一元一次不等式解法教案
- 格式:doc
- 大小:90.50 KB
- 文档页数:2
9.3 一元一次不等式组第1课时 一元一次不等式组的解法1.理解一元一次不等式组及其解集的概念; 2.掌握一元一次不等式组的解法;(重点)3.会利用数轴表示一元一次不等式组的解集.(难点)一、情境导入你能列出上面的不等式并将其解集在数轴上表示出来吗? 二、合作探究探究点一:在数轴上表示不等式组的解集不等式组⎩⎪⎨⎪⎧x <3,x ≥1的解集在数轴上表示为( )解析:把不等式组中每个不等式的解集在数轴上表示出来,它们的公共局部是1≤x <3.应选C.方法总结:利用数轴确定不等式组的解集,如果不等式组由两个不等式组成,其公共局部在数轴上方应当是有两根横线穿过.探究点二:解一元一次不等式组解以下不等式组,并把它们的解集在数轴上表示出来:(1)⎩⎪⎨⎪⎧2x -3≥1,x +2<2x ; (2)⎩⎪⎨⎪⎧3〔x +2〕>x +8,x 4≥x -13.解析:先求出不等式组中每一个不等式的解集,再求它们的公共局部.解:(1)⎩⎪⎨⎪⎧2x -3≥1,①x +2<2x .②解不等式①,得x ≥2,解不等式②,得x >2.所以这个不等式组的解集为x >2.将不等式组的解集在数轴上表示如下:(2)⎩⎪⎨⎪⎧3〔x +2〕>x +8,①x 4≥x -13.②解不等式①,得x >1,解不等式②,得x ≤4. 所以这个不等式组的解集是1<x ≤4. 将不等式组的解集在数轴上表示如下:方法总结:解一元一次不等式组的一般步骤:先分别求出不等式组中每一个不等式的解集,并把它们的解集在数轴上表示出来,然后利用数轴确定这几个不等式解集的公共局部.也可利用口诀确定不等式组的解集:大大取较大,小小取较小,大小小大中间找,大大小小无处找.探究点三:求不等式组的特殊解求不等式组⎩⎪⎨⎪⎧2-x ≥0,x -12-2x -13<13的整数解.解析:分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x 的整数值即可.解:⎩⎪⎨⎪⎧2-x ≥0,①x -12-2x -13<13.②解不等式①,得x ≤2,解不等式②,得x >-3.故此不等式组的解集为-3<x ≤2,x 的整数解为-2,-1,0,1,2.方法总结:求不等式组的特殊解时,先解每一个不等式,求出不等式组的解集,然后根据题目要求确定特殊解.确定特殊解时也可以借助数轴.探究点四:根据不等式组的解集求字母的取值范围假设不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x >x -2无解,那么实数a 的取值范围是( )A .a ≥-1B .a <-1C .a ≤1D .a ≤-1解析:解第一个不等式得x ≥-a ,解第二个不等式得x <1.因为不等式组无解,所以-a ≥1,解得a ≤-1.应选D.方法总结:根据不等式组的解集求字母的取值范围,可按以下步骤进行:①解每一个不等式,把解集用数字或字母表示;②根据条件即不等式组的解集情况,列出新的不等式.这时一定要注意是否包括边界点,可以进行检验,看有无边界点是否满足题意;③解这个不等式,求出字母的取值范围.三、板书设计一元一次不等式组⎩⎪⎨⎪⎧概念解法不等式组的解集⎩⎪⎨⎪⎧利用数轴确定解集利用口诀确定解集解一元一次不等式组是建立在解一元一次不等式的根底之上,解不等式组时,先解每一个不等式,再确定各个不等式的解集的公共局部.教学中可以把利用数轴与利用口诀确定不等式组的解集结合起来,互相验证15.1.2 分式的根本性质1.通过类比分数的根本性质,说出分式的根本性质,并能用字母表示.(重点) 2.理解并掌握分式的根本性质和符号法那么.(难点)3.理解分式的约分、通分的意义,明确分式约分、通分的理论依据.(重点) 4.能正确、熟练地运用分式的根本性质,对分式进行约分和通分.(难点)一、情境导入中国古代的数学论著中就有对“约分〞的记载,如?