2018版高中数学第二章平面向量2.3.1平面向量基本定理导学案新人教A版必修4_
- 格式:pdf
- 大小:311.78 KB
- 文档页数:13
高中数学 2.3.1 平面向量基本定理学案新人教A版必修4【学习目标】1知识与技能(1)了解平面向量基本定理及其意义,会利用向量基本定理解决简单问题;(2)培养学生分析、抽象、概括的推理能力。
2过程与方法(1)通过平面向量基本定理的得出过程,体会由特殊到一般的思维方法;(2)通过本节学习,体会用基底表示平面内任一向量的方法。
3情感.态度与价值观(1)通过本节学习,培养学生的理性思维,培养学生独立思考及勇于探求、敢于创新的精神、培养主动学习的意识;(2)通过平面向量基本定理的探求过程,培养学生观察能力、抽象概括能力、独立思考的能力,激发学生学习数学的兴趣。
【重点难点】重点:平面向量基本定理的应用难点:对平面向量基本定理的发现和形成过程,数学思想的渗透。
【学习内容】一【知识链接】1. 向量加法与减法有哪几种几何运算法则?2.怎样理解向量的数乘运算λa? (1)模:|λa|=|λ||a|;(2)方向:λ>0时λa 与a方向相同;λ<0时λa与a方向相反;λ=0时λa=03. 向量共线定理 :向量b 与非零向量a共线则:有且只有一个非零实数λ,使b =λa.二【新课导入】情景展示:在物理学中我们知道,力是一个向量,力的合成就是向量的加法运算.而且力是可以分解的,任何一个大小不为零的力,都可以分解成两个不同方向的分力之和.将这种力的分解拓展到向量中来,就会形成一个新的数学理论. 三、小组合作、自主探究 探究(一):平面向量的基本定理探究1:给定平面内任意两个不共线的非零向量1e 、2e ,请你作出向量b =31e +22e 、c =1e -22e .探究2:由探究1可知可以用平面内任意两个不共线的非零向量1e 、2e 来表示向量b ,c 那么平面内的任一向量是否都可以用形如λ11e +λ22e 的向量表示呢?【定理解读】1 、1e 、2e 必须是平面向量的基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使a =λ11e +λ22e .2、λ1,λ2是被a,1e ,2e 的数量 3、基底不唯一,关键是不共线;4、由定理可将任一向量a 在给出基底1e 、2e 的条件下进行分解;5、基底给定时,分解形式唯一.6、λ 1 =0时 ; λ2=0时 ;λ1=0、λ2=0时 。
《6.3.1平面向量基本定理》教案1e 2e aOCAB1e 2e aNOB C 的直线,与直线作平行于直线如图,过点OA C 的直线,与直线作平行于直线过点ON OM OC +=则e ON 共线可得,存在实数与例3 如图所示,在△ABC 中,点M 是AB 的中点,且AN →=12NC →,BN 与CM 相交于点E ,设AB →=a ,AC →=b ,试用基底{a ,b }表示向量AE →.[解] 易得AN →=13AC →=13b ,AM →=12AB →=12a ,由N ,E ,B 三点共线知存在实数m , 满足AE →=mAN →+(1-m )AB →=13m b +(1-m )a .由C ,E ,M 三点共线知存在实数n , 满足AE →=nAM →+(1-n )AC →=12n a +(1-n )b ,所以13m b +(1-m )a =12n a +(1-n )b ,是直角三角形。
用向量方法证明,的中线,是如图,ABC AB CD ABC CD ∆=∆21b DA a CD ==,证明:如图设b a CB b DB b a CA -=-=+=于是则,,()()22b a b a b a CB CA -=-•+=•ABCD 21=因为DA CD =所以2222,DA b CD a ==因为0=•CB CA 所以CB CA ⊥因此是直角三角形。
于是ABC ∆《6.3.1 平面向量基本定理》导学案【学习目标】平面向量基本定理【小试牛刀】思维辨析(对的打“√”,错的打“×”)(1)基底中的向量不能为零向量.( )(2)若a e 1+b e 2=c e 1+d e 2(a ,b ,c ,d ∈R ),则必有a =c ,b =d .( ) (3)若两个向量的夹角为θ,则当|cos θ|=1时,两个向量共线.( ) (4)若向量a 与b 的夹角为60°,则向量-a 与-b 的夹角是60°.( ) (5)平面内的任何两个向量都可以作为一个基底.( )(6)若a ,b 不共线,且λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2. ( ) 【经典例题】题型一 平面向量基本定理的理解点拨:(1)两个向量能否作为一个基底,关键是看这两个向量是否共线.若共线,则不能作基底,反之,则可作基底.(2)一个平面的基底一旦确定,那么平面上任意一个向量都可以用这个基底唯一线性表示出来.设向量a与b 是平面内两个不共线的向量,若x 1a +y 1b =x 2a +y 2b ,则⎩⎪⎨⎪⎧x 1=x 2,y 1=y 2.(3)一个平面的基底不是唯一的,同一个向量用不同的基底表示,表达式不一样. 例1 如果e 1、e 2是平面α内两个不共线的向量,那么下列说法中不正确...的是( ) ①a =λe 1+μe 2(λ、μ∈R )可以表示平面α内的所有向量;②对于平面α内任一向量a ,使a =λe 1+μe 2的实数对(λ,μ)有无穷多个; ③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则λ1λ2=μ1μ2. ④若实数λ、μ使得λe 1+μe 2=0,则λ=μ=0. A .①② B .②③ C .③④D .②【跟踪训练】1 设e 1,e 2是不共线的两个向量,给出下列四组向量:①e 1与e 1+e 2;②e 1-2e 2与e 2-2e 1;③e 1-2e 2与4e 2-2e 1;④e 1+e 2与e 1-e 2. 其中,不能作为平面内所有向量的一组基底的是________(写出满足条件的序号).题型二 用基底表示平面向量点拨:方法1:运用向量的线性运算法则对待求向量不断进行转化,直至用基底表示为止.方法2:通过列向量方程或方程组的形式,利用基底表示向量的唯一性求解. 例2 如图,已知在梯形ABCD 中,AD ∥BC ,E ,F 分别是AD ,BC 边上的中点,且BC =3AD ,BA →=a ,BC →=b .试以{a ,b }为基底表示EF →,DF →.【跟踪训练】2 如图所示,在△OAB 中,OA →=a ,OB →=b ,M 、N 分别是边OA 、OB 上的点,且OM →=13a ,ON →=12b ,设AN →与BM →交于点P ,用向量a 、b 表示OP →.分析: 通过列向量方程或方程组的形式,利用基底表示向量的唯一性求解λ1,λ2.【当堂达标】1.下列说法中,正确说法的个数是( ) ①在△ABC 中,AB →,AC →可以作为基底;②能够表示一个平面内所有向量的基底是唯一的; ③零向量不能作为基底.A .0B .1C .2D .32.如图在矩形ABCD 中,若BC →=5e 1,DC →=3e 2,则OC →=( ) A.12(5e 1+3e 2) B.12(5e 1-3e 2) C.12(3e 2-5e 1) D.12(5e 2-3e 1) 3.如图,在△OAB 中,P 为线段AB 上的一点,OP →=xOA →+yOB →,且BP→=2PA →,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =144.已知非零向量OA →,OB →不共线,且2OP →=xOA →+yOB →,若PA →=λAB →(λ∈R ),则x ,y 满足的关系是( )A .x +y -2=0B .2x +y -1=0C .x +2y -2=0D .2x +y -2=05.已知向量e 1,e 2不共线,实数x ,y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -y= .6.如图,在平行四边形ABCD 中,设AC →=a ,BD →=b ,试用基底{a ,b }表示AB →,BC →.【参考答案】【自主学习】不共线向量 a =λ1e 1+λ2e 2思考:基底中的两向量e 1,e 2不共线,这是基底的最大特点.平面内的基底并不是唯一的,任意不共线的两个向量都可以作为基底.【小试牛刀】(1) × (2)× (3)√ (4)√ (5) × (6)√ 【经典例题】例 1 B [解析] 由平面向量基本定理可知,①④是正确的.对于②,由平面向量基本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底下的实数对是唯一的.对于③,当λ1λ2=0或μ1μ2=0时不一定成立,应为λ1μ2-λ2μ1=0.故选B .【跟踪训练】1 ③ 解析:①设e 1+e 2=λe 1,则⎩⎪⎨⎪⎧λ=1,1=0,无解,所以e 1+e 2与e 1不共线,即e 1与e 1+e 2能作为一组基底.②设e 1-2e 2=λ(e 2-2e 1),则(1+2λ)e 1-(2+λ)e 2=0,则⎩⎪⎨⎪⎧1+2λ=0,2+λ=0,无解,所以e 1-2e 2与e 2-2e 1不共线,即e 1-2e 2与e 2-2e 1能作为一组基底.③因为e 1-2e 2=-12(4e 2-2e 1),所以e 1-2e 2与4e 2-2e 1共线,即e 1-2e 2与4e 2-2e 1不能作为一组基底.④设e 1+e 2=λ(e 1-e 2),则(1-λ)e 1+(1+λ)e 2=0,则⎩⎪⎨⎪⎧1-λ=0,1+λ=0,无解,所以e 1+e 2与e 1-e 2不共线,即e 1+e 2与e 1-e 2能作为一组基底.例2 解:连接FA ,DF .因为AD ∥BC ,且AD =13BC ,所以AD →=13BC →=13b ,所以AE →=12AD →=16b .因为BF →=12BC →,所以BF →=12b ,所以FA →=BA →-BF →=a -12b .所以EF →=EA →+AF →=-AE →-FA →=-16b -⎝⎛⎭⎪⎫a -12b =13b -a ,DF →=DA →+AF →=-(AD →+FA →)=-⎣⎢⎡⎦⎥⎤13b +⎝ ⎛⎭⎪⎫a -12b =16b -a .【跟踪训练】2 [解] ∵OP →=OM →+MP →,OP →=ON →+NP →,设MP →=mMB →,NP →=nNA →,则OP →=OM →+mMB →=13a +m (b -13a )=13(1-m )a +m b ,OP →=ON →+nNA →=12(1-n )b +n a .∵a 与b 不共线,∴⎩⎪⎨⎪⎧131-m =n ,121-n =m ,∴n =15.∴OP →=15a +25b .【当堂达标】1.C 解析:①③正确,②错误.2.A 解析:选A.OC →=12AC →=12(BC →+AB →)=12(BC →+DC →)=12(5e 1+3e 2).3.A [解析] OP →=OA →+AP →=OA →+13AB →=OA →+13(OB →-OA →)=23OA →+13OB .∴x =23,y =13.4.A 解析:选A.由PA →=λAB →,得OA →-OP →=λ(OB →-OA →),即OP →=(1+λ)OA →-λOB →.又2OP→=xOA →+yOB →,所以⎩⎪⎨⎪⎧x =2+2λ,y =-2λ,消去λ得x +y =2.5. 3 解析:∵e 1,e 2不共线,∴⎩⎪⎨⎪⎧3x -4y =62x -3y =3,解得⎩⎪⎨⎪⎧x =6y =3.∴x -y =3.6.解:法一:设AC ,BD 交于点O ,则有AO →=OC →=12AC →=12a ,BO →=OD →=12BD →=12b .所以AB →=AO →+OB →=AO →-BO →=12a -12b ,BC →=BO →+OC →=12a +12b .法二:设AB →=x ,BC →=y ,则AD →=BC →=y ,又⎩⎪⎨⎪⎧AB →+BC →=AC →,AD →-AB →=BD →,所以⎩⎪⎨⎪⎧x +y =a ,y -x =b ,解得x =12a -12b ,y =12a +12b ,即AB →=12a -12b ,BC →=12a +12b .《6.3.1平面向量的基本定理》同步练习A 组 基础题一、选择题1.等边△ABC 中,AB →与BC →的夹角是( ) A .30° B.45° C.60° D.120°2.若e 1,e 2是平面内的一组基底,则下列四组向量能作为平面向量的基底的是( ) A .e 1-e 2,e 2-e 1 B .2e 1+e 2,e 1+12e 2C .2e 2-3e 1,6e 1-4e 2D .e 1+e 2,e 1-e 23.下面三种说法中,正确的是( )①一个平面内只有一对不共线向量可作为表示该平面所有向量的基底;②一个平面内有无数多对不共线向量可作为该平面所有向量的基底;③零向量不可作为基底中的向量.A .①② B.②③ C.①③ D.①②③4.若a 、b 不共线,且λa +μb =0(λ,μ∈R ),则( ) A .a =0,b =0 B .λ=μ=0 C .λ=0,b =0 D .a =0,μ=05.如图所示,平面内的两条直线OP 1和OP 2将平面分割成四个部分Ⅰ,Ⅱ,Ⅲ,Ⅳ(不包括边界),若OP →=aOP 1→+bOP 2→,且点P 落在第Ⅰ部分,则实数a ,b 满足( )A .a >0,b >0B .a >0,b <0C .a <0,b >0D .a <0,b <06.下列说法中,正确说法的个数是( ) ①在△ABC 中,{AB →,AC →}可以作为基底;②能够表示一个平面内所有向量的基底是唯一的; ③零向量不能作为基底. A .0 B .1 C .2 D .37.如图,设O 是▱ABCD 两对角线的交点,有下列向量组:①AD →与AB →; ②DA →与BC →; ③CA →与DC →; ④OD →与OB →.其中可作为该平面内所有向量基底的是( ) A .①② B .①③ C .①④ D .③④8.M 为△ABC 的重心,点D ,E ,F 分别为三边BC ,AB ,AC 的中点,则MA →+MB →+MC →等于( ) A .6ME → B .-6MF → C .0 D .6MD →二、填空题9.设e 1、e 2是不共线的两个向量,给出下列四组向量:①e 1与e 1+e 2;②e 1-2e 2与e 2-2e 1;③e 1-2e 2与4e 2-2e 1;④e 1+e 2与e 1-e 2.其中能作为平面内所有向量的一组基底的序号是______.(写出所有满足条件的序号)10.如图,已知AB →=a ,AC →=b ,BD →=3DC →,用a ,b 表示AD →,则AD →=________.11.设向量m =2a -3b ,n =4a -2b ,p =3a +2b ,若用m ,n 表示p ,则p =________.12.在△ABC 中,AB →=c ,AC →=b .若点D 满足BD →=2DC →,则AD →=____________.(用b 、c 表示)13.已知向量e 1、e 2不共线,实数x 、y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -y =3.14.如图,平面内有三个向量OA →、OB →、OC →.其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=23,若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的值为________.15.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC ,若DE →=λ1AB →+λ2AC→(λ1,λ2为实数),则λ1+λ2的值为________.三、解答题16.如图所示,在△ABC 中,点M 为AB 的中点,且AN =12NC ,BN 与CM 相交于点E ,设AB→=a ,AC →=b ,试以a ,b 为基底表示AE →.17.