高一数学 必修四 平面向量基本定理 学案
- 格式:docx
- 大小:416.86 KB
- 文档页数:9
平面向量基本定理教案(精选10篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作文档、教学教案、企业文案、求职面试、实习范文、法律文书、演讲发言、范文模板、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as work summaries, work plans, experiences, job reports, work reports, resignation reports, contract templates, speeches, lesson plans, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!平面向量基本定理教案(精选10篇)平面向量基本定理教案(精选10篇)作为一名为他人授业解惑的教育工作者,时常需要编写教案,教案是教学活动的依据,有着重要的地位。
高中数学教学案设计平面向量基本定理高一数学教学案----《平面向量基本定理》★★★教学目标(考纲点击)教学目标(1)知识与技能:了解平面向量基本定理及其意义,会用平面向量基本定理解决简单的问题,通过对平面向量基本定理的运用,增强向量的应用意识,进一步体会向量是处理几何问题的强有力的工具之一。
(2)过程与方法:通过平面向量基本定理的得出过程,体会由特殊到一般的思维方法。
(3)情感、态度与价值观:通过平面向量基本定理的探求过程,培养学生独立思考及勇于探求的精神,培养学生观察能力、抽象概括能力,激发学习兴趣。
★★★教学重点:平面向量基本定理的应用★★★教学难点:定理的发现和形成过程★★★突破难点的关键:在充分理解向量的平行四边形法则的和向量共线的充要条件下多方位多角度的设计有关训练题从而加深对定理的理解,让学生真正理解,记准、记熟、用活,做到需要时能顺手拈来。
★★★教学方法针对本节课的教学目标和学生的实际情况,本节课我采用“前置复习、提出问题,自主探究与合作探究相结合,当堂达标”的教学模式。
采用“精讲解,重点拨,多练习”的教学方法。
通过设计有梯度的问题激励学生,培养学生克服困难的毅力和信心。
★★★教学手段:为了激发学生的学习兴趣,突出重点,突破难点,提高教学效率,我采用了多媒体辅助教学,同时配备微课使用。
★★★学情分析前几节课已经学习了向量的基本概念和基本运算,如共线向量、向量的加法、减法和数乘运算及向量共线的充要条件等;另外学生对向量的物理背景有了初步的了解。
如:力的合成与分解、位移、速度的合成与分解等,都为学习这节课作了充分准备。
★★★学法指导教学矛盾的主要方面是学生的学。
学是中心,会学是目的。
因此,在教学中要不断指导学生学会学习。
由于学生已经掌握了向量的概念和简单的线性运算,并且对向量的物理背景有初步的了解,我引导学生采用问题探究式学法。
让学生借助学案,在教师创设的情境下,根据已有的知识和经验,主动探索,积极交流,从而建立新的认知结构。
2.3.1.平面向量基本定理学习目标.1.理解平面向量基本定理的内容,了解向量的一组基底的含义.2.在平面内,当一组基底选定后,会用这组基底来表示其他向量.3.会应用平面向量基本定理解决有关平面向量的综合问题.知识点一.平面向量基本定理思考1.如果e 1,e 2是两个不共线的确定向量,那么与e 1,e 2在同一平面内的任一向量a 能否用e 1,e 2表示?依据是什么?答案. 能.依据是数乘向量和平行四边形法则.思考2.如果e 1,e 2是共线向量,那么向量a 能否用e 1,e 2表示?为什么? 答案. 不一定,当a 与e 1共线时可以表示,否则不能表示.梳理.(1)平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2. (2)基底:不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 知识点二.两向量的夹角与垂直思考 1.平面中的任意两个向量都可以平移至起点,它们存在夹角吗?若存在,向量的夹角与直线的夹角一样吗? 答案. 存在夹角,不一样.思考2.△ABC 为正三角形,设AB →=a ,BC →=b ,则向量a 与b 的夹角是多少? 答案.如图,延长AB 至点D ,使AB =BD ,则BD →=a ,∵△ABC 为等边三角形,∴∠ABC =60°,则∠CBD =120°,故向量a 与b 的夹角为120°. 梳理.(1)夹角:已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角(如图所示).当θ=0°时,a 与b 同向;当θ=180°时,a 与b 反向. (2)垂直:如果a 与b 的夹角是90°,则称a 与b 垂直,记作a ⊥b .类型一.对基底概念的理解例1.如果e 1,e 2是平面α内两个不共线的向量,那么下列说法中不正确的是(..) ①λe 1+μe 2(λ,μ∈R )可以表示平面α内的所有向量;②对于平面α内任一向量a ,使a =λe 1+μe 2的实数对(λ,μ)有无穷多个;③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数λ,使得λ1e 1+μ1e 2=λ(λ2e 1+μ2e 2);④若存在实数λ,μ使得λe 1+μe 2=0,则λ=μ=0. A.①② B.②③ C.③④ D.② 答案.B解析.由平面向量基本定理可知,①④是正确的;对于②,由平面向量基本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底下的实数对是唯一的;对于③,当两向量的系数均为零,即λ1=λ2=μ1=μ2=0时,这样的λ有无数个,故选B.反思与感悟.考查两个向量是否能构成基底,主要看两向量是否非零且不共线.此外,一个平面的基底一旦确定,那么平面上任意一个向量都可以由这个基底唯一线性表示出来. 跟踪训练1.若e 1,e 2是平面内的一组基底,则下列四组向量能作为平面向量的基底的是(..) A.e 1-e 2,e 2-e 1 B.2e 1-e 2,e 1-12e 2C.2e 2-3e 1,6e 1-4e 2D.e 1+e 2,e 1-e 2答案.D解析.选项A 中,两个向量为相反向量,即e 1-e 2=-(e 2-e 1),则e 1-e 2,e 2-e 1为共线向量;选项B 中,2e 1-e 2=2(e 1-12e 2),也为共线向量;选项C 中,6e 1-4e 2=-2(2e 2-3e 1),为共线向量.根据不共线的向量可以作为基底,只有选项D 符合. 类型二.向量的夹角例2.已知|a |=|b |=2,且a 与b 的夹角为60°,设a +b 与a 的夹角为α,a -b 与a 的夹角是β,求α+β.解.如图,作OA →=a ,OB →=b ,且∠AOB =60°,以OA 、OB 为邻边作▱OACB , 则OC →=a +b ,BA →=OA →-OB →=a -b , BC →=OA →=a .