九章算术?中就曾记载“约分术〞,并给出了详细的约分方法,这节课我们就来学习分式化简的相关知识,下面先来探索分式的根本性质.二、合作探究探究点一:分式的根本性质【类型一】 利用分式的根本性质对分式进行变形以下式子从左到右的变形一定正确的选项是( )A.a +3b +3=a b B.a b =acbcC.3a 3b =a bD.a b =a 2b2 解析:A 中在分式的分子与分母上同时加上3不符合分式的根本性质,故A 错误;B 中当c =0时不成立,故B 错误;C 中分式的分子与分母同时除以3,分式的值不变,故C 正确;D 中分式的分子与分母分别乘方,不符合分式的根本性质,故D 错误;应选C.方法总结:考查分式的根本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.【类型二】 不改变分式的值,将分式的分子、分母中各项系数化为整数不改变分式0.2x +12+0.5x的值,把它的分子、分母的各项系数都化为整数,所得结果正确的为( )A.2x +12+5xB.x +54+x C.2x +1020+5x D.2x +12+x解析:利用分式的根本性质,把0.2x +12+0.5x 的分子、分母都乘以10得2x +1020+5x .应选C.方法总结:观察分式的分子和分母,要使分子与分母中各项系数都化为整数,只需根据分式的根本性质让分子和分母同乘以某一个数即可.【类型三】 分式的符号法那么不改变分式的值,使以下分式的分子和分母都不含“-〞号. (1)-3b 2a ;(2)5y -7x 2;(3)-a -2b 2a +b. 解析:在分子的符号,分母的符号,分式本身的符号三者当中同时改变其中的两个,分式的值不变.解:(1)原式=-3b 2a ;(2)原式=-5y 7x 2;(3)原式=-a +2b 2a +b.方法总结:这类题目容易出现的错误是把分子的符号,分母的项的符号,特别是首项的符号当成分子或分母的符号.探究点二:最简分式、分式的约分和通分 【类型一】 判定分式是否是最简分式以下分式是最简分式的是( ) A.2a 2+a ab B.6xy 3aC.x 2-1x +1D.x 2+1x +1解析:A 中该分式的分子、分母含有公因式a ,那么它不是最简分式.错误;B 中该分式的分子、分母含有公因数3,那么它不是最简分式.错误;C 中分子为(x +1)(x -1),所以该分式的分子、分母含有公因式(x +1),那么它不是最简分式.错误;D 中该分式符合最简分式的定义.正确.应选D.方法总结:最简分式的标准是分子,分母中不含公因式.判断的方法是把分子、分母分解因式,并且观察有无公因式.【类型二】 分式的约分约分:(1)-5a 5bc 325a 3bc 4;(2)x 2-2xyx 3-4x 2y +4xy 2. 解析:先找分子、分母的公因式,然后根据分式的根本性质把公因式约去. 解:(1)-5a 5bc 325a 3bc 4=5a 3bc 3〔-a 2〕5a 3bc 3·5c =-a25c; (2)x 2-2xy x 3-4x 2y +4xy 2=x 〔x -2y 〕x 〔x -2y 〕2=1x -2y. 方法总结:约分的步骤:(1)找公因式.当分子、分母是多项式时应先分解因式;(2)约去分子、分母的公因式.【类型三】 分式的通分通分: (1)b 3a 2c 2,c -2ab ,a5cb 3; (2)1a 2-2a ,a a +2,1a 2-4. 解析:确定最简公分母再通分.解:(1)最简公分母为30a 2b 2c 2,b 3a 2c 2=10b 430a 2b 3c 2,c -2ab =-15ab 3c 330a 2b 3c 2,a 5cb 3=6a 3c30a 2b 3c2;(2)最简公分母为a (a +2)(a -2),1a 2-2a =a 2+2a a 〔a +2〕〔a -2〕,aa +2=a 3-2a 2a 〔a +2〕〔a -2〕,1a 2-4=aa 〔a +2〕〔a -2〕.