如图所示,在△ABC 中,点M 是BC 的中点,点N 在边AC 上,且AN =2NC ,AM 与BN 相交于点P ,求证:AP ∶PM =4∶1.18.在平行四边形ABCD 中,AB →=a ,AD →=b ,(1)如图1,如果E ,F 分别是BC ,DC 的中点,试用a ,b 分别表示BF →,DE →. (2)如图2,如果O 是AC 与BD 的交点,G 是DO 的中点,试用a ,b 表示AG →.B 组 能力提升一、选择题1.如图,在梯形ABCD 中,AB //CD ,AB ⊥AD ,AB =2AD =2DC ,E 是BC 的中点,F 是AE上一点,2,则( )A .B .C .D .2.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若,,则( )A .B .C .D .3.中,、分别是、上的点,且,,与交于点,则下列式子正确的是( )A .B .C .D . 4.如图,在直角梯形ABCD 中,AB =2AD =2DC ,E 为BC 边上一点,BC ⃗⃗⃗⃗⃗⃗⃗⃗ =3 EC ⃗⃗⃗⃗⃗⃗⃗ ,F 为AE 的中点,则BF ⃗⃗⃗⃗⃗⃗⃗⃗ =( )A .13AB ⃗⃗⃗⃗⃗⃗⃗⃗ −23AD ⃗⃗⃗⃗⃗⃗⃗⃗ B .−23AB ⃗⃗⃗⃗⃗⃗⃗⃗ +13AD ⃗⃗⃗⃗⃗⃗⃗⃗ C .−13AB ⃗⃗⃗⃗⃗⃗⃗⃗ +23AD ⃗⃗⃗⃗⃗⃗⃗⃗D .23AB ⃗⃗⃗⃗⃗⃗⃗⃗ −13AD ⃗⃗⃗⃗⃗⃗⃗⃗5.如图,正方形中,是的中点,若,则( )AF =FE BF=1123AB AD -1132AB AD -1123AB AD -+1132AB AD -+AC a =BD b =AF =1142a b +2133a b +1124a b +1233a b +ABC M N BC AC 2BM MC =2AN NC =AM BN P 3142AP AB AC =+1324AP AB AC =+1124AP AB AC =+1142AP AB AC =+ABCD M BC AC AM BD λμ=+λμ+=A .B .C .D .6.如图四边形ABCD 为平行四边形,,若,则的值为( )A .B .C .D .17.如图,在平行四边形中,为的中点,为的中点,若,则( )A .B .C .D .二、填空题8.如图,在中,,点在线段上移动(不含端点),若,则的取值范围是_____.4353158211,22AE AB DF FC ==AF AC DE λμ=+λμ-122313ABCD E BC FDE 34AF xAB AD =+x =34231214ABC 13B BCD →→=E AD AE AB AC λμ→→→=+12λμ+9.在中,D 为线段上一点,且,若,则.10.在中,为上一点,,为上任一点,若,则的最小值是 .三、解答题11.如图,△ABC 中,AD 为三角形BC 边上的中线且AE =2EC ,BE 交AD 于G ,求AG GD 及BGGE的值.《6.3.1平面向量的基本定理》同步练习答案解析A 组 基础题一、选择题1.等边△ABC 中,AB →与BC →的夹角是( ) A .30° B.45° C.60° D.120° 答案 D2.若e 1,e 2是平面内的一组基底,则下列四组向量能作为平面向量的基底的是( ) A .e 1-e 2,e 2-e 1 B .2e 1+e 2,e 1+12e 2C .2e 2-3e 1,6e 1-4e 2D .e 1+e 2,e 1-e 2ABC AB 3BD AD =CD CA CB λμ→→→=+λμ=ABC E AC 3AC AE =P BE (0,0)AP mAB nAC m n =+>>31m n+答案 D3.下面三种说法中,正确的是( )①一个平面内只有一对不共线向量可作为表示该平面所有向量的基底;②一个平面内有无数多对不共线向量可作为该平面所有向量的基底;③零向量不可作为基底中的向量.A .①② B.②③ C.①③ D.①②③ 答案 B4.若a 、b 不共线,且λa +μb =0(λ,μ∈R ),则( ) A .a =0,b =0 B .λ=μ=0 C .λ=0,b =0 D .a =0,μ=0 答案 B5.如图所示,平面内的两条直线OP 1和OP 2将平面分割成四个部分Ⅰ,Ⅱ,Ⅲ,Ⅳ(不包括边界),若OP →=aOP 1→+bOP 2→,且点P 落在第Ⅰ部分,则实数a ,b 满足( )A .a >0,b >0B .a >0,b <0C .a <0,b >0D .a <0,b <0 答案 C解析 当点P 落在第Ⅰ部分时,OP →按向量OP 1→与OP 2→分解时,一个与OP 1→反向,一个与OP 2→同向,故a <0,b >0.6.下列说法中,正确说法的个数是( ) ①在△ABC 中,{AB →,AC →}可以作为基底;②能够表示一个平面内所有向量的基底是唯一的; ③零向量不能作为基底. A .0 B .1 C .2 D .3 [答案] C解析:①③正确,②错误.7.如图,设O 是▱ABCD 两对角线的交点,有下列向量组:①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →.其中可作为该平面内所有向量基底的是( )A .①②B .①③C .①④D .③④ [答案] B解析:AD →与AB →不共线,DA →∥BC →,CA →与DC →不共线,OD →∥OB →,则①③可以作为该平面内所有向量的基底.8.M 为△ABC 的重心,点D ,E ,F 分别为三边BC ,AB ,AC 的中点,则MA →+MB →+MC →等于( ) A .6ME → B .-6MF → C .0 D .6MD → 答案 C解析 MA →+MB →+MC →=MA →+2MD →=MA →+AM →=0. 二、填空题9.设e 1、e 2是不共线的两个向量,给出下列四组向量:①e 1与e 1+e 2;②e 1-2e 2与e 2-2e 1;③e 1-2e 2与4e 2-2e 1;④e 1+e 2与e 1-e 2.其中能作为平面内所有向量的一组基底的序号是______.(写出所有满足条件的序号)答案 ①②④解析 对于③4e 2-2e 1=-2e 1+4e 2=-2(e 1-2e 2),∴e 1-2e 2与4e 2-2e 1共线,不能作为基底.10.如图,已知AB →=a ,AC →=b ,BD →=3DC →,用a ,b 表示AD →,则AD →=________.答案 14a +34b解析 AD →=AB →+BD →=AB →+34BC →=AB →+34(AC →-AB →)=14AB →+34AC →=14a +34b . 11.设向量m =2a -3b ,n =4a -2b ,p =3a +2b ,若用m ,n 表示p ,则p =________. 答案 -74m +138n解析 设p =x m +y n ,则3a +2b =x (2a -3b )+y (4a -2b )=(2x +4y )a +(-3x -2y )b ,得⎩⎪⎨⎪⎧2x +4y =3-3x -2y =2⇒⎩⎪⎨⎪⎧x =-74,y =138.12.在△ABC 中,AB →=c ,AC →=b .若点D 满足BD →=2DC →,则AD →=____________.(用b 、c 表示)答案 23b +13c解析 AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=13AB →+23AC →=23b +13c .13.已知向量e 1、e 2不共线,实数x 、y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -y =3.[答案] 3解析:∵e 1、e 2不共线,∴⎩⎪⎨⎪⎧3x -4y =6,2x -3y =3,解得⎩⎪⎨⎪⎧x =6,y =3,∴x -y =3.14.如图,平面内有三个向量OA →、OB →、OC →.其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=23,若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的值为________.答案 6解析 如图,以OA 、OB 所在射线为邻边,OC 为对角线作平行四边形ODCE ,则OC →=OD →+OE →.在Rt△OCD 中,∵|OC →|=23, ∠COD =30°,∠OCD =90°, ∴|OD →|=4,|CD →|=2,故OD →=4OA →, OE →=2OB →,即λ=4,μ=2,∴λ+μ=6.15.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC ,若DE →=λ1AB →+λ2AC→(λ1,λ2为实数),则λ1+λ2的值为________.答案 12解析 易知DE →=12AB →+23BC →=12AB →+23(AC →-AB →)=-16AB →+23AC →.所以λ1+λ2=12.三、解答题16.如图所示,在△ABC 中,点M 为AB 的中点,且AN =12NC ,BN 与CM 相交于点E ,设AB→=a ,AC →=b ,试以a ,b 为基底表示AE →.解 ∵AN →=13AC →=13b ,AM →=12AB →=12a ,由N ,E ,B 三点共线知存在实数λ满足AE →=λAN →+(1-λ)AB →=13λb +(1-λ)a .由C ,E ,M 三点共线知存在实数μ满足 AE →=μAM →+(1-μ)AC →=μ2a +(1-μ)b .∴⎩⎪⎨⎪⎧1-λ=μ2,1-μ=λ3,解得⎩⎪⎨⎪⎧λ=35,μ=45.∴AE →=25a +15b .17.如图所示,在△ABC 中,点M 是BC 的中点,点N 在边AC 上,且AN =2NC ,AM 与BN 相交于点P ,求证:AP ∶PM =4∶1. 证明 设AB →=b ,AC →=c , 则AM →=12b +12c ,AN →=23AC →,BN →=BA →+AN →=23c -b .∵AP →∥AM →,BP →∥BN →,∴存在λ,μ∈R ,使得AP →=λAM →,BP →=μBN →, 又∵AP →+PB →=AB →,∴λAM →-μBN →=AB →,∴由λ⎝ ⎛⎭⎪⎫12b +12c -μ⎝ ⎛⎭⎪⎫23c -b =b 得 ⎝ ⎛⎭⎪⎫12λ+μb +⎝ ⎛⎭⎪⎫12λ-23μc =b .又∵b 与c 不共线. ∴⎩⎪⎨⎪⎧12λ+μ=1,12λ-23μ=0.解得⎩⎪⎨⎪⎧λ=45,μ=35.故AP →=45AM →,即AP ∶PM =4∶1.18.在平行四边形ABCD 中,AB →=a ,AD →=b ,(1)如图1,如果E ,F 分别是BC ,DC 的中点,试用a ,b 分别表示BF →,DE →. (2)如图2,如果O 是AC 与BD 的交点,G 是DO 的中点,试用a ,b 表示AG →. 解 (1)BF →=BC →+CF →=AD →+12CD →=AD →-12AB →=-12a +b .DE →=DC →+CE →=AB →-12AD →=a -12b .(2)BD →=AD →-AB →=b -a ,∵O 是BD 的中点,G 是DO 的中点,∴BG →=34BD →=34(b -a ),∴AG →=AB →+BG →=a +34(b -a )=14a +34b .B 组 能力提升一、选择题1.如图,在梯形ABCD 中,AB //CD ,AB ⊥AD ,AB =2AD =2DC ,E 是BC 的中点,F 是AE 上一点,2,则( )A .B .C .D . 【答案】C【解析】由梯形ABCD 中,AB CD ,AB ⊥AD ,AB =2AD =2DC ,E 是BC 的中点,F 是AE 上一点,2,则 ;故选:C2.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若,,则( )A .B .C .D . 【答案】B【解析】如图,可知AF =FE BF=1123AB AD -1132AB AD -1123AB AD -+1132AB AD -+//AF =FE 221(332)BF BA AF AB AE AB AB AC =+=-+=-+⨯+1(3)AB AB AD DC =-+++11(32)AB AB AD AB =-+++1123AB AD =-+AC a =BD b =AF =1142a b +2133a b +1124a b +1233a b +=,选B. 3.中,、分别是、上的点,且,,与交于点,则下列式子正确的是( )A .B .C .D . 【答案】D【解析】如下图所示:连接,则,,,, 因此,.故选:D. 4.如图,在直角梯形ABCD 中,AB =2AD =2DC ,E 为BC 边上一点,BC ⃗⃗⃗⃗⃗⃗⃗⃗ =3 EC ⃗⃗⃗⃗⃗⃗⃗ ,F 为AE 的中点,则BF ⃗⃗⃗⃗⃗⃗⃗⃗ =( )222()333AF AC CF AC CD AC AB AC AO OB =+=+=-=-+2112112132232233AC AC BD a a b a b ⎛⎫⎛⎫--=--=+ ⎪ ⎪⎝⎭⎝⎭ABC M N BC AC 2BM MC =2AN NC =AM BN P 3142AP AB AC =+1324AP AB AC =+1124AP AB AC =+1142AP AB AC =+MN 12NC MC AN BM ==//MN AB ∴PMN PAB △∽△13PM MN AP BC ∴==()333231444342AP AM AB BM AB BC AB BC ⎛⎫==+=+=+ ⎪⎝⎭()31114242AB AC AB AB AC =+-=+A .13AB ⃗⃗⃗⃗⃗⃗⃗⃗ −23AD ⃗⃗⃗⃗⃗⃗⃗⃗ B .−23AB ⃗⃗⃗⃗⃗⃗⃗⃗ +13AD ⃗⃗⃗⃗⃗⃗⃗⃗ C .−13AB ⃗⃗⃗⃗⃗⃗⃗⃗ +23AD ⃗⃗⃗⃗⃗⃗⃗⃗ D .23AB ⃗⃗⃗⃗⃗⃗⃗⃗ −13AD ⃗⃗⃗⃗⃗⃗⃗⃗【答案】B【解析】由图可知:BF →=12BA →+12BE →,BE →=23BC →,BC →=AC →﹣AB →,AC →=AD →+DC →,DC →=12AB →,∴BF →=﹣12AB →+13(AD →+12AB →﹣AB →)=﹣23AB →+13AD →,故选B .5.如图,正方形中,是的中点,若,则( )A .B .C .D .【答案】B【解析】以为坐标原点建立平面直角坐标系,设正方形边长为, 由此,,故, 解得.故选B. 6.如图四边形ABCD 为平行四边形,,若,则的值为( )ABCD M BC AC AM BD λμ=+λμ+=43531582A 1()()11,1,1,,1,12AC AM BD ⎛⎫===- ⎪⎝⎭11,12λμλμ=-=+415,,333λμλμ==+=11,22AE AB DF FC ==AF AC DE λμ=+λμ-A .B .C .D .1【答案】D【解析】选取为基底, 则, 又,将以上两式比较系数可得.故选D .7.如图,在平行四边形中,为的中点,为的中点,若,则( )A .B .C .D .【答案】C【解析】因为为的中点,所以, 而, 即有,又,所以.122313,AB AD 13AF AD DF AB AD =+=+()()122AF AC DE AB AD AB AD AB AD μλμλμλλμ⎛⎫⎛⎫=+=+++-=++- ⎪ ⎪⎝⎭⎝⎭1λμ-=ABCD E BC F DE 34AF xAB AD =+x =34231214F DE ()12AF AD AE =+1122AE AB BE AB BC AB AD =+=+=+11132224AF AD AB AD AB AD ⎛⎫=++=+ ⎪⎝⎭34AF xAB AD =+12x =故选:C .二、填空题8.如图,在中,,点在线段上移动(不含端点),若,则的取值范围是_____.【答案】 【解析】由题可知,,设,则,所以, 而,可得:,所以,设, 由双钩函数性质可知,在上单调递减,则, 所以的取值范围是.故答案为:. 9.在中,D 为线段上一点,且,若,则. 