因为|a |=|b |=2,所以△OAB 为正三角形, 所以∠OAB =60°=∠ABC , 即a -b 与a 的夹角β=60°.因为|a |=|b |,所以平行四边形OACB 为菱形, 所以OC ⊥AB ,所以∠COA =90°-60°=30°, 即a +b 与a 的夹角α=30°, 所以α+β=90°.反思与感悟.(1)求两个向量夹角的关键是利用平移的方法使两个向量起点重合,作两个向量的夹角,按照“一作二证三算”的步骤求出.(2)特别地,a 与b 的夹角为θ,λ1a 与λ2b (λ1、λ2是非零常数)的夹角为θ0,当λ1λ2<0时,θ0=180°-θ;当λ1λ2>0时,θ0=θ.跟踪训练2.已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB →与AC →的夹角为________.答案.90°解析.由AO →=12(AB →+AC →)知,O ,B ,C 三点共线,且O 是线段BC 的中点,故线段BC 是圆O 的直径,从而∠BAC =90°,因此AB →与AC →的夹角为90°.类型三.平面向量基本定理的应用例3.如图所示,在▱ABCD 中,E ,F 分别是BC ,DC 边上的中点,若AB →=a ,AD →=b ,试以a ,b 为基底表示DE →,BF →.解.∵四边形ABCD 是平行四边形,E ,F 分别是BC ,DC 边上的中点,∴AD →=BC →=2BE →,BA →=CD →=2CF →,∴BE →=12AD →=12b ,CF →=12BA →=-12AB →=-12a .∴DE →=DA →+AB →+BE →=-AD →+AB →+BE → =-b +a +12b =a -12b ,BF →=BC →+CF →=AD →+CF →=b -12a .引申探究若本例中其他条件不变,设DE →=a ,BF →=b ,试以a ,b 为基底表示AB →,AD →. 解.取CF 的中点G ,连接EG . ∵E 、G 分别为BC ,CF 的中点,∴EG →=12BF →=12b ,∴DG →=DE →+EG →=a +12b .又∵DG →=34DC →=34AB →,∴AB →=43DG →=43(a +12b )=43a +23b .又∵AD →=BC →=BF →+FC →=BF →+12DC →=BF →+12AB →,∴AD →=BC →=b +12(43a +23b )=23a +43b . 反思与感悟.将不共线的向量作为基底表示其他向量的方法有两种:一种是利用向量的线性运算及法则对所求向量不断转化,直至能用基底表示为止;另一种是列向量方程组,利用基底表示向量的唯一性求解.跟踪训练3.如图所示,在△AOB 中,OA →=a ,OB →=b ,M ,N 分别是边OA ,OB 上的点,且OM →=13a ,ON →=12b ,设AN →与BM →相交于点P ,用基底a ,b 表示OP →.解.OP →=OM →+MP →,OP →=ON →+NP →. 设MP →=mMB →,NP →=nNA →,则 OP →=OM →+mMB →=13OA →+m (OB →-OM →)=13a +m (b -13a )=13(1-m )a +m b , OP →=ON →+nNA →=12OB →+n (OA →-ON →)=12b +n (a -12b )=12(1-n )b +n a . ∵a ,b 不共线, ∴⎩⎪⎨⎪⎧ 13(1-m )=n ,12(1-n )=m ,即⎩⎪⎨⎪⎧n =15,m =25.∴OP →=15a +25b .1.下列关于基底的说法正确的是(..)①平面内不共线的任意两个向量都可作为一组基底; ②基底中的向量可以是零向量;③平面内的基底一旦确定,该平面内的向量关于基底的线性分解形式也是唯一确定的. A.① B.② C.①③ D.②③ 答案.C解析.零向量与任意向量共线,故零向量不能作为基底中的向量,故②错,①③正确. 2.在直角三角形ABC 中,∠BAC =30°,则AC →与BA →的夹角等于(..) A.30° B.60° C.120° D.150°答案.D解析.由向量夹角定义知,AC →与BA →的夹角为150°.3.已知向量e 1,e 2不共线,实数x ,y 满足(2x -3y )e 1+(3x -4y )e 2=6e 1+3e 2,则x =________,y =________. 答案.-15.-12解析.∵向量e 1,e 2不共线,∴⎩⎪⎨⎪⎧2x -3y =6,3x -4y =3,解得⎩⎪⎨⎪⎧x =-15,y =-12.4.如图所示,在正方形ABCD 中,设AB →=a ,AD →=b ,BD →=c ,则当以a ,b 为基底时,AC →可表示为________,当以a ,c 为基底时,AC →可表示为________.答案.a +b .2a +c解析.由平行四边形法则可知,AC →=AB →+AD →=a +b ,以a ,c 为基底时将BD →平移,使点B 与点A 重合,再由三角形法则和平行四边形法则即可得到.5.已知在梯形ABCD 中,AB ∥DC ,且AB =2CD ,E ,F 分别是DC ,AB 的中点,设AD →=a ,AB →=b ,试用a 、b 为基底表示DC →,BC →,EF →.解.连接FD ,∵DC ∥AB ,AB =2CD ,E ,F 分别是DC ,AB 的中点, ∴DC 綊FB .∴四边形DCBF 为平行四边形. 依题意,DC →=FB →=12AB →=12b , BC →=FD →=AD →-AF → =AD →-12AB →=a -12b ,EF →=DF →-DE →=-FD →-DE →=-BC →-12DC →=-⎝ ⎛⎭⎪⎫a -12b -12×12b =14b -a .1.对基底的理解 (1)基底的特征基底具备两个主要特征:①基底是两个不共线向量;②基底的选择是不唯一的.平面内两向量不共线是这两个向量可以作为这个平面内所有向量的一组基底的条件.(2)零向量与任意向量共线,故不能作为基底.2.准确理解平面向量基本定理(1)平面向量基本定理的实质是向量的分解,即平面内任一向量都可以沿两个不共线的方向分解成两个向量和的形式,且分解是唯一的.(2)平面向量基本定理体现了转化与化归的数学思想,用向量解决几何问题时,我们可以选择适当的基底,将问题中涉及的向量向基底化归,使问题得以解决.课时作业一、选择题1.设e1,e2是平面内所有向量的一组基底,则下列四组向量中,不能作为基底的是(..)A.e1+e2和e1-e2B.3e1-4e2和6e1-8e2C.e1+2e2和2e1+e2D.e1和e1+e2答案.B解析.B中,∵6e1-8e2=2(3e1-4e2),∴(6e1-8e2)∥(3e1-4e2),∴3e1-4e2和6e1-8e2不能作为基底.2.若向量a与b的夹角为60°,则向量-a与-b的夹角是(..)A.60°B.120°C.30°D.150°答案.A3.如图所示,用向量e1,e2表示向量a-b为(..)A.