方法总结:通分的一般步骤:(1)确定分母的最简公分母.(2)用最简公分母分别除以各分母求商.(3)用所得到的商分别乘以分式的分子、分母,化成同分母的分式.三、板书设计分式的根本性质1.分式的根本性质:分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变.2.符号法那么:分式的分子、分母及分式本身,任意改变其中两个符号,分式的值不变;假设只改变其中一个的符号或三个全变号,那么分式的值变成原分式值的相反数.本节课的流程比拟顺畅,先探究分式的根本性质,然后顺势探究分式变号法那么.在每个活动中,都设计了具有启发性的问题,对各个知识点进行分析、归纳总结、例题示范、方法指导和变式练习.一步一步的来完成既定目标.整个学习过程轻松、愉快、和谐、高效.。
人教版初中数学一元一次不等式教案范文优秀7篇一元一次不等式教案篇一一、教学目标:(一)知识与能力目标:(课件第2张)1.体会解不等式的步骤,体会比较、转化的作用。
2.学生理解、巩固一元一次不等式的解法。
3.用数轴表示解集,加深对数形结合思想的进一步理解和掌握。
4.在解决实际问题中能够体会将文字语言转化成数学语言,学会用数学语言表示实际的数量关系。
(二)过程与方法目标:1.介绍一元一次不等式的概念。
2.通过对一元一次方程的解法的复习和对不等式性质的利用,导入对解不等式的讨论。
3.学生体会通过综合利用不等式的概念和基本性质解不等式的方法。
4.学生将文字表达转化为数学语言,从而解决实际问题。
5.练习巩固,将本节和上节内容联系起来。
(三)情感、态度与价值目标:(课件第3张)1.在教学过程中,学生体会数学中的比较和转化思想。
2.通过类比一元一次方程的解法,从而更好的掌握一元一次不等式的解法,树立辩证统一思想。
3.通过学生的讨论,学生进一步体会集体的作用,培养其集体合作的精神。
4.通过本节的学习,学生体会不等式解集的奇异的数学美。
二、教学重、难点:1.掌握一元一次不等式的`解法。
2.掌握解一元一次不等式的阶梯步骤,并能准确求出解集。
3.能将文字叙述转化为数学语言,从而完成对应用问题的解决。
三、教学突破:教材中没有给出解法的一般步骤,所以在教学中要注意让学生经历将所给的不等式转化为简单不等式的过程,并通过学生的讨论交流使学生经历知识的形成和巩固过程。
在解不等式的过程中,与上节课联系起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法解决问题。
在研究中,鼓励学生用多种方法求解,从而锻炼他们活跃的思维。
四、教具:计算机辅助教学。
五、教学流程:(一)、复习:教学环节教师活动学生活动设计意图一元一次不等式教案篇二师:下面我们先看一下购物金额对选择哪家超市有何影响?请同学们根据老师给出的学习目标和问题,自学课文一三1页至一三2页例1上边的内容,要求独立或者小组合作,完成书上的问题(1)、(2),时间是10分钟。
一元一次不等式的解法教案设计一、教学目标1. 让学生掌握一元一次不等式的定义及其解法。
2. 培养学生运用不等式解决实际问题的能力。
3. 培养学生合作交流、归纳总结的能力。
二、教学内容1. 一元一次不等式的定义及例题解析。
2. 一元一次不等式的解法及步骤。
3. 应用题练习。
三、教学重点与难点1. 重点:一元一次不等式的解法。
2. 难点:不等式解法的运用。
四、教学方法1. 采用自主学习、合作交流的教学方法,让学生在探究中掌握知识。
2. 利用多媒体课件辅助教学,提高学生的学习兴趣。
3. 结合生活实际,培养学生的应用能力。
五、教学过程1. 导入新课1.1 复习相关知识点:方程的解、解集等。
1.2 提问:不等式与方程有什么关系?如何解不等式?2. 自主学习2.1 学生自主探究一元一次不等式的定义及解法。
2.2 学生展示学习成果,教师点评并总结。