【答案】3 【解析】,ABC 13B BCD →→=E AD AE AB AC λμ→→→=+12λμ+(10,3)+∞13B BCD →→=()01AE mAD m =<<13AE m AB BC ⎛⎫=+ ⎪⎝⎭()13m AB BA AC ⎡⎤=++⎢⎥⎣⎦2133AE m AB m AC →→→=+AE AB AC λμ→→→=+21,33m m λμ==1323m m λμ+=+()01m <<()33m f x m=+()01m <<()f x ()0,1()()1101333f x f >=+=12λμ+(10,3)+∞(10,3)+∞ABC AB 3BD AD =CD CA CB λμ→→→=+λμ=3BD AD =3331()4444CD CB BD CB BA CB CA CB CA CB →→→→→→→→→→∴=+=+=+-=+又,,,故选:310.在中,为上一点,,为上任一点,若,则的最小值是 . 【答案】12【解析】由题意可知:,三点共线,则:,据此有:, 当且仅当时等号成立. 综上可得:的最小值是12.三、解答题11.如图,△ABC 中,AD 为三角形BC 边上的中线且AE =2EC ,BE 交AD 于G ,求AG GD 及BGGE的值.解 设AG GD =λ,BG GE=μ. ∵BD →=DC →,即AD →-AB →=AC →-AD →, ∴AD →=12(AB →+AC →).又∵AG →=λGD →=λ(AD →-AG →),∴AG →=λ1+λAD →=λ2(1+λ)AB →+λ2(1+λ)AC →.又∵BG →=μGE →,即AG →-AB →=μ(AE →-AG →), ∴(1+μ)AG →=AB →+μAE →,AG →=11+μAB →+μ1+μAE →.又AE →=23AC →,∴AG →=11+μAB →+2μ3(1+μ)AC →.∵AB →,AC →不共线,CD CA CB λμ→→→=+31,44λμ∴==3λμ∴=ABC E AC 3AC AE =P BE (0,0)AP mAB nAC m n =+>>31m n+3AP mAB nAC mAB nAE =+=+,,A B E 31m n +=()313199366212n m n m m n m n m n m n m n⎛⎫+=++=++≥+⨯= ⎪⎝⎭11,26m n ==31m n+∴⎩⎪⎨⎪⎧λ2(1+λ)=11+μ,λ2(1+λ)=2μ3(1+μ).解之,得⎩⎪⎨⎪⎧λ=4,μ=32.∴AG GD =4,BG GE =32.《6.3.1平面向量基本定理》同步检测试卷一、基础巩固1.下列各组向量中,可以作为基底的是( ). A ., B ., C .,D ., 2.在中,,则等于( ) A .B .C .D .3.如图所示,,分别是的边,上的点,且,,则向量( ).A .B .C .D .4.已知平面直角坐标系内的两个向量,且平面内的任一向()10,0e =()21,2e =-()11,2e =-()25,7e =()13,5e =()26,10e =()12,3e =-213,24e ⎛⎫=-⎪⎝⎭ABC AB a =CB b =CA a b +a b -b a -a b --M N ABCAB AC 2AM MB =2NC AN =MN =1233AB AC -1233AB AC +1233AC AB -1233AC AB +(3,2),(1,2)a m b m =-=-量都可以唯一表示成(为实数),则实数m 的取值范围是( )A .B .C .D .5.中所在的平面上的点满足,则( ) A . B . C . D . 6.设,是不共线的两个向量,且,则( ) A .B .C .D .7.如图,在平行四边形中,为的中点,为的中点,若,则( )A .B .C .D .8在中,已知是延长线上一点,若,点为线段的中点,,则( )A .B .C .D .9.(多选)下列各组向量中,不能作为基底的是( )c c a b λμ=+,λμ6,5⎛⎫+∞ ⎪⎝⎭66,,55⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭(,2)-∞(,2)(2,)-∞-⋃-+∞ABC ∆D 2BD DC =AD =3144AD AB AC =+1344AD AB AC =+2133AD AB AC =+1233AD AB AC =+a b 0,,a b R λμλμ+=∈0λμ==0ab 0,0b λ==0,0a μ==ABCD E BC F DE 34AF xAB AD =+x =34231214ABC D BC2BCCD =E AD AE AB AC λμ=+2λμ+=14-1412-12A .,B .,C .,D .,10.(多选)已知M 为△ABC 的重心,D 为BC 的中点,则下列等式成立的是( ) A . B . C . D . 11.(多选)如果是平面α内两个不共线的向量,那么下列说法中不正确的是( ) A .(λ,μ∈R )可以表示平面α内的所有向量B .对于平面α内任一向量,使的实数对(λ,μ)有无穷多个C .若向量与共线,则有且只有一个实数λ,使得D .若实数λ,μ使得,则λ=μ=012.(多选)已知正方形的边长为,向量,满足,,则( )A .B .C .D .二、拓展提升13.如图,设,,又,试用,表示.14.如图,在任意四边形ABCD 中,()10,0e =()21,1=e ()11,2e =()22,1e =-()13,4e =-234,55⎛⎫=-⎪⎝⎭e ()12,6=e ()21,3=--e MA MB MC ==0MA MB MC ++=1233CM CA CD =+2133BM BA BD =+12,e e 12e e λμ+a 12a e e λμ=+1112e e λμ+2122e e λμ+()11122122e e e e λμλλμ+=+120e e λμ+=ABCD 2a b 2AB a =2AD a b =+||22b =a b ⊥2a b(4)a b b +⊥OA a =OB b =43AP AB =a b OP(1)已知E 、F 分别是AD 、BC 的中点求证:. (2)已知,用,表示向量. 15.已知点G 是的重心,M 是边的中点.若过的重心G ,且,求证:. 答案解析 一、基础巩固1.下列各组向量中,可以作为基底的是( ). A ., B ., C ., D ., 【答案】B 【详解】因为与不共线,其余选项中、均共线,所以B 选项中的两向量可以作为基底.2.在中,,则等于( ) A . B .C .D .【答案】C 【详解】2AB DC EF +=12AM MB =EA EB EM ABO ∆AB PQ ABO ∆,,,OA a OB b OP ma OQ nb ====113m n+=()10,0e =()21,2e =-()11,2e =-()25,7e =()13,5e =()26,10e =()12,3e =-213,24e ⎛⎫=-⎪⎝⎭()11,2e =-()25,7e =1e 2e ABC AB a =CB b =CA a b +a b -b a -a b --,3.如图所示,,分别是的边,上的点,且,,则向量( ).A .B .C .D .【答案】C 【详解】因为,, 所以. 4.已知平面直角坐标系内的两个向量,且平面内的任一向量都可以唯一表示成(为实数),则实数m 的取值范围是( )A .B .C .D .【答案】B 【详解】由题意可知,平面内的任一向量都可以唯一表示成, ∴是平面内表示所有向量的一个基底,. ∴不共线, ∴. CA CB BA b AB b a =+=-=-M N ABC AB AC 2AM MB =2NC AN =MN=1233AB AC -1233AB AC +1233AC AB -1233AC AB +2AM MB =2NC AN =1233MN AN AM AC AB =-=-(3,2),(1,2)a m b m =-=-c c a b λμ=+,λμ6,5⎛⎫+∞ ⎪⎝⎭66,,55⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭(,2)-∞(,2)(2,)-∞-⋃-+∞c c a b λμ=+,a b ,a b 3(2)20m m -+≠65m ≠故m 的取值范围是.5.中所在的平面上的点满足,则( ) A . B . C . D . 【答案】D 【详解】解:因为, 所以,所以, 6.设,是不共线的两个向量,且,则( ) A . B . C . D .【答案】A 【详解】因为,是不共线的两个向量,所以由平面向量基本定理知:若,则, 7.如图,在平行四边形中,为的中点,为的中点,若,则( )A .B .C .D .【答案】C 【详解】66,,55⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭ABC ∆D 2BD DC =AD =3144AD AB AC =+1344AD AB AC =+2133AD AB AC =+1233AD AB AC =+2BD DC =()2AD AB AC AD -=-1233AD AB AC =+a b 0,,a b R λμλμ+=∈0λμ==0ab 0,0b λ==0,0a μ==a b 0,,a b R λμλμ+=∈0λμ==ABCD E BC F DE 34AF xAB AD =+x =34231214因为为的中点,所以, 而, 即有,又,所以. 8.在中,已知是延长线上一点,若,点为线段的中点,,则( )A .B .C .D .【答案】B 【详解】 解:由题意可得,,故, ∴.9.(多选)下列各组向量中,不能作为基底的是( ) A ., B .,C .,D .,【答案】ACD 【详解】F DE ()12AF AD AE =+1122AE AB BE AB BC AB AD =+=+=+11132224AF AD AB AD AB AD ⎛⎫=++=+ ⎪⎝⎭34AF xAB AD =+12x =ABC D BC 2BC CD =E AD AE AB AC λμ=+2λμ+=14-1412-12111111131()()222222444AE AD AC CD AC BC AC AC AB AC AB ==+=+⨯=+-=-13,44λμ=-=241λμ+=()10,0e =()21,1=e ()11,2e =()22,1e =-()13,4e =-234,55⎛⎫=- ⎪⎝⎭e ()12,6=e ()21,3=--eA ,C ,D 中向量与共线,不能作为基底;B 中,不共线,所以可作为一组基底.10.(多选)已知M 为△ABC 的重心,D 为BC 的中点,则下列等式成立的是( ) A . B . C . D . 【答案】BC 【详解】M 为△ABC 的重心,M 是三边中线的交点,且在中线三等分点处,对于A ,由于△ABC 为任意三角形,故中线不一定相等,则不一定相等,故A 错误;对于B ,D 为BC 的中点,,,,故B 正确;对于C ,,故C 正确;对于D ,,故D 错误.11.(多选)如果是平面α内两个不共线的向量,那么下列说法中不正确的是( ) A .(λ,μ∈R )可以表示平面α内的所有向量B .对于平面α内任一向量,使的实数对(λ,μ)有无穷多个1e 2e 1e 2e MA MB MC ==0MA MB MC ++=1233CM CA CD =+2133BM BA BD =+∴,,MA MB MC 2MB M MD C +∴=2MA MD =-0MA MB MC ++=∴()22123333CM CA AM CA AD CA CD CA CA CD =+=+=+-=+()22123333BM BA BA BA B AM AD BD BA A BD +=+=+-==+12,e e 12e e λμ+a 12a e e λμ=+C .若向量与共线,则有且只有一个实数λ,使得D .若实数λ,μ使得,则λ=μ=0 【答案】BC 【详解】由平面向量基本定理可知,A ,D 是正确的.对于B ,由平面向量基本定理可知, 若一个平面的基底确定,则该平面内的任意一个向量在此基底下的实数对是唯一的,B 错误.对于C ,当两个向量均为零向量时,即λ1=λ2=μ1=μ2=0时,这样的λ有无数个,或当为非零向量,而为零向量(λ2=μ2=0),此时λ不存在. 12.(多选)已知正方形的边长为,向量,满足,,则( )A .B .C .D .【答案】AD 【详解】由条件可,所以,A 正确;,与不垂直,B 错误; ,C 错误;,根据正方形的性质有,所以,D正确.二、拓展提升13.如图,设,,又,试用,表示.【答案】. 1112e e λμ+2122e e λμ+()11122122e e e e λμλλμ+=+120e e λμ+=1112e e λμ+2122e e λμ+ABCD 2ab 2AB a =2AD a b =+||22b =a b ⊥2a b(4)a b b +⊥b AD AB BD =-=||||22b BD ==12a AB =BD 122a b AB BD ⋅=⋅=-4a b AB AD AC +=+=AC BD ⊥(4)a b b +⊥OA a =OB b =43AP AB =a b OP 1433OP a b =-+【详解】 解:,由已知可得:,所以, 故.14.如图,在任意四边形ABCD 中,(1)已知E 、F 分别是AD 、BC 的中点求证:.(2)已知,用,表示向量. 【答案】(1)证明见解析;(2).【详解】(1)证明:因为E 、F 分别是AD 、BC 的中点,所以,, 由题意,,两式相加得, 即;(2)因为,所以, 所以.15.已知点G 是的重心,M 是边的中点.若过的重心G ,且,求证:. AP OP OA =-AB OB OA =-43AP AB =4()3OP OA OB OA -=-44143333OP OA OA OB a b =-+=-+1433OP a b =-+2AB DC EF +=12AM MB =EA EB EM 1233EM EB EA =+0ED EA +=0CF BF +=EF ED DC CF =++EF EA AB BF =++2EF ED DC CF EA AB BF =+++++AB DC =+2AB DC EF +=12AM MB =13AM AB =()11123333EM EA AM EA AB EA EB EA EB EA =+=+=+-=+ABO ∆AB PQ ABO ∆,,,OA a OB b OP ma OQ nb ====113m n+=【答案】见解析 【详解】因为M 是边的中点,所以. 因为G 是的重心,所以.由P ,G ,Q 三点共线,所以有且只有一个实数,使,,,又因为不共线, ,消去,整理得,故.AB 11()()22OM OA OB a b =+=+ABO ∆21()33OG OM a b ==+λPG PQ λ=,(1)OG OP OQ OP OG OQ OP λλλλ-=-=+-,OP ma OQ nb ==(1))1(3OG nb a a b m λλ=+-=+,a b 1=313n m m λλ⎧⎪⎪⎨⎪-=⎪⎩λ3mn m n =+113m n+=。
