公式将复杂事件的概率通过划分样本空间分解为简单事件的概率之和。
11、贝叶斯公式在已知结果的情况下,反推导致该结果的原因的概率。
二、随机变量及其分布1、随机变量用数值来描述随机试验的结果。
2、离散型随机变量取值可以一一列举的随机变量。
3、离散型随机变量的概率分布列出随机变量的取值以及对应的概率。
4、常见的离散型随机变量分布包括 0-1 分布、二项分布、泊松分布等。
5、连续型随机变量取值充满某个区间的随机变量。
6、连续型随机变量的概率密度函数用于描述连续型随机变量的概率分布。
7、常见的连续型随机变量分布包括均匀分布、正态分布、指数分布等。
8、随机变量的函数的分布已知随机变量的分布,求其函数的分布。
三、多维随机变量及其分布1、二维随机变量由两个随机变量组成的向量。
2、二维随机变量的联合分布函数描述二维随机变量的概率分布。
3、二维离散型随机变量的联合概率分布列出二维离散型随机变量的取值组合以及对应的概率。
4、二维连续型随机变量的联合概率密度函数用于描述二维连续型随机变量的概率分布。
概率论与数理统计知识点总结免费超详细版概率论与数理统计是一门研究随机现象数量规律的学科,它在众多领域都有着广泛的应用,如统计学、物理学、工程学、经济学等。
以下是对概率论与数理统计知识点的超详细总结。
一、随机事件与概率(一)随机事件随机事件是指在一定条件下,可能出现也可能不出现的事件。
随机事件通常用大写字母 A、B、C 等来表示。
(二)样本空间样本空间是指随机试验的所有可能结果组成的集合,通常用Ω表示。
(三)事件的关系与运算1、包含关系:若事件 A 发生必然导致事件 B 发生,则称事件 B 包含事件 A,记作 A⊂B。
2、相等关系:若 A⊂B 且 B⊂A,则称事件 A 与事件 B 相等,记作A = B。
3、并事件:事件 A 与事件 B 至少有一个发生的事件称为 A 与 B的并事件,记作 A∪B。
4、交事件:事件 A 与事件 B 同时发生的事件称为 A 与 B 的交事件,记作A∩B 或 AB。
5、互斥事件:若事件 A 与事件 B 不能同时发生,则称 A 与 B 为互斥事件,即 AB =∅。
6、对立事件:若事件 A 与事件 B 满足 A∪B =Ω 且 AB =∅,则称 A 与 B 为对立事件,记作 B =A。
(四)概率的定义与性质1、概率的古典定义:若随机试验的样本空间Ω只包含有限个基本事件,且每个基本事件发生的可能性相等,则事件 A 的概率为 P(A) =n(A) /n(Ω) ,其中 n(A) 为事件 A 包含的基本事件个数,n(Ω) 为样本空间Ω包含的基本事件个数。
2、概率的统计定义:在大量重复试验中,事件 A 发生的频率稳定在某个常数 p 附近,则称 p 为事件 A 的概率,即 P(A) = p 。
3、概率的公理化定义:设随机试验的样本空间为Ω,对于Ω中的每一个事件 A,都赋予一个实数 P(A),如果满足以下三个条件:(1)非负性:0 ≤ P(A) ≤ 1 ;(2)规范性:P(Ω) = 1 ;(3)可列可加性:对于两两互斥的事件 A1,A2,,有P(A1∪A2∪)= P(A1) + P(A2) +,则称 P(A) 为事件 A 的概率。
《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。
非负性:对于某一事件B ,有0)|(≥A B P2。
规范性:对于必然事件S ,1)|(=A S P3可列可加性:设 ,,21B B 是两两互不相容的事件,则有∑∞=∞==11)()(i i i i A B P A B P(3) 乘法定理 设0)(>A P ,则有)|()()(B A P B P AB P =称为乘法公式(4) 全概率公式: ∑==ni iiB A P B P A P 1)|()()(贝叶斯公式: ∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|(§6.独立性定义 设A ,B 是两事件,如果满足等式)()()(B P A P AB P =,则称事件A,B 相互独立 定理一 设A ,B 是两事件,且0)(>A P ,若A ,B 相互独立,则()B P A B P =)|( 定理二 若事件A 和B 相互独立,则下列各对事件也相互独立:A 与————与,与,B A B A B第二章 随机变量及其分布§1随机变量定义 设随机试验的样本空间为X(e)X {e}.S ==是定义在样本空间S 上的实值单值函数,称X(e)X =为随机变量§2离散性随机变量及其分布律1. 离散随机变量:有些随机变量,它全部可能取到的值是有限个或可列无限多个,这种随机变量称为离散型随机变量k k )(p x X P ==满足如下两个条件(1)0k ≥p ,(2)∑∞=1k k P =12. 三种重要的离散型随机变量(1)(0−1)分布设随机变量X 只能取0与1两个值,它的分布律是)101,0k p -1p )k (k-1k <<===p X P (,)(,则称X 服从以p 为参数的(0−1)分布或两点分布。
(2)伯努利实验、二项分布设实验E 只有两个可能结果:A 与—A ,则称E 为伯努利实验.设1)p 0p P(A)<<=(,此时p -1)A P(=—.将E 独立重复的进行n 次,则称这一串重复的独立实验为n 重伯努利实验。