3. 课堂讲解3.1 讲解一元一次不等式的定义及解法。
3.2 举例讲解,让学生明确解不等式的步骤。
4. 课堂练习4.1 学生独立完成练习题,检验学习效果。
4.2 教师点评练习题,纠正错误,巩固知识。
5. 应用题练习5.1 学生分组讨论,分析实际问题。
5.2 学生展示解题过程,教师点评并总结。
6. 课堂小结6.1 学生总结一元一次不等式的解法。
6.2 教师补充讲解,巩固知识点。
7. 作业布置7.1 布置练习题,巩固所学知识。
7.2 布置应用题,培养学生的实际应用能力。
8. 课后反思8.1 教师总结课堂教学,反思教学方法。
8.2 学生反馈学习情况,提出疑问。
六、教学评价1. 课堂练习的完成情况:评价学生对一元一次不等式解法的掌握程度。
2. 应用题的解答:评价学生将所学知识应用于实际问题的能力。
3. 课堂参与度:评价学生在课堂讨论、提问等方面的积极性。
4. 课后作业:评价学生对课堂知识的巩固程度。
七、教学拓展1. 组织学生进行不等式知识竞答,激发学生的学习热情。
2. 让学生收集生活中的不等式实例,并进行分享交流。
课题:7.2 一元一次不等式(1)第一课时一元一次不等式及其解法学习目标:1.了解一元一次不等式的概念;了解不等式的解和解集的意义。
2.会解简单的一元一次不等式,能在数轴上表示不等式的解集;掌握解一元一次不等式的一般步骤和方法。
3.通过探究一元一次不等式的解法,体会类比和转化思想。
学习重点:一元一次不等式的解法和用数轴表示不等式的解集。
学习难点:会根据不同的情境列一元一次不等式。
一、学前准备1. 回顾:不等式的概念不等式的基本性质2.练习:(1)若x-1>4. 则x_____________.根据_______ ______.(2)-2x>-5. 则x_____________.根据_________ ____. 二、探究活动(1)x与3的和小于10用式子怎样表示?(2)七6班学生的人数的2倍与15的和小于135,七6班的人数y 满足什么式子?(3)小亮的体重的2倍减25千克不小于15千克,设小亮的体重为x千克,则x满足什么式子?观察你所列出的式子,它们有什么共同的特点?(1)x+3<10;(2)2y+15<135;(3)2x-25≥15。
①都是不等式;②只含有一个未知数③未知数的次数都是1;④不等号的两边都是整式。
定义:只含有一个未知数,未知数的次数是1,且不等号两边都是整式的不等式叫做一元一次不等式。
巩固练习1. 判断下列式子,哪些是一元一次不等式。
(1) 4>1 (2) 3x-2<4 (3) x1< 2 (4) 4x-3<2y-7 (5) x 2+x+1>0 (6) xy (7) x+4=12. 若5132<+m x 是一元一次不等式,求m 的值。
解 因为不等式是一元一次不等式,所以12=m , 解得1±=m变式训练: 51)33(2<++m xm思考: 1. 判断下列给出的数中哪些能使不等式x+3<10成立:-1,-4,0,7,11,8.12. 你还能找出使上述不等式成立的其他数吗?能找多少个?不等式的解:一般地,能够使不等式成立的未知数的值,叫做这个不等式的解。
一元一次不等式教案(精选9篇)篇1:一元一次不等式教案实际询问题与一元一次不等式教案教学目标1、会从实际询问题中抽象出数学模型,会用一元一次不等式解决实际询问题;2、通过观看、实践、争辩等活动,经受从实际中抽象出数学模型的过程,积存利用一元一次不等式解决实际询问题的阅历,渗透分类争辩思想,感知方程与不等式的内在联系;3、在乐观参与数学学习活动的过程中,初步熟识一元一次不等式的应用价值,形成实事求是的态度和独立思考的适应。
教学难点弄清列不等式解决实际询问题的思想方法,用去括号法解一元一次不等式。
学询问重点查找实际询问题中的不等关系,建立数学模型。