2.3.1 平面向量基本定理一、A组1.设e1,e2是同一平面内的两个向量,则有()A.e1,e2一定平行B.e1,e2的模相等C.同一平面内的任一向量a都有a=λe1+μe2(λ,μ∈R)D.若e1,e2不共线,则对同一平面内的任一向量a,存在λ,μ∈R,使得a=λe1+μe2解析:由平面向量基本定理知,D正确.答案:D2.已知向量a与b的夹角为,则向量2a与-3b的夹角为()A.B.C.D.解析:∵a与2a同向,b与-3b反向,∴向量2a与-3b的夹角和a与b的夹角互补,∴向量2a与-3b的夹角为.答案:C3.在矩形ABCD中,O为对角线的交点,=5e1,=3e2,则=()A.(5e1+3e2)B.(5e1-3e2)C.(3e2-5e1)D.(5e2-3e1)解析:如图,)=)=)=(5e1+3e2).答案:A4.若D点在△ABC的边BC上,且=4=r+s,则3r+s的值为()A.B.C.D.解析:∵=4=r+s,∴)=r+s,∴r=,s=-,∴3r+s=3×.答案:C5.如图,平面内的两条相交直线OP1和OP2将该平面分割成四个部分Ⅰ,Ⅱ,Ⅲ,Ⅳ(不包含边界).设=m+n,且点P落在第Ⅲ部分,则实数m,n满足()A.m>0,n>0B.m>0,n<0C.m<0,n>0D.m<0,n<0解析:如图所示,利用平行四边形法则,将分解到上,有,则=m=n,很明显方向相同,则m>0;方向相反,则n<0.答案:B6.在等边三角形ABC中,O为△ABC所在平面上一点,且2,则的夹角为.解析:∵2,∴O为BC的中点.又△ABC为等边三角形,∴AO⊥BC,∴的夹角为.答案:7.已知向量a在基底{e1,e2}下可以表示为a=2e1+3e2,若a在基底{e1+e2,e1-e2}下可表示为a=λ(e1+e2)+μ(e1-e2),则λ=,μ=.解析:由条件可知解得答案:-8D,E分别是△ABC的边AB,BC上的点,AD=AB,BE=BC,若=λ1+λ2(λ1,λ2为实数),则λ1+λ2的值为.解析:如图,由题意知,D为AB的中点,,∴=)=-.∴λ1=-,λ2=.∴λ1+λ2=-.答案:9.设e1,e2是两个不共线的非零向量,且a=e1-2e2,b=e1+3e2.(1)证明:a,b可以作为一组基底;(2)以a,b为基底,求向量c=3e1-e2的分解式.(1)证明:假设a,b共线,则a=λb(λ∈R),则e1-2e2=λ(e1+3e2).由e1,e2不共线,得所以λ不存在,故a,b不共线,即a,b可以作为一组基底.(2)解:设c=m a+n b(m,n∈R),则3e1-e2=m(e1-2e2)+n(e1+3e2)=(m+n)e1+(-2m+3n)e2.所以解得故c=2a+b.10.如图所示,在▱ABCD中,M,N分别是DC,BC的中点,已知=c,=d,试用c,d表示.解:在△AMD中,==c-;在△ABN中,==d-.则有=c,=d,两式联立解得d-c,c-d.二、B组1.已知在▱ABCD中,∠DAB=60°,则的夹角为()A.30°B.60°C.120°D.150°解析:如图,的夹角为120°.答案:C2.e1,e2为基底向量,已知向量=e1-k e2,=2e1-e2,=3e1-3e2,若A,B,D三点共线,则k的值是()A.2B.-3C.-2D.3解析:∵A,B,D三点共线,∴共线.又=e1-k e2,=e1-2e2,∴e1-k e2=λ(e1-2e2),即∴k=2.答案:A3.若=a,=b,=λ(λ≠-1),则等于()A.a+λbB.λa+(1-λ)bC.λa+bD.a+b解析:由=λ,得=λ(),化简得a+b(λ≠-1).答案:D4.如图,AB是☉O的直径,点C,D是半圆弧的两个三等分点,=a,=b,则=()A.a-bB.a-bC.a+bD.a+b解析:连接CD,OD,∵点C,D是半圆弧的两个三等分点,∴.∴CD∥AB,∠CAD=∠DAB=30°.∵OA=OD,∠ADO=∠DAO=30°,∴∠CAD=∠ADO=30°.∴AC∥DO.∴四边形ACDO为平行四边形,.∵a,=b,∴a+b.故选D.答案:D5.已知非零向量a,b,c满足a+b+c=0,向量a,b的夹角为120°,且|b|=2|a|,则向量a与c的夹角为.解析:由题意可画出图形,在△OAB中,∠OAB=60°,又|b|=2|a|,∴∠ABO=30°.∴∠BOA=90°,a与c的夹角为180°-∠BOA=90°.答案:90°6.如图所示,在△ABC中,AB=2,BC=3,∠ABC=60°,AH⊥BC于点H,M为AH的中点,若=λ+μ,则λ+μ=.解析:因为AB=2,BC=3,∠ABC=60°,AH⊥BC,所以BH=1,BH=BC.因为点M为AH的中点,所以)=.所以λ=,μ=,故λ+μ=.答案:7.过△ABC的重心G任作一直线分别交AB,AC于点M,N,且(λμ≠0),有人说无论M,N在AB,AC上如何变动,恒有λ+μ=3成立.你认为上述说法是否正确?请说明理由.解:题中说法是正确的.理由:事实上,不难证明),由于M,G,N三点共线,则存在实数m,满足=m+(1-m),于是,即∴μ+λ=3.8,OM∥AB,点P在由射线OM、线段OB及AB的延长线围成的阴影区域内(不含边界)运动,且=x+y.(1)求x的取值范围.(2)当x=-时,求y的取值范围.解:(1)因为=x+y,以OA的反向延长线和OB为两邻边作平行四边形, 由向量加法的平行四边形法则可知OP为此平行四边形的对角线,当OP长度增大且靠近OM时,x趋向负无穷大,所以x的取值范围是(-∞,0).(2)如图所示,当x=-时,在OA的反向延长线上取点C,使OC=OA,过C作CE∥OB,分别交OM和AB的延长线于点D,E,则CD=OB,CE=OB,要使点P落在指定区域内,则点P应落在DE上,当点P在点D处时,=-,当点P在点E处时,=-,所以y的取值范围是.。
2.3.1平面向量基本定理1.平面向量基本定理条件e1,e2是同一平面内的两个不共线向量结论这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2基底不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底[点睛]对平面向量基本定理的理解应注意以下三点:①e1,e2是同一平面内的两个不共线向量;②该平面内任意向量a都可以用e1,e2线性表示,且这种表示是唯一的;③基底不唯一,只要是同一平面内的两个不共线向量都可作为基底.2.向量的夹角条件两个非零向量a和b产生过程作向量OA=a,OB=b,则∠AOB叫做向量a与b的夹角范围0°≤θ≤180°特殊情况θ=0°a与b同向θ=90°a与b垂直,记作a⊥bθ=180°a与b反向[点睛]当a与b共线同向时,夹角θ为0°,共线反向时,夹角θ为180°,所以两个向量的夹角的范围是0°≤θ≤180°.用基底表示向量[典例]如图,在平行四边形ABCD中,设对角线AC=a,BD=b,试用基底a,b表示AB,BC.[活学活用]如图,已知梯形ABCD中,AD∥BC,E,F分别是AD,BC边上的中点,且BC=3AD,BA=a,BC=b.试以a,b为基底表示EF,DF,CD.向量夹角的简单求解[典例]已知|a|=|b|=2,且a与b的夹角为60°,则a+b与a的夹角是多少?a-b 与a的夹角又是多少?[活学活用]如图,已知△ABC是等边三角形.(1)求向量AB与向量BC的夹角;(2)若E为BC的中点,求向量AE与EC的夹角.平面向量基本定理的应用[典例]NC,AM与BN相交于点P,求AP∶PM与BP∶PN.[一题多变]1.[变设问]在本例条件下,若CM=a,CN=b,试用a,b表示CP,2.[变条件]若本例中的点N 为AC 的中点,其它条件不变,求AP ∶PM 与BP ∶PN .层级一 学业水平达标1.已知平行四边形ABCD 中∠DAB =30°,则AD 与CD 的夹角为( ) A .30° B .60° C .120°D .150°2.设点O 是平行四边形ABCD 两对角线的交点,下列的向量组中可作为这个平行四边形所在平面上表示其他所有向量的基底的是( )①AD 与AB ;②DA 与BC ;③CA 与DC ;④OD 与OB . A .①② B .①③ C .①④D .③④3.若AD 是△ABC 的中线,已知AB =a ,AC =b ,则以a ,b 为基底表示AD =( ) A .12(a -b )B .12(a +b )C .12(b -a )D .12b +a4.在矩形ABCD 中,O 是对角线的交点,若BC =e 1,DC =e 2,则OC =( ) A .12(e 1+e 2)B .12(e 1-e 2)C .12(2e 2-e 1)D .12(e 2-e 1)5.设D 为△ABC 所在平面内一点,BC =3CD ,则( ) A .AD =-13AB +43AC B .AD =13AB -43ACC .AD =43AB +13AC D .AD =43AB -13AC6.已知向量a ,b 是一组基底,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y 的值为______.7.已知e 1,e 2是两个不共线向量,a =k 2e 1+⎝⎛⎭⎫1-5k2e 2与b =2e 1+3e 2共线,则实数k =______.8.如下图,在正方形ABCD 中,设AB =a ,AD =b ,BD =c ,则在以a ,b 为基底时,AC 可表示为______,在以a ,c 为基底时,AC 可表示为______.9.如图所示,设M ,N ,P 是△ABC 三边上的点,且BM =13BC ,CN =13CA ,AP =13AB ,若AB =a ,AC =b ,试用a ,b 将MN ,NP ,PM 表示出来.10.证明:三角形的三条中线共点.层级二 应试能力达标1.在△ABC 中,点D 在BC 边上,且BD =2DC ,设AB =a ,AC =b ,则AD 可用基底a ,b 表示为( )A .12(a +b )B .23a +13bC .13a +23bD .13(a +b )2.AD 与BE 分别为△ABC 的边BC ,AC 上的中线,且AD =a ,BE =b ,则BC =( ) A .43a +23bB .23a +43bC .23a -23bD .-23a +23b3.如果e 1,e 2是平面α内所有向量的一组基底,那么,下列命题中正确的是( ) A .若存在实数λ1,λ2,使得λ1e 1+λ2e 1=0,则λ1=λ2=0B .平面α内任一向量a 都可以表示为a =λ1e 1+λ2e 2,其中λ1,λ2∈RC .λ1e 1+λ2e 2不一定在平面α内,λ1,λ2∈RD .对于平面α内任一向量a ,使a =λ1e 1+λ2e 2的实数λ1,λ2有无数对4.已知非零向量OA ,OB 不共线,且2OP =x OA +y OB ,若PA =λAB (λ∈R),则x ,y 满足的关系是( )A .x +y -2=0B .2x +y -1=0C.x+2y-2=0 D.2x+y-2=05.设e1,e2是平面内的一组基底,且a=e1+2e2,b=-e1+e2,则e1+e2=________a +________b.6.已知非零向量a,b,c满足a+b+c=0,向量a,b的夹角为120°,且|b|=2|a|,则向量a与c的夹角为________.7.设e1,e2是不共线的非零向量,且a=e1-2e2,b=e1+3e2.(1)证明:a,b可以作为一组基底;(2)以a,b为基底,求向量c=3e1-e2的分解式;(3)若4e1-3e2=λa+μb,求λ,μ的值.8.若点M是△ABC所在平面内一点,且满足:AM=34AB+14AC.(1)求△ABM与△ABC的面积之比.(2)若N为AB中点,AM与CN交于点O,设BO=x BM+y BN,求x,y的值.。
平面向量基本定理[课时作业] [A 组 基础巩固]1.已知e 1和e 2是表示平面内所有向量的一组基底,那么下面四组向量中不能作为一组基底的是( ) A .e 1和e 1+e 2 B .e 1-2e 2和e 2-2e 1 C .e 1-2e 2和4e 2-2e 1D .e 1+e 2和e 1-e 2解析:∵e 1-2e 2=-12(4e 2-2e 1),∴e 1-2e 2与4e 2-2e 1共线,故不能作为基底. 其余三组均不共线. 答案:C2.如果e 1,e 2是平面α内所有向量的一组基底,那么下列命题中正确的是( ) A .已知实数λ1,λ2,则向量λ1e 1+λ2e 2不一定在平面α内B .对平面α内任一向量a ,使a =λ1e 1+λ2e 2的实数λ1,λ2有无数对C .若有实数λ1,λ2使λ1e 1+λ2e 2=0,则λ1=λ2=0D .对平面α内任一向量a ,使a =λ1e 1+λ2e 2的实数λ1,λ2不一定存在解析:选项A 中,由平面向量基本定理知λ1e 1+λ2e 2与e 1,e 2共面,所以A 项不正确;选项B 中,实数λ1,λ2有且仅有一对,所以B 项不正确;选项D 中,实数λ1,λ2一定存在,所以D 项不正确;很明显C 项正确. 答案:C3.四边形OABC 中,CB →=12OA →,若OA →=a ,OC →=b ,则AB →=( )A .a -12bB.a2-b C .b +a2D .b -12a解析:AB →=AO →+OC →+CB →=-a +b +12a =b -12a ,故选 D.答案:D4.若P 为△OAB 的边AB 上一点,且△OAP 的面积与△OAB 的面积之比为1∶3,则有( ) A.OP →=OA →+2OB →B.OP →=2 OA →+OB →C.OP →=23OA →+13OB →D.OP →=13OA →+23OB →解析:因为△OAP 的面积与△OAB 的面积之比为1∶3,所以AP →=13AB →,所以OP →-OA →=13(OB →-OA →),所以OP →=23OA →+13OB →.答案:C5.已知|OA →|=2,|OB →|=3,∠AOB =120°,点C 在∠AOB 内,∠AOC =30°,设OC →=mOA →+nOB →(m ,n ∈R ),则m n=( )A.32B. 3C.233D.32解析:如图,过点C 作CM ∥OB ,∥OA , 则OC →=OM →+ON →,设|ON →|=x ,则|OM →|=2x , OC →=2x ·OA →|OA →|+x ·OB→|OB →|=xOA →+33xOB →,所以m =x ,n =3x 3,所以m n =x3x3= 3. 答案:B6.若|a |=|b |=|a -b |,则a 与b 的夹角为________. 解析:如图,OA →=a ,OB →=b ,BA →=a -b , 因为|a |=|b |=|a -b |,所以OA =OB =AB , 所以a 与b 的夹角为∠AOB =60°. 答案:60°7.在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=________.解析:设AB →=a ,AD →=b ,则AE →=12a +b ,AF →=a +12b ,得a =23(2 AF →-AE →),b =23(2 AE →-AF →),又因为AC →=a +b ,所以AC →=23(AE →+AF →),即λ=μ=23,所以λ+μ=43.答案:438.如图所示,已知E 、F 分别是矩形ABCD 的边BC 、CD 的中点,EF 与AC 交于点G ,若AB →=a ,AD →=b ,用a ,b 表示AG →=________.解析:AG →=AE →-GE →=AB →+BE →-GE →=a +12b -12FE →=a +12b -12×12DB →=a +12b -14(a -b )=34a +34b.答案:34a +34b9.如图所示,设M ,N ,P 是△ABC 三边上的点, 且BM →=13BC →,→=13CA →,AP →=13AB →,若AB →=a ,AC →=b ,试用a ,b 将MN →,NP →,PM →表示出来.解析:NP →=AP →-AN →=13AB →-23AC →=13a -23b ,MN →=→-CM →=-13AC →-23CB →=-13b -23(a -b )=-23a +13b , PM →=-MP →=-(MN →+NP →)=13(a +b ).10.若点M 是△ABC 所在平面内一点,且满足:AM →=34AB →+14AC →.(1)求△ABM 与△ABC 的面积之比;(2)若N 为AB 中点,AM 与交于点O ,设BO →=xBM →+yBN →,求x ,y 的值. 解析:(1)由AM →=34AB →+14AC →可知M ,B ,C 三点共线,如图,令BM →=λBC →⇒AM →=AB →+BM →=AB →+λBC →=AB →+λ(AC →-AB →)=(1-λ)AB →+λAC →⇒λ=14,所以S △ABM S △ABC =14,即面积之比为1∶4.(2)由BO →=xBM →+yBN →⇒BO →=xBM →+y 2BA →,BO →=x 4BC →+yBN →,由O ,M ,A 三点共线及O ,N ,C 三点共线⇒⎩⎪⎨⎪⎧ x +y2=1,x4+y =1⇒⎩⎪⎨⎪⎧x =47,y =67.