-4e1-2e2B.-2e1-4e2C.e1-3e2D.3e1-e2答案.C解析.如图,由向量的减法得a -b =AB →.由向量的加法得AB →=e 1-3e 2.4.设向量e 1和e 2是某一平面内所有向量的一组基底,若3x e 1+(10-y )e 2=(4y -7)e 1+2x e 2,则实数y 的值为(..) A.3 B.4 C.-14 D.-34答案.B解析.因为3x e 1+(10-y )e 2=(4y -7)e 1+2x e 2, 所以(3x -4y +7)e 1+(10-y -2x )e 2=0,又因为e 1和e 2是某一平面内所有向量的一组基底,所以⎩⎪⎨⎪⎧3x -4y +7=0,10-y -2x =0,解得⎩⎪⎨⎪⎧x =3,y =4,故选B.5.若OP →1=a ,OP →2=b ,P 1P →=λPP →2(λ≠-1),则OP →等于(..) A.a +λb B.λa +(1-λ)b C.λa +b D.11+λa +λ1+λb 答案.D解析.∵P 1P →=λPP 2→,∴OP →-OP →1=λ(OP →2-OP →),∴(1+λ)OP →=OP →1+λOP →2, ∴OP →=11+λOP →1+λ1+λOP →2=11+λa +λ1+λb .6.若D 点在三角形ABC 的边BC 上,且CD →=4DB →=rAB →+sAC →,则3r +s 的值为(..) A.165 B.125 C.85 D.45 答案.C解析.∵CD →=4DB →=rAB →+sAC →, ∴CD →=45CB →=45(AB →-AC →)=rAB →+sAC →,∴r =45,s =-45.∴3r +s =125-45=85.7.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC →=a ,BD →=b ,则AF →等于(..)A.14a +12b B.12a +14b C.23a +13b D.12a +23b 答案.C解析.如图,设CF →=λCD →,AE →=μAF →,则CD →=OD →-OC →=12b -12a ,故AF →=AC →+CF →=(1-12λ)a +12λb .∵AF →=1μAE →=1μ(AO →+OE →)=1μ(12a +14b )=12μa +14μb , ∴由平面向量基本定理,得⎩⎪⎨⎪⎧1-12λ=12μ,12λ=14μ,∴⎩⎪⎨⎪⎧λ=23,μ=34,∴AF →=23a +13b ,故选C.二、填空题8.已知e 1,e 2不共线,a =e 1+2e 2,b =2e 1+λe 2,要使a ,b 能作为平面内的一组基底,则实数λ的取值范围为______________. 答案.(-∞,4)∪(4,+∞)解析.若能作为平面内的一组基底,则a 与b 不共线.a =e 1+2e 2,b =2e 1+λe 2,由a ≠k b ,即得λ≠4.9.若|a |=|b |=|a -b |=r (r >0),则a 与b 的夹角为________. 答案.60°解析.作OA →=a ,OB →=b ,则BA →=a -b ,∠AOB 为a 与b 的夹角,由|a |=|b |=|a -b |知△AOB 为等边三角形,所以∠AOB =60°.10.如图,在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=________.答案.43解析.设AB →=a ,AD →=b ,则AE →=12a +b ,AF →=a +12b ,又∵AC →=a +b ,∴AC →=23(AE →+AF →),即λ=μ=23,∴λ+μ=43.三、解答题11.判断下列命题的正误,并说明理由:(1)若a e 1+b e 2=c e 1+d e 2(a 、b 、c 、d ∈R ),则a =c ,b =d ;(2)若e 1和e 2是表示平面内所有向量的一组基底,那么该平面内的任一向量可以用e 1+e 2、e 1-e 2表示出来.解.(1)错,当e 1与e 2共线时,结论不一定成立.(2)正确,假设e 1+e 2与e 1-e 2共线,则存在实数λ,使e 1+e 2=λ(e 1-e 2),即(1-λ)e 1=-(1+λ)e 2.因为1-λ与1+λ不同时为0, 所以e 1与e 2共线,这与e 1,e 2不共线矛盾.所以e 1+e 2与e 1-e 2不共线,即它们可以作为基底,该平面内的任一向量可以用e 1+e 2、e 1-e 2表示出来.12.如图,平面内有三个向量OA →,OB →,OC →.其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=23,若OC →=λOA →+μOB →(λ,μ∈R ),求λ+μ的值.解.如图,以OA ,OB 所在射线为邻边,OC 为对角线作平行四边形ODCE ,则OC →=OD →+OE →.在Rt△OCD 中,∵|OC →|=23,∠COD =30°,∠OCD =90°,∴|OD →|=4,|CD →|=2,故OD →=4OA →,OE →=2OB →,即λ=4,μ=2,∴λ+μ=6.13.在梯形ABCD 中,AB →∥CD →,M ,N 分别是DA ,BC 的中点,且DC AB=k .设AD →=e 1,AB →=e 2,以e 1,e 2为基底表示向量DC →,BC →,MN →.解.方法一.如图所示,∵AB →=e 2,且DC AB=k , ∴DC →=kAB →=k e 2.又∵AB →+BC →+CD →+DA →=0,∴BC →=-AB →-CD →-DA →=-AB →+DC →+AD →=e 1+(k -1)e 2.又∵MN →+NB →+BA →+AM →=0,且NB →=-12BC →,AM →=12AD →, ∴MN →=-AM →-BA →-NB →=-12AD →+AB →+12BC → =k +12e 2. 方法二.如图所示,过C 作CE ∥DA ,交AB 于点E ,交MN 于点F .同方法一可得DC →=k e 2.则BC →=BE →+EC →=-(AB →-DC →)+AD →=e 1+(k -1)e 2,MN →=MF →+FN →=DC →+12EB →=DC →+12(AB →-DC →) =k +12e 2. 方法三.如图所示,连接MB ,MC .同方法一可得DC →=k e 2,BC →=e 1+(k -1)e 2.由MN →=12(MB →+MC →),得MN →=12(MA →+AB →+MD →+DC →)=12(AB →+DC →)=k +12e 2. 四、探究与拓展14.已知非零向量a ,b ,c 满足a +b +c =0,向量a ,b 的夹角为120°,且|b |=2|a |,则向量a 与c 的夹角为________.答案.90°解析.由题意可画出图形,在△OAB 中,因为∠OAB =60°,|b |=2|a |,所以∠ABO =30°,OA ⊥OB ,即向量a 与c 的夹角为90°.15.