n 2,1,0k q p k n )k X (k-n k ,,=⎪⎪⎭⎫ ⎝⎛==P 满足条件(1)0k ≥p ,(2)∑∞=1k k P =1注意到k -n k q p k n ⎪⎪⎭⎫ ⎝⎛是二项式nq p )(+的展开式中出现k p 的那一项,我们称随机变量X 服从参数为n ,p 的二项分布。
(3)泊松分布设随机变量X 所有可能取的值为0,1,2…,而取各个值的概率为,2,1,0,k!e )k X (-k ===k P λλ其中0>λ是常数,则称X 服从参数为λ的泊松分布记为)(λπ~X §3随机变量的分布函数定义 设X 是一个随机变量,x 是任意实数,函数∞<<∞≤=x -x},P{X )x (F 称为X 的分布函数分布函数)()(x X P x F ≤=,具有以下性质(1) )(x F 是一个不减函数 (2)1)(,0)(1)(0=∞=-∞≤≤F F x F ,且 (3)是右连续的即)(),()0(x F x F x F =+§4连续性随机变量及其概率密度连续随机变量:如果对于随机变量X 的分布函数F (x ),存在非负可积函数)(x f ,使对于任意函数x 有,dt t f )x (F x-⎰∞=)(则称x 为连续性随机变量,其中函数f(x)称为X 的概率密度函数,简称概率密度1 概率密度)(x f 具有以下性质,满足(1)1)((2) ,0)(-=≥⎰+∞∞dx x f x f ;(3)⎰=≤≤21)()(21x x dx x f x X x P ;(4)若)(x f 在点x 处连续,则有=)(F x ,)(x f 2,三种重要的连续型随机变量(1)均匀分布若连续性随机变量X 具有概率密度⎪⎩⎪⎨⎧<<=,其他,0a a -b 1)(bx x f ,则成X 在区间(a,b)上服从均匀分布.记为),(b a U ~X(2)指数分布若连续性随机变量X 的概率密度为⎪⎩⎪⎨⎧>=,其他,00.e1)(x -x x f θθ其中0>θ为常数,则称X服从参数为θ的指数分布。
(3)正态分布若连续型随机变量X的概率密度为,,)∞<<∞=--x ex f x -21)(222(σμσπσμσσμ,服从参数为为常数,则称(,其中X )0>的正态分布或高斯分布,记为),(2N ~X σμ 特别,当10==σμ,时称随机变量X 服从标准正态分布§5随机变量的函数的分布定理 设随机变量X 具有概率密度,-)(x ∞<<∞x x f ,又设函数)(x g 处处可导且恒有0)(,>x g ,则Y=)(X g 是连续型随机变量,其概率密度为[]⎩⎨⎧<<=其他,0,)()()(,βαy y h y h f y f X Y 第三章 多维随机变量§1二维随机变量定义 设E 是一个随机试验,它的样本空间是X(e)X {e}.S ==和Y(e)Y =是定义在S 上的随机变量,称X(e)X =为随机变量,由它们构成的一个向量(X ,Y )叫做二维随机变量设(X ,Y )是二维随机变量,对于任意实数x ,y ,二元函数y}Y x P{X y)}(Y x)P{(X y x F ≤≤≤⋂≤=,记成),(称为二维随机变量(X ,Y )的分布函数如果二维随机变量(X ,Y )全部可能取到的值是有限对或可列无限多对,则称(X ,Y )是离散型的随机变量。
我们称 ,,,,2,1j i )y Y (ij j i ====p x X P 为二维离散型随机变量(X ,Y )的分布律。
对于二维随机变量(X ,Y )的分布函数),(y x F ,如果存在非负可积函数f (x ,y ),使对于任意x ,y 有,),(),(⎰⎰∞∞=y -x-dudv v u f y x F 则称(X ,Y )是连续性的随机变量,函数f (x ,y )称为随机变量(X ,Y )的概率密度,或称为随机变量X 和Y 的联合概率密度。
§2边缘分布二维随机变量(X ,Y )作为一个整体,具有分布函数),(y x F .而X 和Y 都是随机变量,各自也有分布函数,将他们分别记为)((y ),x F X Y F ,依次称为二维随机变量(X ,Y )关于X 和关于Y 的边缘分布函数。
,,2,1i }x P{X p 1j i ij i ====∑∞=•p ,,2,1j }y P{Y p 1i i ij ====∑∞=•j p 分别称•i p j p •为(X ,Y )关于X 和关于Y 的边缘分布律。
⎰∞∞-=dy y x f x f X ),()( ⎰∞∞-=dx y x f y f Y ),()(分别称)(x f X ,)(y f Y 为X ,Y 关于X 和关于Y 的边缘概率密度。
§3条件分布定义 设(X ,Y )是二维离散型随机变量,对于固定的j ,若,0}{>=j y Y P 则称 ,2,1,}{},{}{========•i p p y Y P y Y x X P y Y x X P jij j j i j i 为在j y Y =条件下随机变量X 的条件分布律,同样,2,1,}{},{}{========•j p p x X P y Y x X P X X y Y P i ij i j i i j 为在i x X =条件下随机变量X 的条件分布律。