[B 组 能力提升]1.在△ABC 中,已知AB =2,BC =3,∠ABC =60°,AH ⊥BC 于H ,M 为AH 的中点,若AM →=λAB →+μAC →,则λ,μ的值分别是( ) A.16,13 B.13,16 C.12,13D.14,16解析:AM →=12AH →=12(AB →+BH →),因为AH ⊥BC ,∠ABC =60°, 所以BH =1,所以BH =13BC ,故AM →=12AB →+12BH →=12AB →+16BC →=12AB →+16(AC →-AB →)=13AB →+16AC →, 故λ=13,μ=16.答案:B2.若OP 1→=a ,OP 2→=b ,P 1P →=λPP 2→(λ≠-1),则OP →=( ) A .a +λb B .λa +(1-λ)b C .λa +bD.11+λa +λ1+λb 解析:因为OP →=OP 1→+P 1P →=OP 1→+λPP 2→=OP 1→+λ(OP 2→-OP →)=OP 1→+λOP 2→-λOP →,所以(1+λ)OP →=OP 1→+λOP 2→,所以OP →=11+λOP 1→+λ1+λOP 2→=11+λa +λ1+λB.答案:D3.设非零向量a 、b 、c 满足|a |=|b |=|c |,a +b =c ,则a 与b 的夹角为( ) A .150° B .120° C .60°D .30°解析:∵|a |=|b |=|c |≠0,且a +b =c , ∴如图所示就是符合题设条件的向量, 易知OACB 是菱形,△OBC 和△OAC 都是等边三角形. ∴a 与b 的夹角为120°. 答案:B4.已知e 1,e 2是同一平面内两个不共线的向量,且AB →=2e 1+k e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,如果A ,B ,D 三点共线,则k 的值为________.解析:BD →=CD →-CB →=2e 1-e 2-(e 1+3e 2)=e 1-4e 2.因为A ,B ,D 三点共线,所以存在实数λ,使AB →=λBD →,即2e 1+k e 2=λ(e 1-4e 2),所以⎩⎪⎨⎪⎧λ=2,k =-4λ,解得k =-8.答案:-85.如图所示,PQ 过△AOB 的重心G ,设OA →=a , OB →=b ,OP →=m a ,OQ →=n b.求证:1m +1n=3.解析:连接OG 并延长,交AB 于M (图略), 则M 是AB 的中点,由G 为△OAB 的重心得:OG →=23OM →=23×12(OA →+OB →)=13(a +b ),PG →=OG →-OP →=13(a +b )-m a=⎝ ⎛⎭⎪⎫13-m a +13b , QG →=OG →-OQ →=13(a +b )-n b ,=13a +⎝ ⎛⎭⎪⎫13-n b. ∵P ,G ,Q 三点共线, ∴PG →=λQG →,即⎝ ⎛⎭⎪⎫13-m a +13b =λ3a +⎝ ⎛⎭⎪⎫13-n λb.∵a ,b 不共线,∴由平面向量基本定理得: ⎩⎪⎨⎪⎧13-m =λ3,13=⎝ ⎛⎭⎪⎫13-n λ⇒m +n =3mn ,∴1m +1n=3.6.如图所示,OM ∥AB ,点P 在由射线OM 、线段OB 及线段AB 的延长线围成的阴影区域内(不含边界)运动, 且OP →=xOA →+yOB →. (1)求x 的取值X 围;(2)当x =-12时,求y 的取值X 围.解析:(1)因为OP →=xOA →+yOB →,以OB 和OA 的反向延长线为两邻边作平行四边形,由向量加法的平行四边形法则可知OP 为此平行四边形的对角线,当OP 长度增大且靠近OM 时,x 趋向负无穷大,所以x 的取值X 围是(-∞,0).(2)如图所示,当x =-12时,在OA 的反向延长线取点C ,使OC =12OA ,过C 作CE ∥OB ,分别交OM 和AB 的延长线于点D ,E ,则CD =12OB ,CE =32OB ,要使P 点落在指定区域内,则P 点应落在DE 上, 当点P 在点D 处时OP →=-12OA →+12OB →,当点P 在点E 处时OP →=-12OA →+32OB →,所以y 的取值X 围是⎝ ⎛⎭⎪⎫12,32.。
2.3.1 平面向量基本定理考试标准学法指导1.平面向量基本定理既是本节的重点,也是本节的难点.2.为了更好地理解平面向量基本定理,可以通过改变向量的方向及模的大小作图观察λ1,λ2取不同值时的图形特征,得到平面上任一向量都可以由这个平面内两个不共线的向量e 1,e 2表示出来.3.在△ABC 中,明确AC →与AB →的夹角与CA →与AB →的夹角互补.1.平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1,e 2叫作表示这一平面内所有向量的一组基底.状元随笔 平面向量基本定理的理解(1)e →1,e →2是同一平面内的两个不共线的向量,e →1,e →2的选取不唯一,即一个平面可以有多组的基底.(2)平面内的任一向量a →都可以沿基底进行分解. (3)基底e →1,e →2确定后,实数λ1、λ2是唯一确定的. 2.关于两向量的夹角(1)两向量夹角的概念:已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB =θ,叫作向量a 与b 的夹角.①范围:向量a 与b 的夹角的范围是[0°,180°]. ②当θ=0°时,a 与b 同向. ③当θ=180°时,a 与b 反向.(2)垂直:如果a 与b 的夹角是90°,我们说a 与b 垂直,记作a ⊥b . 状元随笔 两向量夹角概念的正确理解(1)由于零向量的方向是任意的,因此,零向量可以与任一向量平行,零向量也可以与任一向量垂直.(2)按照向量夹角的定义,只有两个向量的起点重合时所对应的角才是两向量的夹角,如图所示,∠BAC 不是向量CA →与向量AB →的夹角,∠BAD 才是向量CA →与向量AB →的夹角.[小试身手]1.判断下列命题是否正确. (正确的打“√”,错误的打“×”)(1)一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底.( ) (2)若e 1,e 2是同一平面内两个不共线向量,则λ1e 1+λ2e 2(λ1,λ2为实数)可以表示该平面内所有向量.( )(3) 若a e 1+b e 2=c e 1+d e 2(a ,b ,c ,d ∈R ),则a =c ,b =d .( ) 答案:(1)× (2)√ (3)×2.设O 是平行四边形ABCD 两对角线的交点,给出下列向量组:①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →,其中可作为这个平行四边形所在平面的一组基底的是( )A .①②B .①③C .①④ D.③④解析:①AD →与AB →不共线;②DA →=-BC →,则DA →与BC →共线;③CA →与DC →不共线;④OD →=-OB →,则OD →与OB →共线.由平面向量基底的概念知,只有不共线的两个向量才能构成一组基底,故①③满足题意.答案:B3.在△ABC 中,向量AB →,BC →的夹角是指( )A .∠CAB B .∠ABC C .∠BCAD .以上都不是解析:由两向量夹角的定义知,AB →与BC →的夹角应是∠ABC 的补角,故选D. 答案:D4.如图所示,向量OA →可用向量e 1,e 2表示为________.解析:由图可知,OA →=4e 1+3e 2. 答案:OA →=4e 1+3e 2类型一 平面向量基本定理的理解例1 设e 1,e 2是不共线的两个向量,给出下列四组向量: ①e 1与e 1+e 2; ②e 1-2e 2与e 2-2e 1; ③e 1-2e 2与4e 2-2e 1;④e 1+e 2与e 1-e 2.其中,不能作为平面内所有向量的一组基底的是________(写出满足条件的序号).【解析】 ①设e 1+e 2=λe 1,则⎩⎪⎨⎪⎧λ=1,1=0,无解,∴e 1+e 2与e 1不共线,即e 1与e 1+e 2能作为一组基底. ②设e 1-2e 2=λ(e 2-2e 1),则(1+2λ)e 1-(2+λ)e 2=0,则⎩⎪⎨⎪⎧1+2λ=0,2+λ=0,无解,∴e 1-2e 2与e 2-2e 1不共线,即e 1-2e 2与e 2-2e 1能作为一组基底. ③∵e 1-2e 2=-12(4e 2-2e 1),∴e 1-2e 2与4e 2-2e 1共线,即e 1-2e 2与4e 2-2e 1不能作为一组基底.④设e 1+e 2=λ(e 1-e 2),则(1-λ)e 1+(1+λ)e 2=0,则⎩⎪⎨⎪⎧1-λ=0,1+λ=0,无解,∴e 1+e 2与e 1-e 2不共线,即e 1+e 2与e 1-e 2能作为一组基底.【答案】 ③由基底的定义知,平面α内两个不共线的向量e →1、e →2叫做表示这一平面内所有向量的一组基底,要判断所给的两个向量能否构成基底,只要看这两个向量是否共线即可.方法归纳对基底的理解(1)两个向量能否作为一组基底,关键是看这两个向量是否共线.若共线,则不能作基底,反之,则可作基底.(2)一个平面的基底一旦确定,那么平面上任意一个向量都可以由这组基底唯一线性表示出来.设向量a 与b 是平面内两个不共线的向量,若x 1a +y 1b =x 2a +y 2b ,则{ x 1=x 2,y 1=y 2.提醒:一个平面的基底不是唯一的,同一个向量用不同的基底表示,表达式不一样.跟踪训练1 下面三种说法:①一个平面内只有一对不共线向量可作为表示该平面的基底; ②一个平面内有无数多对不共线向量可作为该平面所有向量的基底; ③零向量不可以作为基底中的向量.其中正确的说法是( )A.①② B .②③ C .①③ D .①②③解析:平面内向量的基底是不唯一的,在同一平面内任何一组不共线的向量都可作为平面内所有向量的一组基底;零向量可看成与任何向量平行,故零向量不可以作为基底中的向量,故B 项正确.答案:B平面内任意一对不共线的向量都可以作为该平面内所有向量的基底,一定要注意“不共线”这一条件,在做题时容易忽略此条件而导致错误,同时还要注意零向量不能作基底.类型二 用基底表示平面向量例2 如图所示,在▱ABCD 中,点E ,F 分别为BC ,DC 边上的中点,DE 与BF 交于点G ,若AB →=a ,AD →=b ,试用a ,b 表示向量DE →,BF →.【解析】 DE →=DA →+AB →+BE →=-AD →+AB →+12BC →=-AD →+AB →+12AD →=a -12b .BF →=BA →+AD →+DF →=-AB →+AD →+12AB →=b -12a .解决此类问题的关键在于以一组不共线的向量为基底,通过向量的加、减、数乘以及向量共线的结论,把其他相关的向量用这一组基底表示出来.方法归纳用基底表示向量的两种方法(1)运用向量的线性运算法则对待求向量不断进行转化,直至用基底表示为止. (2)通过列向量方程或方程组的形式,利用基底表示向量的唯一性求解.跟踪训练2 (1)本例条件不变,试用基底a ,b 表示AG →;(2)若本例中的基向量“AB →,AD →”换为“CE →,CF →”即若CE →=a ,CF →=b ,试用a ,b 表示向量DE →,BF →.解析:(1)由平面几何知识知BG =23BF ,故AG →=AB →+BG →=AB →+23BF →=a +23⎝ ⎛⎭⎪⎫b -12a =a +23b-13a =23a +23b . (2)DE →=DC →+CE →=2FC →+CE →=-2CF →+CE →=-2b +a . BF →=BC →+CF →=2EC →+CF →=-2CE →+CF →=-2a +b .用基底表示平面向量,要充分利用向量加法、减法的三角形法则或平行四边形法则. 类型三 向量的夹角例3 已知|a |=|b |,且a 与b 的夹角为120°,求a +b 与a 的夹角及a -b 与a 的夹角.【解析】 如图,作OA →=a ,OB →=b ,∠AOB =120°,以OA →,OB →为邻边作平行四边形OACB ,则OC →=a +b ,BA →=a -b .因为|a |=|b |,所以平行四边形OACB 为菱形. 所以OC →与OA →的夹角∠AOC =60°,BA →与OA →的夹角即为BA →与BC →的夹角∠ABC =30°.所以a +b 与a 的夹角为60°,a -b 与a 的夹角为30°.作图,由图中找到a →-b →与a →的夹角,利用三角形、四边形的知识求角. 方法归纳两个向量夹角的实质及求解的关键(1)实质:两个向量的夹角,实质上是从同一起点出发的两个非零向量构成的角. (2)关键:求两个向量的夹角,关键是利用平移的方法使两个向量的起点重合,然后按照“一作二证三算”的步骤,并结合平面几何知识求出两个向量的夹角.跟踪训练3 已知|a |=|b |=2,且a 与b 的夹角为60°,求a +b 与a 的夹角,a -b 与a 的夹角.解析:如图,作OA →=a ,OB →=b ,且∠AOB =60°,以OA ,OB 为邻边作▱OACB , 则OC →=OA →+OB →=a +b ,BA →=OA →-OB →=a -b ,BC →=OA →=a . 因为|a |=|b |=2,所以△OAB 为正三角形. 所以∠OAB =60°=∠ABC . 即a -b 与a 的夹角为60°. 因为|a |=|b |,所以▱OACB 为菱形.所以OC ⊥AB ,所以∠COA =90°-60°=30°. 即a +b 与a 的夹角为30°.作出向量a →,b →,a →+b →,a →-b →,利用平面几何知识求解. 2.3.1[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.已知向量a =e 1-2e 2,b =2e 1+e 2,其中e 1,e 2不共线,则a +b 与c =6e 1-2e 2的关系是( )A .不共线B .共线C .相等D .不确定 解析:∵a +b =3e 1-e 2,∴c =2(a +b ).∴a +b 与c 共线. 答案:B2.当向量a 与b 共线时,则这两个向量的夹角θ为( ) A .0° B.90°C .180°D .0°或180°解析:当向量a 与b 共线,即两向量同向时夹角θ=0°,反向时夹角θ=180°. 答案:D3.已知AD 是△ABC 的中线,AB →=a ,AD →=b ,以a ,b 为基底表示AC →,则AC →=( ) A.12(a -b ) B .2b -a C.12(b -a ) D .2b +a解析:如图,AD 是△ABC 的中线,则D 为线段BC 的中点,从而AD →=12(AB →+AC →),则AC →=2AD →-AB →=2b -a .答案:B4.在正方形ABCD 中,AC →与CD →的夹角等于( ) A .45° B.90° C .120° D.135° 解析:如图所示,将AC →平移到CE →,则CE →与CD →的夹角即为AC →与CD →的夹角,夹角为135°. 答案:D5.若D 点在三角形ABC 的边BC 上,且CD →=4DB →=rAB →+sAC →,则3r +s 的值为( )55C.85D.45解析:∵CD →=4DB →=rAB →+sAC →, ∴CD →=45CB →=45(AB →-AC →)=rAB →+sAC →,∴r =45,s =-45.∴3r +s =125-45=85.答案:C二、填空题(每小题5分,共15分)6.已知向量a ,b 是一组基底,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y 的值为________.解析:因为a ,b 是一组基底,所以a 与b 不共线, 因为(3x -4y )a +(2x -3y )b =6a +3b ,所以⎩⎪⎨⎪⎧3x -4y =6,2x -3y =3,解得⎩⎪⎨⎪⎧x =6,y =3,所以x -y =3.答案:37.