设e 1,e 2是不共线的非零向量,且a =e 1-2e 2,b =e 1+3e 2.(1)证明:a ,b 可以作为一组基底;(2)以a ,b 为基底,求向量c =3e 1-e 2的分解式;(3)若4e 1-3e 2=λa +μb ,求λ,μ的值.(1)证明.若a ,b 共线,则存在λ∈R ,使a =λb ,则e 1-2e 2=λ(e 1+3e 2).由e 1,e 2不共线,得⎩⎪⎨⎪⎧ λ=1,3λ=-2⇒⎩⎪⎨⎪⎧ λ=1,λ=-23.∴λ不存在,故a 与b 不共线,可以作为一组基底.(2)解.设c =m a +n b (m ,n ∈R ),则3e 1-e 2=m (e 1-2e 2)+n (e 1+3e 2)=(m +n )e 1+(-2m +3n )e 2.∴⎩⎪⎨⎪⎧ m +n =3,-2m +3n =-1⇒⎩⎪⎨⎪⎧ m =2,n =1.∴c =2a +b . (3)解.由4e 1-3e 2=λa +μb ,得 4e 1-3e 2=λ(e 1-2e 2)+μ(e 1+3e 2) =(λ+μ)e 1+(-2λ+3μ)e 2. ∴⎩⎪⎨⎪⎧ λ+μ=4,-2λ+3μ=-3⇒⎩⎪⎨⎪⎧λ=3,μ=1. 故所求λ,μ的值分别为3和1.。
《平面向量的基本定理》【课程标准】向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何与三角函数的一种桥梁,有着极其丰富的实际背景。
本章中,学生将了解向量丰富的实际背景,理解平面向量及其运算的意义,能用向量语言和方法表述和解决数学和物理中的一些问题,发展运算能力和解决实际问题的能力。
【课程标准分析】本部分内容是在学习了向量共线定理的基础上研究平面向量的问题,先推导出平面向量基本定理,之后再研究平面内的向量如何用坐标表示。
本节课在平面向量一章中地位重要,是平面向量坐标表示的理论基础;是数形结合思想的重要体现之一,是讨论存在唯一性问题的一个范例。
平面向量的基本定理是中学数学的核心知识,对今后数学的深入学习有重要的意义。
所以本节课是一堂原理课教学。
如果学生不掌握好,便不能深入理解向量坐标的由来,以及和点的坐标的本质区别。
【教学目标】(一)知识与技能了解平面向量基本定理及其意义,会用平面向量基本定理选定基底,分解平面中的任意向量。
逐步掌握由图形语言到符号语言的数形结合的数学思想。
(二)过程与方法通过观看微课、课前练习、课堂讨论的教学活动,让学生经历发现与总结出平面向量基本定理的过程,形成分析、抽象、概括数学知识的体会,形成由特殊到一般的思维方法的体会。
(三)情感态度与价值观通过平面向量基本定理的探求过程,培养学生独立思考及勇于探求的精神,培养学生合作讨论的兴趣,激发学习数学的兴趣。
建立学习数学的自信心,体会数学在生活中无处不在的价值。
【学情分析】基本定理是在学生学过向量的概念和线性运算,在学生接触了物理学中矢量的分解和合成后,深入进一步学习向量知识的第一节内容。
我校为省示范高中,高一学生有一定的知识基础,有一定的逻辑思维能力和空间想象能力。
会较易接受理解基本定理的存在性问题,而在向量分解的系数21λλ,在什么情况下是唯一存在,在什么情况下是不唯一存在的问题上较难理解。
在系数21λλ,的意义上认识不深刻,对后续的向量的坐标的定义上产生概念性混淆,扰乱整个向量的知识体系,从而打击学习向量的兴趣和自信。
2.3.1 平面向量基本定理一、教学分析平面向量基本定理既是本节的重点又是本节的难点.平面向量基本定理告诉我们同一平面内任一向量都可表示为两个不共线向量的线性组合,这样,如果将平面内向量的始点放在一起,那么由平面向量基本定理可知,平面内的任意一点都可以通过两个不共线的向量得到表示,也就是平面内的点可以由平面内的一个点及两个不共线的向量来表示.这是引进平面向量基本定理的一个原因。
二、教学目标1、知识与技能了解平面向量的基本定理及其意义;理解平面里的任何一个向量都可以用两个不共线的向量来表示.2、过程与方法初步掌握应用向量解决问题的重要思想方法;能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.3、情感态度与价值观通过平面向量基本定理的探求过程,培养学生的观察能力、抽象概括能力、合作交流能力.三、重点难点教学重点: 平面向量基本定理.教学难点: 平面向量基本定理的运用.四、教学设计(一)导入新课引入1:已知向量12,e e 为两个已知向量,向量121242,2a e e b e e =+=+, 则a与b 什么位置关系?因为2a b =,由向量共线定理知a 与b 共线.引入2:在∆ABC 中,点D,E,F 分别为边AB,BC,CA 的中点,直线BF 与CD 交于点O, 求证:直线AE 过点O.(二)探究新知如下图,向量12,e e 为已知向量思考:(1) 向量,b c 怎样用向量12,e e 来表示?(2) 任意向量a 怎样用向量12,e e 来表示? (3) 任意向量a 能用向量b,d 来表示吗?活动: 教师引导学生作图,根据向量的加减法运算及向量三角形、平OD BEF行四边形法则可得(1)12-32b e e =+,12c -2-e e =+(6); (2)对于向量a 又该如何用12,e e 表示呢?向量12,e e 前的系数该是多少呢?设OC =a ,过向量a 的终点C 分别作平行于向量12,e e 的直线,与格线分别交于点M 、N ;由向量的线性运算性质可知,存在实数λ1、λ2,使得OM =λ11e ,ON =λ22e .由于ONOMOC +=,所以a =λ11e +λ22e .也就是说,任一向量a 都可以表示成a =λ11e +λ22e 的形式,任意向量a 都可以转化为向量12,e e 的线性组合形式.由上述过程可以发现,平面内任一向量都可以由这个平面内两个不共线的向量12,e e 表示出来.当12,e e 确定后,任意一个向量都可以由这两个向量量化,这为我们研究问题带来极大的方便.(3)引导学生发现向量b,d 共线,若向量a 能用向量b,d 来表示,则向量a 与向量b,d 共线,而图中向量a 与向量b,d 不共线,故向量a 不能用向量b,d 来表示.由以上探究我们得到:平面向量基本定理 如果12,e e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a=λ11e +λ22e我们把不共线的向量12,e e 叫做表示这一平面内所有向量的一个基底(base).定理探究:(1) 向量12,e e 可以共线吗?唯一吗?(2) 若a与e或2e平行的非零向量,怎样表示?若a是零向量呢?1(3) 实数λ1,λ2的值唯一吗?探究结果:(1)向量,e e不可以共线(由两个向量共线的条件可知12,e e不可以12为零向量),向量,e e不唯一,即同一平面内基底由无数多组;12(2) 若a与e平行,则λ2为零,若a与2e平行,则λ1为零,若a为1零向量,则λ1=λ2=0;(3) 实数λ1,λ2的值唯一。
2.3.1平面向量基本定理2.3.2平面向量的正交分解及坐标表示学习目的:1.了解平面向量基本定理,了解基底的含义.2. 掌握两个向量夹角的定义以及两向量垂直的定义.3.理解平面向量的坐标的概念,会写出给定向量的坐标,会作出已知坐标表示的向量.重点:平面向量基本定理难点:两向量夹角的定义及定理的运用自学设计:一. 两向量的夹角与垂直1.夹角:已知两个 a 和b ,作OA =a ,OB =b ,则 =θ,叫做向量a 与b 的夹角.记作,a b (1)范围:向量a 与b 的夹角的范围是 .(2)当00θ=时a 与b .(3)当0180θ=时a 与b .2.垂直:如果向量a 与b 的夹角是 ,则称a 与b 垂直,记作 .在等边ABC ∆中, ,AB BC = .二. 平面向量基本定理1.定理:如果1e ,2e 是同一平面内的两个 向量,那么对于这一平面内的 向量a , 实数1,2λλ,使a = (称为平面向量的线性表示) .2.基底: 的向量1e ,2e 叫做表示这一平面内 向量的一组基底.由定义,平面向量的基底唯一吗?3.把一个向量分解成两个 的向量,叫做把向量正交分解.4.平面向量的坐标:在平面直角坐标系中,分别取与x 轴y 轴方向相同的两个 i ,j 作为基底,对于平面内的一个向量a ,由平面向量基本定理知,有且只有一对实数x,y,使得a = ,则把有序数对 叫做向量a 的坐标.课堂达标:(A 组)1.关于基底的说法正确的序号是(1)平面内不共线的任意两个向量都可作为一组基底.(2)基底中的向量可以是零向量.(3)平面内的基底一旦确定,该平面内的向量关于基底的线性分解形式也是唯一确定的.O θA B ba2.若i =(1,0), j =(0,1),且a =2i +j ,则a 的坐标为( )A.(2,0)B.(2,1)C.(1,0)D.(0,1)3.如图所示,D 是BC 边的中点,试用基底,AB AC AD 表示课堂达标:(B组)已知四边形OADB 是以向量OA =a ,OB =b 为邻边的平行四边形,C 为对角线的交点.又11,33BM BC CN CD == ,试用a ,b 表示,.OM ON。
平面向量基本定理预习学案一、学习目标1、 了解平面向量基本定理及其意义,会利用向量基本定理解决简单问题。
2、 通过平面向量基本定理的得出过程,体会由特殊到一般的思维方法。
二、学习重点、难点重点:平面向量基本定理的应用 难点:对平面向量基本定理的理解 三、问题探究1、 当基底确定后,平面内任一向量的表示是唯一的,为什么?2、 同一非零向量在不同基底下的分解式相同吗?四、知识梳理1、 平面向量基本定理:2、 我们把不共线的向量1e ,2e 叫做表示这一平面内所有向量的一组基底,记为2211e a e a +叫做3、 已知A ,B 是直线l 上任意两点,O 是l 外一点,则对于直线l 上任一点P ,存在实数t ,使关于基底的分解式为=OP ,这个等式叫做直线的向量参数方程式。
课堂效果自测有向量的基底的是()所在平面上表示其他所行四边形向量组中可作为这个平两对角线的交点,下列是平行四边形设点ABCD O .1①AB AD 与 ②BC DA 与 ③DC CA 与 ④OB OD 与 A.①② B.①③ C.①④ D.③④2.如图,D,E,F 是三角形ABC 的边BC,CA,AB 的中点,且b CA a BC 2,2==,在给出的下列四个等式中,正确的是( )①b a AD 2+=②b a BE +=2 ③a b BF += ④CA BC AB CF BE AD ++=++A. ①②B. ①③C. ②③④D. ①②③④3.在平行四边形ABCD 中,NC AN b AD a AB 3,,===,点M 为BC 中点,则MN ={}NPMP MN b a b AC a AB AB AP CA CN BC BM AB CA BC ABC P V M ,,,,41,41,41,,,,.4基底下的分解式:,试写出下列向量在此,选择基底,如果上的点,且三边分别是三角形如图,已知=====A BCDE F AP NCMB平面向量基本定理讲授学案一、知识回顾:1.向量的平行四边形法则2.平行向量基本定理 二、知识讲解引例:如教材中图2-34,设1e ,2e 是两个不平行的向量,用向量1e ,2e 表示图中向量?平面向量基本定理如果1e ,2e 是一平面内的两个 的向量,那么该平面内的 向量a ,存在 的一对实数21,a a 使a = .把不共线向量1e ,2e 叫做表示这一平面内所有向量的一组 . 反思小结三、例题分析例1?M MD MC MB MA b a b AD a AB ABCD 、、、表示、,用 ,且,的两条对角线相交于点如图所示,平行四边形== C.,,,,,AD AB d c d AN c AM BC DC N M ABCD 表示,试用已知的中点分别是中,拓展:在平行四边形==MC NBA D小结:例2四、课堂小结五、课后作业1. 课后练习A 1、22. 预习向量的正交分解与向量的直角坐标运算{}.)1(:,.上一定在并且,满足上式的点的分解式为,使关于基底,存在实数上任一点求证:对直线外一点是上任意两点,点是直线,已知:l P OB t OA t OP OB OA t P l l O l B A +-= ABOP1.1.0.1.(),),,(,,=+=-=+-=++=n m D n m C n m B n m A n m c b a c b a b n a m c 需满足的条件是,有公共的起点设终点在一条直线上要使的拓展:已知。
2. 3. 1《平面向量的基本定理》导学案【学习目标】1、知道平面向量基木定理;2、理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步应用向量解决实际问题;3、能够在具体问题中适当地选取基底,使其他向量都能够用基底来表示.【重占聊占】1.教車重兀平面向量基本定理2.教学难点:平面向量基本定理的理解与应用【学法指导】:通过回顾复习向量的线性运算,提出新的疑惑.为新授内容做好铺梨.【知识链接】(一)复习回顾1.实数与向量的积:实数入与向量刁的积是一个向量,记作:x a(1)| _________ 5 |= ;____________________________ (2)入>0时入方与方方向 ___ ;入<0时入力与力方向;入=0时入2.运算定律结合律:入(卩方)= ______ ;分配律:(入+p)N= _____ , ^(a+b)= _________ .3•向量共线定理向量方与非零向量万共线的充要条件是:有且只有一个非零实数入, 使 .(二)阅读教材,提出疑惑:如何通过向量的线性运算来表示出平面内的任意向量?【学习过程】(一)定理探究:平面向量基本定理:____________________________________________________________________ 探究:⑴ 我们把不共线向量6、°叫做一表示这一平面内所有向量的______________________ ;(2)_______________________ 基底不惟一,关键是;(3)由定理可将任一向量a在给出基底e】、£.2的条件下进行分解;⑷ 基底给定时,分解形式_________ .即X,入2是被石唯一确定的数量(二)例•题讲解■ • - » •例1己知向量引,e2求作向量2.5勺+3e2 .例2、如图占B0的两条对角线交于点M,且AB=a. AD=b ,用万,方表示胚4, MB ,D C例3己知AB£p的两条对角线AC与BD交于E, O是任意一点,求证:OA + OB-^OC + OD=4OE例4 (1)如图,OA, 0B 不共线,AP=xAB(t 04,方表示0?.(2)设刃、西不共线,.点P在O、A、B所在的平面内,且OP = (l-t)OA + tOB(te R).求证:A、B、P三点共线.例5已知a=2e r3e2f b= 2ei+3e2,其中引,血不共线,向量c=2e l-9e2f问是否存在这样的实数2、",使2 =航+加与c共线.【学习反思】【拓展提升】1.设°、02是同一平面内的两个向量,则有()A.®、02—定平行B©、02的模相等C.同一平面内的任一向量a都有。