已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足2AC →+CB →=0,若OA →=a ,OB →=b ,用a ,b 表示向量OC →,则OC →=________.解析:AC →=OC →-OA →,CB →=OB →-OC →,∵2AC →+CB →=0,∴2(OC →-OA →)+(OB →-OC →)=0,∴OC →=2OA →-OB →=2a -b .答案:2a -b8.在正方形ABCD 中,E 是DC 边上的中点,且AB →=a ,AD →=b ,则BE →=________.解析:BE →=BC →+CE →=AD →-12AB →=b -12a .2三、解答题(每小题10分,共20分)9.已知e 1,e 2是平面内两个不共线的向量,a =3e 1-2e 2,b =-2e 1+e 2,c =7e 1-4e 2,试用向量a 和b 表示c .解析:因为a ,b 不共线,所以可设c =x a +y b , 则x a +y b =x (3e 1-2e 2)+y (-2e 1+e 2) =(3x -2y )e 1+(-2x +y )e 2=7e 1-4e 2. 又因为e 1,e 2不共线,所以⎩⎪⎨⎪⎧3x -2y =7,-2x +y =-4,解得⎩⎪⎨⎪⎧x =1,y =-2,所以c =a -2b .10.如图所示,设M ,N ,P 是△ABC 三边上的点,且BM →=13BC →,CN →=13CA →,AP →=13AB →,若AB→=a ,AC →=b ,试用a ,b 将MN →、NP →、PM →表示出来.解析:NP →=AP →-AN →=13AB →-23AC →=13a -23b ,MN →=CN →-CM →=-13AC →-23CB →=-13b -23(a -b )=-23a +13b ,PM →=-MP →=-(MN →+NP →)=13(a +b ).[能力提升](20分钟,40分)11.设非零向量a ,b ,c 满足|a |=|b |=|c |,a +b =c ,则向量a ,b 的夹角为( ) A .150° B.120° C .60° D.30°解析:设向量a ,b 的夹角为θ,作BC →=a ,CA →=b ,则c =a +b =BA →(图略),a ,b 的夹角为180°-∠C .∵|a |=|b |=|c |,∴∠C =60°,∴θ=120°.答案:B 12.如图,在△ABC 中,已知AB =2,BC =3,∠ABC =60°,AH ⊥BC 于H ,M 为AH 的中点,若AM →=λAB →+μBC →,则λ+μ=________.解析:因为AB =2,∠ABC =60°,AH ⊥BC ,所以BH =1,又M 为AH 的中点,BC =3,所以AM →=12AH →=12(AB →+BH →)=12(AB →+13BC →)=12AB →+16BC →,所以λ+μ=23. 答案:2313.如图,在△OAB 中,OC →=14OA →,OD →=12OB →,AD 与BC 交于点M ,设OA →=a ,OB →=b ,试以a ,b 为基底表示OM →.解析:根据平面向量基本定理可设OM →=m a +n b (m ,n ∈R ),则AM →=OM →-OA →=(m -1)a +n b ,AD →=OD →-OA →=12b -a =-a +12b , ∵A 、M 、D 三点共线,∴AM →=λAD →(λ为实数),∴AM →=-λa +λ2b , ∴⎩⎪⎨⎪⎧ m -1=-λ,n =12λ,消去λ得m +2n =1.而CM →=OM →-OC →=⎝ ⎛⎭⎪⎫m -14a +n b ,CB →=OB →-OC →=b -14a =-14a +b , ∵C 、M 、B 三点共线,∴CM →=μCB →(μ为实数),∴CM →=-μ4a +μb ,∴⎩⎪⎨⎪⎧ m -14=-14μ,n =μ,消去μ得4m +n =1.由⎩⎪⎨⎪⎧ m +2n =1,4m +n =1解得⎩⎪⎨⎪⎧ m =17,n =37,∴OM →=17a +37b . 14.在△ABC 中,AB =3,BC =1,AC =2,D 是AC 的中点.求:(1)AD →与BD →夹角的大小;(2)DC →与BD →夹角的大小.解析:(1)如图所示,在△ABC 中,AB =3,BC =1,AC =2,所以AB 2+BC 2=(3)2+1=22=AC 2,所以△ABC 为直角三角形.因为tan A =BC AB =13=33, 所以A =30°.又因为D 为AC 的中点,所以∠ABD =∠A =30°,AD →=DC →.在△ABD 中,∠BDA =180°-∠A -∠ABD =180°-30°-30°=120°,所以AD →与BD →的夹角为120°.(2)因为AD →=DC →,所以DC →与BD →的夹角也为120°.。
平面向量的运算【第一课时】向量的加法运算【学习重难点】【学习目标】【核心素养】平面向量加法的几何意义理解向量加法的概念以及向量加法的几何意义数学抽象、直观想象平行四边形法则和三角形法则掌握向量加法的平行四边形法则和三角形法则,会用它们解决实际问题数学抽象、直观想象平面向量加法的运算律掌握向量加法的交换律和结合律,会用它们进行计算数学抽象、数学运算【学习过程】一、问题导学预习教材内容,思考以下问题:1.在求两向量和的运算时,通常使用哪两个法则?2.向量加法的运算律有哪两个?二、新知探究探究点1:平面向量的加法及其几何意义例1:如图,已知向量a,b,c,求作和向量a+b+c.解:法一:可先作a +c ,再作(a +c )+b ,即a +b +c .如图,首先在平面内任取一点O ,作向量OA → =a ,接着作向量AB →=c ,则得向量OB → =a +c ,然后作向量BC →=b ,则向量OC →=a +b +c 为所求.法二:三个向量不共线,用平行四边形法则来作.如图,(1)在平面内任取一点O ,作OA → =a ,OB →=b ;(2)作平行四边形AOBC ,则OC →=a +b ;(3)再作向量OD →=c ;(4)作平行四边形CODE ,则OE → =OC → +c =a +b +c .OE →即为所求.探究点2:平面向量的加法运算例2:化简:(1)BC → +AB →;(2)DB → +CD → +BC →;(3)AB → +DF → +CD → +BC → +FA →.解:(1)BC → +AB → =AB → +BC → =AC →.(2)DB → +CD → +BC→ =BC → +CD → +DB→ =(BC → +CD → )+DB→ =BD → +DB →=0.(3)AB → +DF → +CD → +BC → +FA→ =AB → +BC → +CD → +DF → +FA → =AC → +CD → +DF → +FA→=AD → +DF → +FA → =AF → +FA →=0.探究点3:向量加法的实际应用例3:某人在静水中游泳,速度为43千米/小时,他在水流速度为4千米/小时的河中游泳.若他垂直游向河对岸,则他实际沿什么方向前进?实际前进的速度大小为多少?解:如图,设此人游泳的速度为OB → ,水流的速度为OA → ,以OA → ,OB →为邻边作▱OACB ,则此人的实际速度为OA → +OB → =OC →.由勾股定理知|OC →|=8,且在Rt △ACO 中,∠COA =60°,故此人沿与河岸成60°的夹角顺着水流的方向前进,速度大小为8千米/小时.三、学习小结1.向量加法的定义及运算法则定义求两个向量和的运算,叫做向量的加法前提已知非零向量a ,b作法在平面内任取一点A ,作AB → =a ,BC → =b ,再作向量AC→结论向量AC →叫做a 与b 的和,记作a +b ,即a +b =AB →+BC → =AC→法则三角形法则图形前提已知不共线的两个向量a ,b作法在平面内任取一点O ,以同一点O 为起点的两个已知向量a ,b 为邻边作▱OACB 结论对角线OC →就是a 与b 的和法则平行四边形法则图形规定对于零向量与任一向量a ,我们规定a +0=0+a =a2.|a +b |,|a |,|b |之间的关系一般地,|a +b |≤|a |+|b |,当且仅当a ,b 方向相同时等号成立.3.向量加法的运算律交换律a +b =b +a结合律(a +b )+c =a +(b +c )四、精炼反馈1.化简OP → +PQ → +PS → +SP →的结果等于( )A .QP →B .OQ→ C .SP → D .SQ→解析:选B .OP → +PQ → +PS → +SP → =OQ → +0=OQ →.2.在四边形ABCD 中,AC → =AB → +AD →,则一定有( )A .四边形ABCD 是矩形B .四边形ABCD 是菱形C .四边形ABCD 是正方形D .四边形ABCD 是平行四边形解析:选D .由AC → =AB → +AD → 得AD → =BC →,即AD =BC ,且AD ∥BC ,所以四边形ABCD的一组对边平行且相等,故为平行四边形.3.已知非零向量a ,b ,|a |=8,|b |=5,则|a +b |的最大值为______.解析:|a +b |≤|a |+|b |,所以|a +b |的最大值为13.答案:134.已知▱ABCD ,O 是两条对角线的交点,E 是CD 的一个三等分点(靠近D 点),求作:(1)AO → +AC →;(2)DE → +BA →.解:(1)延长AC ,在延长线上截取CF =AO ,则向量AF →为所求.(2)在AB 上取点G ,使AG =13AB ,则向量BG →为所求.【第二课时】向量的减法运算【学习重难点】【学习目标】【核心素养】相反向量理解相反向量的概念数学抽象向量的减法掌握向量减法的运算法则及其几何意义数学抽象、直观想象【学习过程】一、问题导入预习教材内容,思考以下问题:1.a 的相反向量是什么?2.向量减法的几何意义是什么?二、新知探究探究点1:向量的减法运算例1:化简下列各式:(1)(AB → +MB → )+(-OB → -MO →);(2)AB → -AD → -DC →.解:(1)法一:原式=AB → +MB → +BO → +OM → =(AB → +BO → )+(OM → +MB → )=AO → +OB →=AB →.法二:原式=AB → +MB → +BO → +OM→=AB → +(MB → +BO → )+OM → =AB → +MO → +OM → =AB → +0=AB →.(2)法一:原式=DB → -DC → =CB →.法二:原式=AB → -(AD → +DC → )=AB → -AC → =CB →.探究点2:向量的减法及其几何意义例2:如图,已知向量a ,b ,c 不共线,求作向量a +b -c .解:法一:如图①,在平面内任取一点O ,作OA → =a ,OB → =b ,OC →=c ,连接BC ,则CB →=b -c .过点A 作AD 綊BC ,连接OD ,则AD →=b -c ,所以OD → =OA → +AD →=a +b -c .法二:如图②,在平面内任取一点O ,作OA → =a ,AB →=b ,连接OB ,则OB → =a +b ,再作OC →=c ,连接CB ,则CB →=a +b -c .法三:如图③,在平面内任取一点O ,作OA → =a ,AB →=b ,连接OB ,则OB → =a +b ,再作CB →=c ,连接OC ,则OC →=a +b -c .探究点3:用已知向量表示其他向量例3:如图所示,四边形ACDE 是平行四边形,点B 是该平行四边形外一点,且AB →=a ,AC → =b ,AE → =c ,试用向量a ,b ,c 表示向量CD → ,BC → ,BD →.解:因为四边形ACDE 是平行四边形,所以CD → =AE → =c ,BC → =AC → -AB →=b -a ,故BD → =BC → +CD →=b -a +c .三、学习小结1.相反向量(1)定义:与a 长度相等,方向相反的向量,叫做a 的相反向差,记作-a ,并且规定,零向量的相反向量仍是零向量.(2)结论①-(-a )=a ,a +(-a )=(-a )+a =0;②如果a 与b 互为相反向量,那么a =-b ,b =-a ,a +b =0.2.向量的减法(1)向量a 加上b 的相反向量,叫做a 与b 的差,即a -b =a +(-b ).求两个向量差的运算叫做向量的减法.(2)作法:在平面内任取一点O ,作OA → =a ,OB → =b ,则向量BA →=a -b ,如图所示.(3)几何意义:a -b 可以表示为从向量b 的终点指向向量a 的终点的向量.四、精炼反馈1.在△ABC 中,D 是BC 边上的一点,则AD → -AC →等于( )A .CB → B .BC→ C .CD → D .DC→解析:选C .在△ABC 中,D 是BC 边上一点,则由两个向量的减法的几何意义可得AD→-AC → =CD →.2.化简:AB → -AC → +BD → -CD → +AD →=________.解析:原式=CB → +BD → +DC → +AD → =CD → +DC → +AD → =0+AD → =AD →.答案:AD→3.已知Error!=10,|AC → |=7,则|CB →|的取值范围为______.解析:因为CB → =AB → -AC →,所以|CB → |=|AB → -AC →|.又Error!≤|AB → -AC → |≤|AB → |+|AC →|,3≤|AB → -AC →|≤17,所以3≤|CB →|≤17.答案:[3,17]4.若O 是△ABC 所在平面内一点,且满足|OB → -OC → |=|OB → -OA → +OC → -OA →|,试判断△ABC 的形状.解:因为OB → -OA → +OC → -OA → =AB → +AC → ,OB → -OC → =CB → =AB → -AC →.又|OB → -OC → |=|OB → -OA → +OC → -OA → |,所以|AB → +AC → |=|AB → -AC →|,所以以AB ,AC 为邻边的平行四边形的两条对角线的长度相等,所以该平行四边形为矩形,所以AB ⊥AC ,所以△ABC 是直角三角形.【第三课时】向量的数乘运算【学习重难点】【学习目标】【核心素养】向量数乘运算的定义及运算律理解向量数乘的定义及几何意义,掌握向量数乘的运算律数学抽象、直观想象向量共线定理掌握向量共线定理,会判断或证明两个向量共线逻辑推理【学习过程】一、问题导学预习教材内容,思考以下问题:1.向量数乘的定义及其几何意义是什么?2.向量数乘运算满足哪三条运算律?3.向量共线定理是怎样表述的?4.向量的线性运算是指的哪三种运算?二、新知探究探究1:向量的线性运算例1:(1)计算:①4(a+b)-3(a-b)-8a;②(5a-4b+c)-2(3a-2b+c);③23[(4a-3b)+13b-14(6a-7b)].(2)设向量a=3i+2j,b=2i-j,求(13a-b)-(a-23b)+(2b-a).解:(1)①原式=4a +4b -3a +3b -8a =-7a +7b .②原式=5a -4b +c -6a +4b -2c =-a -c .③原式=23(4a -3b +13b -32a +74b)=23(52a -1112b)=53a -1118b .(2)原式=13a -b -a +23b +2b -a=(13-1-1)a +(-1+23+2)b =-53a +53b =-53(3i +2j )+53(2i -j )=(-5+103)i +(-103-53)j=-53i -5j .探究点2:向量共线定理及其应用例2:已知非零向量e 1,e 2不共线.(1)如果AB → =e 1+e 2,BC → =2e 1+8e 2,CD →=3(e 1-e 2),求证:A 、B 、D 三点共线;(2)欲使k e 1+e 2和e 1+k e 2共线,试确定实数k 的值.解:(1)证明:因为AB → =e 1+e 2,BD → =BC → +CD →=2e 1+8e 2+3e 1-3e 2=5(e 1+e 2)=5AB →.