2.3.1 平面向量基本定理(教师用书独具)●三维目标1.知识与技能(1)掌握平面向量的基本定理,能用两个不共线向量表示一个向量或一个向量分解为两个向量.(2)能用平面向量的基本定理解决一些简单的几何问题.2.过程与方法由概念的形成过程和在解题中的作用,进一步体验数形结合思想的指导作用.3.情感、态度与价值观(1)通过学习平面向量基本定理和向量的坐标表示,实现几何与代数的完美结合,使学生明白知识与知识、事物之间的相互联系和相互转化.(2)通过例题及练习,体会向量语言及运算在解决数学问题和实际问题中的工具作用.●重点难点重点:平面向量基本定理及其意义.难点:平面向量基本定理的应用.(教师用书独具)●教学建议1.关于平面向量基本定理教学教学时,建议教师从学生熟知的力学知识出发,结合教材实例中有关力及速度的合成与分解,先让学生从感性上认识向量可分解性,在此基础上结合向量的平行四边形法则由学生自主总结出平面向量基本定理的内容,教师就定理的有关注意事项做适当补充,不必要求学生会证明该定理.2.关于应用平面向量基本定理的教学教学时,建议教师结合实例,让学生明确平面向量基本定理在解决实际问题中的作用.通过实例进一步理解平面向量基本定理的实质,为下一节坐标系的建立奠定基础.●教学流程创设问题情境,引入平面向量基本定理,并引导学生初步理解定理及其作用.⇒引导学生结合向量共线等知识,理解基底概念及向量的正交分解的概念.⇒通过例1及其变式训练,使学生进一步正确理解平面向量基本定理.⇒通过例2及其变式训练,使学生掌握用基底表示向量的方法.⇒通过例3及其变式训练,使学生掌握利用平面向量基本定理求参数的值及证明三点共线等问题的方法.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.课标解读1.了解平面向量基本定理及其意义.(难点)2.了解基底的含义.3.会用任意一组基底表示指定的向量.4.能应用平面向量基本定理解决一些实际问题.(重点)平面向量基本定理【问题导思】已知▱ABCD 的对角线交点为O ,AB →=a ,AD →=b ,如何用a ,b 表示AO →? 【提示】 AO →=12AC →=12(AB →+AD →)=12(a +b)=12a +12b.(1)定理:如果e1,e2是同一平面内两个不共线的向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e1+λ2e2.(2)基底:不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.平面向量的正交分解【问题导思】一个放在斜面上的物体所受的竖直向下的重力G ,可分解为使物体沿斜面下滑的力F1和使物体垂直作用于斜面的力F2.类比力的分解,平面内任一向量能否用互相垂直的两向量表示? 【提示】 能,互相垂直的两向量可以作为一组基底.一个平面向量用一组基底e1,e2表示成a =λ1e1+λ2e2的形式,我们称它为向量a 的分解.当e1,e2所在直线互相垂直时,这种分解也称为向量a 的正交分解.平面向量基本定理的理解如果e1,e2是平面α内所有向量的一组基底,λ,μ是实数,判断下列说法是否正确,并说明理由.(1)若λ,μ满足λe1+μe2=0,则λ=μ=0;(2)对于平面α内任意一个向量a ,使得a =λe1+λe2成立的实数λ,μ有无数对; (3)线性组合λe1+μe2可以表示平面α内的所有向量;(4)当λ,μ取不同的值时,向量λe1+μe2可能表示同一向量. 【思路探究】 运用基底概念与平面向量基本定理进行判断. 【自主解答】 (1)正确.若λ≠0,则e1=-μλe2,从而向量e1,e2共线,这与e1,e2不共线相矛盾,同理可说明μ=0.(2)不正确.由平面向量基本定理可知λ,μ惟一确定. (3)正确.平面α内的任一向量a 可表示成λe1+μe2的形式,反之也成立.(4)不正确.结合向量加法的平行四边形法则易知,只有当λ和μ确定后,其和向量λe1+μe2才惟一确定.1.对于平面内任何向量都可以用两个不共线的向量来表示;反之,平面内的任一向量也可以分解为两个不共线的向量的和的形式.2.向量的基底是指平面内不共线的向量,事实上若e1,e2是基底,则必有e1≠0,e2≠0,且e1与e2不共线,如0与e1,e1与2e1,e1+e2与2(e1+e2)等均不能构成基底.下列两个命题(1)若a e1+b e2=c e1+d e2(a ,b ,c ,d ∈R),则a =c ,b =d. (2)若e1和e2是表示平面内所有向量的一组基底,那么该平面内的任一向量可以用e1+e2,e1-e2表示出来.其中正确的是________.【解析】 (1)错,当e1与e2共线时,结论不一定成立. (2)正确,假设e1+e2与e1-e2共线,则存在实数λ,使e1+e2=λ(e1-e2),即(1-λ)e1=-(1+λ)e2.因为1-λ与1+λ不同时为0,所以e1与e2共线,这与e1与e2不共线矛盾.所以e1+e2与e1-e2不共线,因而它们可以作为一组基底,该平面内的任一向量可以用e1+e2,e1-e2表示出来. 【答案】 (2)用基底表示向量图2-3-1如图2-3-1所示,以向量OA →=a ,OB →=b 为邻边作▱AOBD ,又BM →=13BC →,CN →=13CD →,用a ,b 表示OM →,ON →,MN →.【思路探究】 OM →=OB →+BM →,ON →=OC →+CN →,MN →=ON →-OM →,再将各量转化为OA →,OB →. 【自主解答】 BA →=OA →-OB →=a -b. ∴OM →=OB →+BM →=OB →+13BC →=OB →+16BA →=16a +56b.又OD →=a +b ,ON →=OC →+CN →=12OD →+16OD →=23OD →=23a +23b , ∴MN →=ON →-OM →=23a +23b -16a -56b =12a -16b. 1.若题目中已给出了基底,求解此类问题时,常利用向量加法三角形法则或平行四边形法则,结合数乘运算,找到所求向量与基底的关系.2.