所以AB → ,BD →共线,且有公共点B ,所以A 、B 、D 三点共线.(2)因为k e 1+e 2与e 1+k e 2共线,所以存在实数λ,使k e 1+e 2=λ(e 1+k e 2),则(k -λ)e 1=(λk -1)e 2,由于e 1与e 2不共线,只能有{k -λ=0,λk -1=0,所以k =±1.探究点3:用已知向量表示其他向量例3:如图,ABCD 是一个梯形,AB → ∥CD → 且|AB → |=2|CD →|,M ,N 分别是DC ,AB 的中点,已知AB → =e 1,AD →=e 2,试用e 1,e 2表示下列向量.(1)AC →=________;(2)MN →=________.解析:因为AB → ∥CD → ,|AB → |=2|CD →|,所以AB → =2DC → ,DC → =12AB →.(1)AC → =AD → +DC →=e 2+12e 1.(2)MN → =MD → +DA → +AN→ =-12DC → -AD → +12AB→=-14e 1-e 2+12e 1=14e 1-e 2.答案:(1)e 2+12e 1(2)14e 1-e 2互动探究变条件:在本例中,若条件改为BC → =e 1,AD → =e 2,试用e 1,e 2表示向量MN →.解:因为MN → =MD → +DA → +AN →,MN → =MC → +CB → +BN →,所以2MN → =(MD → +MC → )+DA → +CB → +(AN → +BN → ).又因为M ,N 分别是DC ,AB 的中点,所以MD → +MC → =0,AN → +BN →=0.所以2MN → =DA → +CB →,所以MN → =12(-AD → -BC →)=-12e 2-12e 1.三、学习小结1.向量的数乘的定义一般地,规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,它的长度与方向规定如下:(1)|λa |=|λ||a |.(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0.2.向量数乘的运算律设λ,μ为实数,那么:(1)λ(μa )=(λμ)a .(2)(λ+μ)a =λa +μa .(3)λ(a +b )=λa +λb .3.向量的线性运算及向量共线定理(1)向量的加、减、数乘运算统称为向量的线性运算.对于任意向量a ,b ,以及任意实数λ,μ1,μ2,恒有λ(μ1a ±μ2b )=λμ1a ±λμ2b .(2)向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa .四、精炼反馈1.13[12(2a +8b )-(4a -2b )]等于( )A .2a -b B .2b -a C .b -aD .a -b解析:选B .原式=16(2a +8b )-13(4a -2b )=13a +43b -43a +23b =-a +2b .2.若点O 为平行四边形ABCD 的中心,AB → =2e 1,BC →=3e 2,则32e 2-e 1=( )A .BO →B .AO→ C .CO → D .DO→解析:选A .BD → =AD → -AB → =BC → -AB → =3e 2-2e 1,BO → =12BD → =32e 2-e 1.3.已知e 1,e 2是两个不共线的向量,若AB → =2e 1-8e 2,CB → =e 1+3e 2,CD →=2e 1-e 2,求证A ,B ,D 三点共线.证明:因为CB → =e 1+3e 2,CD →=2e 1-e 2,所以BD → =CD → -CB →=e 1-4e 2.又AB → =2e 1-8e 2=2(e 1-4e 2),所以AB → =2BD → ,所以AB → 与BD →共线.因为AB 与BD 有交点B ,所以A ,B ,D 三点共线.【第四课时】向量的数量积【学习重难点】【学习目标】【核心素养】向量的夹角理解平面向量夹角的定义,并会求已知两个非零向量的夹角直观想象、数学运算向量数量积的含义理解平面向量数量积的含义并会计算数学抽象、数学运算投影向量理解a 在b 上的投影向量的概念数学抽象向量数量积的性质和运算律掌握平面向量数量积的性质及其运算律,并会应用数学运算、逻辑推理【学习过程】一、问题导学预习教材内容,思考以下问题:1.什么是向量的夹角?2.数量积的定义是什么?3.投影向量的定义是什么?4.向量数量积有哪些性质?5.向量数量积的运算有哪些运算律?二、新知探究探究点1:平面向量的数量积运算例1:(1)已知|a |=6,|b |=4,a 与b 的夹角为60°,求(a +2b )·(a +3b ).(2)如图,在▱ABCD 中,|AB → |=4,|AD →|=3,∠DAB =60°,求:①AD → ·BC → ;②AB → ·DA →.解:(1)(a +2b )·(a +3b )=a·a +5a·b +6b·b =|a |2+5a·b +6|b |2=|a |2+5|a ||b |cos 60°+6|b |2=62+5×6×4×cos 60°+6×42=192.(2)①因为AD → ∥BC →,且方向相同,所以AD → 与BC →的夹角是0°,所以AD → ·BC → =|AD → ||BC →|·cos 0°=3×3×1=9.②因为AB → 与AD →的夹角为60°,所以AB → 与DA →的夹角为120°,所以AB → ·DA → =|AB → ||DA →|·cos 120°=4×3×(-12)=-6.互动探究:变问法:若本例(2)的条件不变,求AC → ·BD →.解:因为AC → =AB → +AD → ,BD → =AD → -AB →,所以AC → ·BD → =(AB → +AD → )·(AD → -AB → )=AD → 2-AB →2=9-16=-7.探究点2:向量模的有关计算例2:(1)已知平面向量a 与b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=( )A .3B .23C .4D .12(2)向量a ,b 满足|a |=1,|a -b |=32,a 与b 的夹角为60°,则|b |=( )A .13B .12C .15D .14解析:(1)|a +2b |=(a +2b )2=a 2+4a·b +4b 2|a |2+4|a ||b |cos 60°+4|b |2= 4+4×2×1×12+4=23.(2)由题意得|a -b |2=|a |2+|b |2-2|a ||b |·cos 60°=34,即1+|b |2-|b |=34,解得|b |=12.答案:(1)B (2)B 探究点3:向量的夹角与垂直命题角度一:求两向量的夹角例3:(1)已知|a |=6,|b |=4,(a +2b )·(a -3b )=-72,则a 与b 的夹角为________;(2)(2019·高考全国卷Ⅰ改编)已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为______.解析:(1)设a 与b 的夹角为θ,(a +2b )·(a -3b )=a ·a -3a ·b +2b ·a -6b ·b =|a |2-a ·b -6|b |2=|a |2-|a ||b |cos θ-6|b |2=62-6×4×cos θ-6×42=-72,所以24cos θ=36+72-96=12,所以cos θ=12.又因为θ∈[0,π],所以θ=π3.(2)设a 与b 的夹角为θ,由(a -b )⊥b ,得(a -b )·b =0,所以a ·b =b 2,所以cos θ=b 2|a ||b |.又因为|a |=2|b |,所以cos θ=|b |22|b |2=12.又因为θ∈[0,π],所以θ=π3.答案:(1)π3(2)π3命题角度二:证明两向量垂直例4:已知a ,b 是非零向量,当a +t b (t ∈R )的模取最小值时,求证:b ⊥(a +t b ).证明:因为|a +t b |=(a +t b )2=a 2+t 2b 2+2t a ·b =|b |2t 2+2a ·b t +|a |2,所以当t =-2a ·b 2|b |2=-a·b|b |2时,|a +t b |有最小值.此时b ·(a +t b )=b·a +t b 2=a·b +(-a·b |b |2)·|b |2=a·b -a·b =0.所以b ⊥(a +t b ).命题角度三:利用夹角和垂直求参数例5:(1)已知a ⊥b ,|a |=2,|b |=3且向量3a +2b 与k a -b 互相垂直,则k 的值为( )A .-32B .32C .±32D .1(2)已知a ,b ,c 为单位向量,且满足3a +λb +7c =0,a 与b 的夹角为π3,则实数λ=________.解析:(1)因为3a +2b 与k a -b 互相垂直,所以(3a +2b )·(k a -b )=0,所以3k a 2+(2k -3)a·b -2b 2=0.因为a ⊥b ,所以a ·b =0,又|a |=2,|b |=3,所以12k -18=0,k =32.(2)由3a +λb +7c =0,可得7c =-(3a +λb ),即49c 2=9a 2+λ2b 2+6λa ·b ,而a ,b ,c 为单位向量,则a 2=b 2=c 2=1,则49=9+λ2+6λcos π3,即λ2+3λ-40=0,解得λ=-8或λ=5.答案:(1)B (2)-8或5三、学习小结1.两向量的夹角(1)定义:已知两个非零向量a ,b ,O 是平面上的任意一点,作OA → =a ,OB →=b ,则∠AOB =θ(0≤θ≤π)叫做向量a 与b 的夹角.(2)特例:①当θ=0时,向量a 与b 同向;②当θ=π2时,向量a 与b 垂直,记作a ⊥b ;③当θ=π时,向量a 与b 反向.2.向量的数量积已知两个非零向量a 与b ,它们的夹角为θ,把数量|a ||b |cos__θ叫做向量a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos__θ.规定零向量与任一向量的数量积为0.3.投影向量如图(1),设a ,b 是两个非零向量,AB → =a ,CD → =b ,我们考虑如下变换:过AB →的起点A 和终点B ,分别作CD → 所在直线的垂线,垂足分别为A 1,B 1,得到A 1B 1→,我们称上述变换为向量a 向向量b 投影(project ),A 1B 1→叫做向量a 在向量b 上的投影向量.如图(2),在平面内任取一点O ,作OM → =a ,ON →=b ,过点M 作直线ON 的垂线,垂足为M 1,则OM 1→就是向量a 在向量b 上的投影向量.(2)若与b 方向相同的单位向量为e ,a 与b 的夹角为θ,则OM 1→=|a |cos θ e .4.向量数量积的性质设a ,b 是非零向量,它们的夹角是θ,e 是与b 方向相同的单位向量,则(1)a ·e =e ·a =|a |cos θ.(2)a ⊥b ⇔a·b =0.(3)当a 与b 同向时,a·b =|a ||b |;当a 与b 反向时,a·b =-|a ||b |.特别地,a·a =|a |2或|a |=a·a .(4)|a·b |≤|a ||b |.5.向量数量积的运算律(1)a·b =b·a (交换律).(2)(λa )·b =λ(a·b )=a ·(λb )(结合律).(3)(a +b )·c =a·c +b·c (分配律).四、精炼反馈1.已知向量a ,b 满足|a |=1,|b |=4,且a·b =2,则a 与b 的夹角θ为( )A .π6B .π4C .π3D .π2解析:选C .由题意,知a·b =|a ||b |cos θ=4cos θ=2,所以cos θ=12.又0≤θ≤π,所以θ=π3.2.已知|a |=|b |=1,a 与b 的夹角是90°,c =2a +3b ,d =k a -4b ,c 与d 垂直,则k 的值为( )A .-6B .6C .3D .-3解析:选B .因为c·d =0,所以(2a +3b )·(k a -4b )=0,所以2k a 2-8a ·b +3k a ·b -12b 2=0,所以2k =12,所以k =6.3.已知|a |=3,|b |=5,a ·b =-12,且e 是与b 方向相同的单位向量,则a 在b 上的投影向量为______.解析:设a 与b 的夹角θ,则cos θ=a ·b |a ||b |=-123×5=-45,所以a 在b 上的投影向量为|a |cos θ·e =3×(-45)e=-125e .答案:-125e4.已知|a |=1,|b |=2.(1)若a ∥b ,求a ·b ;(2)若a ,b 的夹角为60°,求|a +b |;(3)若a -b 与a 垂直,求a 与b 的夹角.解:设向量a 与b 的夹角为θ.(1)当a ,b 同向,即θ=0°时,a ·b =2;当a ,b 反向,即θ=180°时,a ·b =-2.(2)|a +b |2=|a |2+2a ·b +|b |2=3+2,|a +b |=3+2.(3)由(a -b )·a =0,得a 2=a ·b ,cos θ=a ·b |a ||b |=22,又θ∈[0,180°],故θ=45°.。
2.3.1 平面向量基本定理学习目标 1.理解平面向量基本定理的内容,了解向量的一组基底的含义.2.在平面内,当一组基底选定后,会用这组基底来表示其他向量.3.会应用平面向量基本定理解决有关平面向量的综合问题.知识点一 平面向量基本定理思考1 如果e1,e2是两个不共线的确定向量,那么与e1,e2在同一平面内的任一向量a能否用e 1,e2表示?依据是什么?答案 能.依据是数乘向量和平行四边形法则.思考2 如果e1,e2是共线向量,那么向量a能否用e1,e2表示?为什么?答案 不一定,当a与e1共线时可以表示,否则不能表示.梳理 (1)平面向量基本定理:如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.(2)基底:不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.知识点二 两向量的夹角与垂直思考1 平面中的任意两个向量都可以平移至起点,它们存在夹角吗?若存在,向量的夹角与直线的夹角一样吗?答案 存在夹角,不一样.AB→BC→思考2 △ABC为正三角形,设=a,=b,则向量a与b的夹角是多少?BD→答案 如图,延长AB至点D,使AB=BD,则=a,∵△ABC为等边三角形,∴∠ABC=60°,则∠CBD=120°,故向量a与b的夹角为120°.OA→OB→梳理 (1)夹角:已知两个非零向量a和b,作=a,=b,则∠AOB=θ(0°≤θ≤180°)叫做向量a与b的夹角(如图所示).当θ=0°时,a 与b 同向;当θ=180°时,a 与b 反向.(2)垂直:如果a 与b 的夹角是90°,则称a 与b 垂直,记作a ⊥b.类型一 对基底概念的理解例1 如果e 1,e 2是平面α内两个不共线的向量,那么下列说法中不正确的是( )①λe 1+μe 2(λ,μ∈R )可以表示平面α内的所有向量;②对于平面α内任一向量a ,使a =λe 1+μe 2的实数对(λ,μ)有无穷多个;③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数λ,使得λ1e 1+μ1e 2=λ(λ2e 1+μ2e 2);④若存在实数λ,μ使得λe 1+μe 2=0,则λ=μ=0.A.①②B.②③C.③④D.②答案 B解析 由平面向量基本定理可知,①④是正确的;对于②,由平面向量基本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底下的实数对是唯一的;对于③,当两向量的系数均为零,即λ1=λ2=μ1=μ2=0时,这样的λ有无数个,故选B.反思与感悟 考查两个向量是否能构成基底,主要看两向量是否非零且不共线.此外,一个平面的基底一旦确定,那么平面上任意一个向量都可以由这个基底唯一线性表示出来.跟踪训练1 若e 1,e 2是平面内的一组基底,则下列四组向量能作为平面向量的基底的是( )A.e 1-e 2,e 2-e 1B.2e 1-e 2,e 1-e 212C.2e 2-3e 1,6e 1-4e 2 D.e 1+e 2,e 1-e 2答案 D解析 选项A 中,两个向量为相反向量,即e 1-e 2=-(e 2-e 1),则e 1-e 2,e 2-e 1为共线向量;选项B 中,2e 1-e 2=2(e 1-e 2),也为共线向量;选项C 中,126e 1-4e 2=-2(2e 2-3e 1),为共线向量.根据不共线的向量可以作为基底,只有选项D 符合.类型二 向量的夹角例2 已知|a |=|b |=2,且a 与b 的夹角为60°,设a +b 与a 的夹角为α,a -b 与a 的夹角是β,求α+β.解 如图,作=a ,=b ,且∠AOB =60°,OA →OB →以OA 、OB 为邻边作▱OACB ,则=a +b ,=-=a -b ,OC → BA → OA → OB → ==a .BC → OA → 因为|a |=|b |=2,所以△OAB 为正三角形,所以∠OAB =60°=∠ABC ,即a -b 与a 的夹角β=60°.因为|a |=|b |,所以平行四边形OACB 为菱形,所以OC ⊥AB ,所以∠COA =90°-60°=30°,即a +b 与a 的夹角α=30°,所以α+β=90°.反思与感悟 (1)求两个向量夹角的关键是利用平移的方法使两个向量起点重合,作两个向量的夹角,按照“一作二证三算”的步骤求出.(2)特别地,a 与b 的夹角为θ,λ1a 与λ2b (λ1、λ2是非零常数)的夹角为θ0,当λ1λ2<0时,θ0=180°-θ;当λ1λ2>0时,θ0=θ.跟踪训练2 已知A ,B ,C 为圆O 上的三点,若=(+),则与的夹角为AO → 12AB → AC → AB → AC → ________.答案 90°解析 由=(+)知,O ,B ,C 三点共线,且O 是线段BC 的中点,故线段BC 是圆OAO → 12AB → AC → 的直径,从而∠BAC =90°,因此与的夹角为90°.AB → AC →类型三 平面向量基本定理的应用例3 如图所示,在▱ABCD 中,E ,F 分别是BC ,DC 边上的中点,若=a ,=b ,试以AB → AD → a ,b 为基底表示,.DE → BF →解 ∵四边形ABCD 是平行四边形,E ,F 分别是BC ,DC 边上的中点,∴==2,==2,AD → BC → BE → BA → CD → CF → ∴==b ,==-=-a .BE → 12AD → 12CF → 12BA → 12AB → 12∴=++=-++DE → DA → AB → BE → AD → AB → BE →=-b +a +b =a -b ,1212=+=+=b -a .BF → BC → CF → AD → CF → 12引申探究若本例中其他条件不变,设=a ,=b ,试以a ,b 为基底表示,.DE → BF → AB → AD → 解 取CF 的中点G ,连接EG .∵E 、G 分别为BC ,CF 的中点,∴==b ,EG → 12BF → 12∴=+=a +b .DG → DE → EG → 12又∵==,DG → 34DC → 34AB → ∴==(a +b )=a +b .AB → 43DG → 43124323又∵==+=+=+,AD → BC → BF → FC → BF → 12DC → BF → 12AB → ∴==b +(a +b )AD → BC → 124323=a +b .2343反思与感悟 将不共线的向量作为基底表示其他向量的方法有两种:一种是利用向量的线性运算及法则对所求向量不断转化,直至能用基底表示为止;另一种是列向量方程组,利用基底表示向量的唯一性求解.跟踪训练3 如图所示,在△AOB 中,=a ,=b ,M ,N 分别是边OA ,OB 上的点,且OA → OB → =a ,=b ,设与相交于点P ,用基底a ,b 表示.OM → 13ON → 12AN → BM → OP →解 =+,=+.OP → OM → MP → OP → ON → NP → 设=m ,=n ,则MP → MB → NP → NA → =+m =+m (-)OP → OM → MB → 13OA → OB → OM → =a +m (b -a )=(1-m )a +m b ,131313=+n =+n (-)OP → ON → NA → 12OB → OA → ON → =b +n (a -b )=(1-n )b +n a .121212∵a ,b 不共线,∴Error!即Error!∴=a +b .OP → 15251.下列关于基底的说法正确的是( )①平面内不共线的任意两个向量都可作为一组基底;②基底中的向量可以是零向量;③平面内的基底一旦确定,该平面内的向量关于基底的线性分解形式也是唯一确定的.A.①B.②C.①③D.②③答案 C解析 零向量与任意向量共线,故零向量不能作为基底中的向量,故②错,①③正确.2.在直角三角形ABC 中,∠BAC =30°,则与的夹角等于( )AC → BA → A.30°B.60°C.120°D.150°答案 D解析 由向量夹角定义知,与的夹角为150°.AC → BA → 3.已知向量e 1,e 2不共线,实数x ,y 满足(2x -3y )e 1+(3x -4y )e 2=6e 1+3e 2,则x =________,y =________.答案 -15 -12解析 ∵向量e 1,e 2不共线,∴Error!解得Error!4.如图所示,在正方形ABCD 中,设=a ,=b ,=c ,则当以a ,b 为基底时,可表AB → AD → BD → AC → 示为________,当以a ,c 为基底时,可表示为________.AC →答案 a +b 2a +c解析 由平行四边形法则可知,=+=a +b ,以a ,c 为基底时将平移,使点B 与AC → AB → AD → BD → 点A 重合,再由三角形法则和平行四边形法则即可得到.5.已知在梯形ABCD 中,AB ∥DC ,且AB =2CD ,E ,F 分别是DC ,AB 的中点,设=a ,=b ,试用a 、b 为基底表示,,.AD → AB → DC → BC → EF → 解 连接FD ,∵DC ∥AB ,AB =2CD ,E ,F 分别是DC ,AB 的中点,∴DC 綊FB .∴四边形DCBF 为平行四边形.依题意,=DC → FB →==b ,12AB → 12==-BC → FD → AD → AF →=-=a -b ,AD → 12AB → 12=-=--=--EF → DF → DE → FD → DE → BC → 12DC →=--×b =b -a .(a -12b )1212141.对基底的理解(1)基底的特征基底具备两个主要特征:①基底是两个不共线向量;②基底的选择是不唯一的.平面内两向量不共线是这两个向量可以作为这个平面内所有向量的一组基底的条件.(2)零向量与任意向量共线,故不能作为基底.2.准确理解平面向量基本定理(1)平面向量基本定理的实质是向量的分解,即平面内任一向量都可以沿两个不共线的方向分解成两个向量和的形式,且分解是唯一的.(2)平面向量基本定理体现了转化与化归的数学思想,用向量解决几何问题时,我们可以选择适当的基底,将问题中涉及的向量向基底化归,使问题得以解决.课时作业一、选择题1.设e1,e2是平面内所有向量的一组基底,则下列四组向量中,不能作为基底的是( )A.e 1+e2和e1-e2B.3e1-4e2和6e1-8e2C.e1+2e2和2e1+e2D.e1和e1+e2答案 B解析 B中,∵6e1-8e2=2(3e1-4e2),∴(6e1-8e2)∥(3e1-4e2),∴3e1-4e2和6e1-8e2不能作为基底.2.若向量a与b的夹角为60°,则向量-a与-b的夹角是( )A.60°B.120°C.30°D.150°答案 A3.如图所示,用向量e1,e2表示向量a-b为( )A.-4e1-2e2B.-2e1-4e2C.e1-3e2D.3e1-e2答案 C解析 如图,由向量的减法得a -b =.由向量的加法得=e 1-3e 2.AB → AB → 4.设向量e 1和e 2是某一平面内所有向量的一组基底,若3x e 1+(10-y )e 2=(4y -7)e 1+2x e 2,则实数y 的值为( )A.3B.4C.-D.-1434答案 B解析 因为3x e 1+(10-y )e 2=(4y -7)e 1+2x e 2,所以(3x -4y +7)e 1+(10-y -2x )e 2=0,又因为e 1和e 2是某一平面内所有向量的一组基底,所以Error!解得Error!故选B.5.若1=a ,2=b ,=λ2(λ≠-1),则等于( )OP → OP → P 1P → PP → OP → A.a +λbB.λa +(1-λ)bC.λa +bD.a +b11+λλ1+λ答案 D解析 ∵=λ,P 1P → PP 2→ ∴-1=λ(2-),∴(1+λ)=1+λ2,OP → OP → OP → OP → OP → OP → OP → ∴=1+2=a +b .OP → 11+λOP → λ1+λOP → 11+λλ1+λ6.若D 点在三角形ABC 的边BC 上,且=4=r +s ,则3r +s 的值为( )CD → DB → AB → AC → A. B. C. D.1651258545答案 C解析 ∵=4=r +s ,CD → DB → AB → AC → ∴==(-)CD → 45CB → 45AB → AC → =r +s ,AB → AC → ∴r =,s =-.4545∴3r +s =-=.12545857.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若=a ,=b ,则等于( )AC → BD → AF → A.a +bB.a +b 14121214C.a +bD.a +b23131223答案 C解析 如图,设=λ,=μ,CF → CD → AE → AF →则=-=b -a ,CD → OD → OC → 1212故=+=(1-λ)a +λb .AF → AC → CF → 1212∵==(+)=(a +b )AF → 1μAE → 1μAO → OE → 1μ1214=a +b ,12μ14μ∴由平面向量基本定理,得Error!∴Error!∴=a +b ,故选C.AF → 2313二、填空题8.已知e 1,e 2不共线,a =e 1+2e 2,b =2e 1+λe 2,要使a ,b 能作为平面内的一组基底,则实数λ的取值范围为______________.答案 (-∞,4)∪(4,+∞)解析 若能作为平面内的一组基底,则a 与b 不共线.a =e 1+2e 2,b =2e 1+λe 2,由a ≠k b ,即得λ≠4.9.若|a |=|b |=|a -b |=r (r >0),则a 与b 的夹角为________.答案 60°解析 作=a ,=b ,则=a -b ,∠AOB 为a 与b 的夹角,由|a |=|b |=|a -b |知△OA → OB → BA → AOB 为等边三角形,所以∠AOB =60°.10.如图,在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若=λ+μ,其AC → AE → AF → 中λ,μ∈R ,则λ+μ=________.答案 43解析 设=a ,=b ,则=a +b ,=a +b ,AB → AD → AE → 12AF → 12又∵=a +b ,AC → ∴=(+),即λ=μ=,∴λ+μ=.AC → 23AE → AF → 2343三、解答题11.判断下列命题的正误,并说明理由:(1)若a e 1+b e 2=c e 1+d e 2(a 、b 、c 、d ∈R ),则a =c ,b =d ;(2)若e 1和e 2是表示平面内所有向量的一组基底,那么该平面内的任一向量可以用e 1+e 2、e 1-e 2表示出来.解 (1)错,当e 1与e 2共线时,结论不一定成立.(2)正确,假设e 1+e 2与e 1-e 2共线,则存在实数λ,使e 1+e 2=λ(e 1-e 2),即(1-λ)e 1=-(1+λ)e 2.因为1-λ与1+λ不同时为0,所以e 1与e 2共线,这与e 1,e 2不共线矛盾.所以e 1+e 2与e 1-e 2不共线,即它们可以作为基底,该平面内的任一向量可以用e 1+e 2、e 1-e 2表示出来.12.如图,平面内有三个向量,,.其中与的夹角为120°,与的夹角为30°,OA → OB → OC → OA → OB → OA → OC → 且||=||=1,||=2,若=λ+μ(λ,μ∈R ),求λ+μ的值.OA → OB → OC → 3OC → OA → OB →解 如图,以OA ,OB 所在射线为邻边,OC 为对角线作平行四边形ODCE ,则=+.OC → OD → OE →在Rt△OCD 中,∵||=2,OC → 3∠COD =30°,∠OCD =90°,∴||=4,||=2,故=4,OD → CD → OD → OA → =2,即λ=4,μ=2,∴λ+μ=6.OE → OB → 13.在梯形ABCD 中,∥,M ,N 分别是DA ,BC 的中点,且=k .设=e 1,=e 2,以AB → CD → DC AB AD → AB → e 1,e 2为基底表示向量,,.DC → BC → MN → 解 方法一 如图所示,∵=e 2,且=k ,AB → DC AB ∴=k =k e 2.DC → AB → 又∵+++=0,AB → BC → CD → DA → ∴=---=-++BC → AB → CD → DA → AB → DC → AD →=e 1+(k -1)e 2.又∵+++=0,MN → NB → BA → AM → 且=-,=,NB → 12BC → AM → 12AD → ∴=---=-++MN → AM → BA → NB → 12AD → AB → 12BC →=e 2.k +12方法二 如图所示,过C 作CE ∥DA ,交AB 于点E ,交MN 于点F .同方法一可得=k e 2.DC → 则=+=-(-)+=e 1+(k -1)e 2,BC → BE → EC → AB → DC → AD → =+=+=+(-)MN → MF → FN → DC → 12EB → DC → 12AB → DC → =e 2.k +12方法三 如图所示,连接MB ,MC .同方法一可得=k e 2,=e 1+(k -1)e 2.DC → BC → 由=(+),得=(+++)=(+)=e 2.MN → 12MB → MC → MN → 12MA → AB → MD → DC → 12AB → DC → k +12四、探究与拓展14.已知非零向量a ,b ,c 满足a +b +c =0,向量a ,b 的夹角为120°,且|b |=2|a |,则向量a 与c 的夹角为________.答案 90°解析 由题意可画出图形,在△OAB 中,因为∠OAB =60°,|b |=2|a |,所以∠ABO =30°,OA ⊥OB ,即向量a 与c 的夹角为90°.15.设e 1,e 2是不共线的非零向量,且a =e 1-2e 2,b =e 1+3e 2.(1)证明:a ,b 可以作为一组基底;(2)以a ,b 为基底,求向量c =3e 1-e 2的分解式;(3)若4e1-3e2=λa+μb,求λ,μ的值.(1)证明 若a,b共线,则存在λ∈R,使a=λb,则e1-2e2=λ(e1+3e2).由e1,e2不共线,得Error!⇒Error!∴λ不存在,故a与b不共线,可以作为一组基底.(2)解 设c=m a+n b(m,n∈R),则3e1-e2=m(e1-2e2)+n(e1+3e2)=(m+n)e1+(-2m+3n)e2.∴Error!⇒Error!∴c=2a+b.(3)解 由4e1-3e2=λa+μb,得4e1-3e2=λ(e1-2e2)+μ(e1+3e2)=(λ+μ)e1+(-2λ+3μ)e2.∴Error!⇒Error!故所求λ,μ的值分别为3和1.。