若题目中没有给出基底,常结合已知条件先寻找一组从同一点出发的两不共线向量作为基底,而后用上述方法求解. 图2-3-2(2013·南通高一检测)如图2-3-2,梯形ABCD 中,AB ∥CD ,且AB =2CD ,M ,N 分别是DC 和AB 的中点,若AB →=a ,AD →=b ,试用a ,b 表示DC →,BC →,MN →.【解】 如图所示,连结CN ,则四边形ANCD 是平行四边形,即DC →=AN →=12AB →=12a ,BC →=NC →-NB →=AD →-12AB →=b -12a ,MN →=CN →-CM →=-AD →-12CD →=-AD →-12(-12AB →)=14a -b.平面向量基本定理的应用图2-3-3如图2-3-3,已知在△OAB 中,延长BA 到C ,使AB =AC ,D 是将OB →分成2∶1的一个分点(靠近B 点),DC 和OA 交于点E ,设OA →=a ,OB →=b , (1)用a ,b 表示向量OC →,DC →; (2)若OE →=λOA →,求实数λ的值.【思路探究】 (1)由题意可知A 是BC 的中点,利用平行四边形法则求OC →,利用三角形法则求DC →;(2)利用C ,D ,E 三点共线,结合共线向量定理求解. 【自主解答】 (1)∵A 为BC 中点, ∴OA →=12(OB →+OC →),OC →=2a -b ;DC →=OC →-OD →=OC →-23OB →=2a -b -23b =2a -53b.(2)设OE →=λOA →,则CE →=OE →-OC →=λOA →-OC →=λa-2a +b =(λ-2)a +b. ∵CE →与CD →共线,∴存在实数m ,使得CE →=mCD →,即(λ-2)a +b =m(-2a +53b),即(λ+2m -2)a +(1-53m)b=0.∵a ,b 不共线且为非零向量, ∴⎩⎪⎨⎪⎧λ+2m -2=0,1-53m =0,解得λ=45.1.此类问题要结合图形条件与所求证问题,寻求解题思路.本题充分利用三点共线,即共线向量定理,共面向量定理,建立方程组求解,同时要恰当选择基底简化运算.2.应用平面向量基本定理来证明平面几何问题的一般方法是:先选取一组基底,再根据几何图形的特征应用向量的有关知识解题. 图2-3-4如图2-3-4,已知▱ABCD 中M 为AB 的中点,N 在BD 上,3BN =BD.求证:M ,N ,C 三点共线.【证明】 ∵M 为AB 的中点,N 在BD 上,3BN =BD , ∴MB →=12AB →,BN →=13BD →,∴MN →=MB →+BN →=12AB →+13BD →=12AB →+13(AD →-AB →)=16AB →+13AD →,又MC →=MB →+BC →=12AB →+AD →=3(16AB →+13AD →)=3MN →,∴MN →∥MC →,又M 为公共点, ∴M ,N ,C 三点共线.用待定系数法确定向量的表示 图2-3-5(14分)如图2-3-5,在△ABC 中,点M 是BC 的中点,点N 在AC 上,且AN =2NC ,AM 与BN 相交于点P ,求AP ∶PM 与BP ∶PN 的值. 【思路点拨】 可先从已知图形中选出两个简单向量作为一组基底建立起数学模型,由图形特征可知选择BM →与CN →作为基向量较好. 【规范解答】 设BM →=e1,CN →=e2,则AM →=AC →+CM →=-3e2-e1,BN →=BC →+CN →=2e1+e2. 4分 ∵A ,P ,M 和B ,P ,N 分别共线,∴存在实数λ,μ使得AP →=λAM →=-λe1-3λe2, BP →=μBN →=2μe1+μe2. 故BA →=BP →+PA →=BP →-AP →=(λ+2μ)e1+(3λ+μ)e2. 8分 而BA →=BC →+CA →=2e1+3e2, 由平面向量基本定理,得⎩⎪⎨⎪⎧λ+2μ=2,3λ+μ=3,解得⎩⎪⎨⎪⎧λ=45,μ=35.∴AP →=45AM →,BP →=35BN →.即AP ∶PM =4∶1,BP ∶PN =3∶2. 14分基底建模是向量法解决几何图形有关证明和求解的重要方法,关键在于选取的基底是否合适,要注意与已知条件的联系.可用方程思想,利用待定系数法确定向量. 1.准确理解平面向量基本定理(1)平面向量基本定理的实质是向量的分解,即平面内任一向量都可以沿两个不共线的方向分解成两个向量和的形式,且分解是惟一的.(2)平面向量基本定理中,实数λ1、λ2的惟一性是相对于基底e1,e2而言的,平面内任意两个不共线的向量都可以作为基底,一旦选定一组基底,则给定向量沿着基底的分解是惟一的.2.对基底的理解 (1)基底的特征基底具备两个主要特征:①基底是两个不共线向量;②基底的选择是不惟一的.平面内两向量不共线是这两个向量可以作为这个平面内所有向量的一组基底的条件. (2)关于基底的一个结论设e1,e2是平面内的一组基底,当λ1e1+λ2e2=0时,恒有λ1=λ2=0. (3)零向量与任意向量共线,故不能作为基底.1.下列关于基底的说法正确的是________.(填序号) ①平面内不共线的任意两个向量都可以作为一组基底; ②基底中的向量可以是零向量;③平面内的基底一旦确定,该平面内的向量关于基底的线性分解形式也是惟一确定的. 【解析】 作为基底的两个向量不共线,故基底中的向量不能是零向量,②不正确,①③正确.【答案】 ①③2.已知向量e1,e2不共线,实数x ,y 满足(3x -4y)e1+(2x -3y)e2=6e1+3e2,则x -y 的值为________.【解析】 ∵(3x -4y)e1+(2x -3y)e2=6e1+3e2,且e1,e2不共线,∴⎩⎪⎨⎪⎧3x -4y =6,2x -3y =3,解得⎩⎪⎨⎪⎧x =6,y =3.∴x -y =6-3=3.【答案】 3 图2-3-63.在如图2-3-6所示的平行四边形ABCD 中,AB →=a ,AD →=b ,AN =3NC ,M 为BC 的中点,则MN →=________(用a ,b 表示).【解析】 MN →=MC →+CN →=12AD →-14AC →=12b -14(a +b)=-14a +14b.【答案】 -14a +14b4.在△ABC 中,已知D 是AB 边上一点,若AD →=2DB →,CD →=13CA →+λCB →,求λ的值.【解】 在△ABC 中,已知D 是AB 边上一点, 若AD →=2DB →,CD →=13CA →+λCB →,则CD →=CA →+AD →=CA →+23AB →=CA →+23(CB →-CA →)=13CA →+23CB →,∴λ=23.一、填空题1.若O 是▱ABCD 的两对角线的交点,下列向量组中可作为这个平行四边形所在平面上表示其他所有向量的基底的是________. ①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →.【解析】 只要是平面上不共线的两个向量都可作为基底,AD →与AB →是有公共点的不共线向量,CA →与DC →也是有公共点的不共线向量.【答案】 ①③ 2.已知e1,e2是平面所有向量的一组基底,那么下列一组向量不能作为基底的是________. ①e1和e1+e2;②e1-2e2和e2-2e1;③e1-2e2和4e2-2e1;④e1+e2和e1-e2. 【解析】 因为4e1-2e1=-2(e1-2e2), 所以e1-2e2与4e2-2e1共线. 【答案】 ③ 图2-3-73.如图2-3-7,平行四边形ABCD 中,AB →=a ,AD →=b ,M 是DC 的中点,以a ,b 为基底表示向量AM →=________.【解析】 AM →=AD →+DM →=AD →+12DC →=AD →+12AB →=b +12a.【答案】 b +12a4.设e1,e2是不共线向量,e1+2e2与me1+ne2共线,则nm =________.【解析】 由e1+2e2=λ(me1+ne2),得mλ=1且nλ=2, ∴nm =2. 【答案】 25.设一直线上三点A ,B ,P 满足AP →=mPB →(m≠-1),O 是直线所在平面内一点,则OP →用OA →,OB →表示为________.【解析】 由AP →=mPB →得OP →-OA →=m(OB →-OP →), ∴OP →+mOP →=OA →+mOB →,∴OP →=OA →+mOB →1+m .【答案】 OP →=OA →+mOB→1+m6.如图2-3-8,在△ABC 中,D 是BC 的中点,E 是AD 的中点,若CE →=rAB →+sAC →,则r +s =________. 图2-3-8【解析】 由E 是AD 的中点,则CE →=12(CA →+CD →)=-12AC →+14CB →=-12AC →+14(AB →-AC →)=14AB →-34AC →,则r +s =-12.【答案】 -127.已知D ,E ,F 分别是△ABC 的边BC ,CA ,AB 上的点,且BD →=DC →,AE →=2EC →,AF →=2FB →,则2AD →+3BF →+3CE →=________.【解析】 由BD →=DC →,易知AD →=12(AB →+AC →),所以2AD →=AB →+AC →,再由AE →=2EC →,AF →=2FB →,可知3BF →=BA →,3CE →=CA →,所以2AD →+3BF →+3CE →=0. 【答案】 08.在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=________.【解析】 设BC →=b ,BA →=a ,则AF →=12b -a ,AE →=b -12a ,AC →=b -a ,代入AC →=λAE →+μAF →,得b -a =(λ+μ2)b -(λ2+μ)a,即⎩⎪⎨⎪⎧1=λ2+μ,1=λ+μ2,解得λ=μ=23,∴λ+μ=43.【答案】 43二、解答题9.(2013·保定高一检测)设e1,e2为两个不共线的向量,a =-e1+3e2,b =4e1+2e2,c =-3e1+12e2,试用b ,c 为基底表示向量a. 【解】 设a =λ1b+λ2c,λ1,λ2∈R 则, -e1+3e2=λ1(4e1+2e2)+λ2(-3e1+12e2), 即-e1+3e2=(4λ1-3λ2)e1+(2λ1+12λ2)e2,∴⎩⎪⎨⎪⎧4λ1-3λ2=-1,2λ1+12λ2=3,∴⎩⎪⎨⎪⎧λ1=-118,λ2=727,∴a =-118b +727c.10.平行四边形ABCD 中,M 为DC 的中点,N 为BC 的中点,设AB →=b ,AD →=d ,AM →=m ,AN →=n.(1)以b ,d 为基底,表示MN →; (2)以m ,n 为基底,表示AB →. 【解】 如图所示.(1)MN →=AN →-AM →=(AB →+BN →)-(AD →+DM →)=(b +12d)-(d +12b)=12b -12d.(2)m =AD →+DM →=d +12AB →,①n =AB →+BN →=AB →+12d ,所以2n =2AB →+d ,② 由①②消去d ,得AB →=43n -23m.图2-3-911.如图2-3-9所示,在△ABC 中,点M 是边BC 的中点,点N 在边AC 上,AN =2NC ,AM 与BN 相交于点P ,求证:AP →=4PM →.【证明】 记BM →=e1,CN →=e2,所以AC →=-3e2,CM →=-e1,则AM →=AC →+CM →=-3e2-e1,BN →=BC →+CN →=2e1+e2.因为A ,P ,M 共线,且B ,P ,N 共线,所以存在实数λ,μ,使AP →=λAM →=-3λe2-λe1,BP →=μBN →=2μe1+μe2, 所以BA →=BP →+PA →=2μe1+μe2+3λe2+λe1=(2μ+λ)e1+(μ+3λ)e2,又BA →=BC →+CA →=2e1+3e2,所以⎩⎪⎨⎪⎧λ+2μ=2,3λ+μ=3,解之得⎩⎪⎨⎪⎧λ=45,μ=35.所以AP →=45AM →,所以AP ∶PM =4∶1,即AP →=4PM →.(教师用书独具)用向量法证明三角形的三条中线交于同一点.【思路探究】 令△ABC 的中线AD 与中线BE 交于点G1,中线AD 与CF 交于点G2,利用向量说明G1与G2重合,证得三条中线交于一点.【自主解答】 如图,AD ,BE ,CF 是△ABC 的三条中线.令AC →=a ,BC →=b ,则AB →=CB →-CA →=AC →-BC →=a -b ,AD →=AC →+CD →=a -12b ,BE →=BC →+CE →=-12a+b.令AD 与BE 交于点G1,并假设AG1→=λAD →,BG1→=μBE →,则有AG1→=λa-λ2b ,BG1→=-μ2a +μb.∴AG1→=AB →+BG1→=(1-μ2)a +(μ-1)b ,∴⎩⎪⎨⎪⎧λ=1-μ2,-λ2=μ-1.由此可得λ=μ=23,∴AG1→=23AD →.再令AD 与CF 相交于G2,同样的方法可得AG2→=23AD.∴G1与G2重合,即AD ,BE ,CF 相交于同一点. ∴三角形三条中线交于一点.向量方法证明三线共点的思路为:设三条直线l1,l2,l3中l1与l2的交点为G1,l2与l3的交点为G2,在图形中选择两个简单的不共线的向量作为基底,证明共起点的向量表示惟一,如证AG1→=AG2→,则得G1,G2重合.在△ABC 中,D ,F 分别是BC ,AC 的中点.AE →=23AD →,AB →=a ,AC →=b.求证:B ,E ,F 三点共线.【证明】 因为D 是BC 的中点,所以有AD →=12(a +b).又因为AE →=23AD →=13(a +b),AF →=12AC →=12b , 所以BE →=AE →-AB →=13(a +b)-a =13(b -2a), BF →=AF →-AB →=12b -a =12(b -2a). 所以BE →=23BF →. 又BE →,BF →有公共点B ,所以B ,E ,F 三点共线.。