教学过程(师生活动)设计理念提出询问题某学校方案购实若干台电脑,现从两家商店了解到同一型号的电脑每台报价均为6000元,同时多买都有确信的优待.甲商场的优待条件是:第一台按原报价收款,其余每台优待25%;乙商场的优待条件是:每台优待20%.假如你是校长,你该如何考虑,如何选择?(多媒体呈现商场购物情景)通过买电脑那个同学特不生疏的生活实例,引起同学深厚的学习爱好,感受到数学来源于生活,生活中更需要数学。
探究新知1、分组活动.先独立思考,理解题意.再组内沟通,发表自个儿的观点.最终小组汇报,派代表论述理由.2、在同学充分发表意见的基础上,师生共同归纳出以下三种选购方案:(1)啥状况下,到甲商场购买更优待?(2)啥状况下,到乙商场购买更优待?(3)啥状况下,两个商场收费相同?3、我们先来考虑方案:设购买x台电脑,假如到甲商场购买更优待.询问题1:如何列不等式?询问题2:如何解那个不等式?在同学充分争辩的基础上,老师归纳并板书如下:解:设购买x 台电脑,假如到甲商场购买更优待,则6000+6000(1-25%)(x-1)<6000(1-20%)x去括号,得去括号,得:6000+4500x-45004<4800x移项且合并,得:-300x<1500不等式两边同除以-300,得:x<5答:购买5台以上电脑时,甲商场更优待.4、让同学自个儿完成方案(2)与方案(3),并汇报完成状况.老师最终作适当点评.鼓舞同学大胆猜想,对争论的询问题发表见解,进行探究、合作与沟通,涌现出多样化的解题思路.老师准时予以引导、归纳和总结,让同学感知不等式的建模。
一元一次不等式【课时安排】2课时【第一课时】【教学目标】一、教学知识点。
(一)知道什么是一元一次不等式?(二)会解一元一次不等式。
二、能力训练要求。
(一)归纳一元一次不等式的定义。
(二)通过具体实例,归纳解一元一次不等式的基本步骤。
三、情感与价值观要求。
通过观察一元一次不等式的解法,对比解一元一次方程的步骤,让学生自己归纳解一元一次不等式的基本步骤。
【教学重点】1.一元一次不等式的概念及判断。
2.会解一元一次不等式。
【教学难点】当不等式的两边都乘以或除以同一个负数时,不等号的方向要改变。
【教学方法】自觉发现——归纳法。
教师通过具体实例让学生观察、归纳、独立发现解一元一次不等式的步骤。
并针对常见错误进行指导,使他们在以后的解题中能引起注意,自觉改正错误。
【教学准备】投影片两张。
【教学过程】一、创设问题情境,引入新课。
[师]在前面我们学习了不等式的基本性质,不等式的解,不等式的解集,解不等式的内容。
并且知道根据不等式的基本性质,可以把一些不等式化成“x>a”或“x<a”的形式。
那么,什么样的不等式才可以运用不等式的基本性质而被化成“x>a”或“x<a”的形式呢?又需要哪些步骤呢?本节课我们将进行这方面的研究。
二、讲授新课。
(一)一元一次不等式的定义。
[师]大家已经学习过一元一次方程的定义,你们还记得吗?[生]记得。
只含有一个未知数,未知数的指数是一次,这样的方程叫做一元一次方程。
[师]很好。
我们知道一元指的是一个未知数,一次指的是未知数的指数是一次,由此大家可以类推出一元一次不等式的定义,可以吗?[生]只含有一个未知数,未知数的最高次数是一次,这样的不等式叫一元一次不等式。
[师]好。
下面我们判断一下,以下的不等式是不是一元一次不等式。
请大家讨论。
[生](1)、(2)、(3)中的不等式是一元一次不等式,(4)不是。
[师](4)为什么不是呢?[生]因为x 在分母中,x1不是整式。
[师]好,从上面的讨论中,我们可以得出判断一元一次不等式的条件有三个,即未知数的个数,未知数的次数,且不等式的两边都是整式。
完整版)一元一次不等式说课稿教学重点:1.掌握一元一次不等式的解法.2.熟练运用不等式的性质解一元一次不等式.教学难点:1.通过解一元一次方程的步骤来探索解一元一次不等式的一般步骤.2.用数轴表示解集,启发学生对数形结合思想进一步理解和掌握.二、教法分析本节课的教法应以启发式教学为主,通过引导学生思考和发现,让学生掌握一元一次不等式的解法和应用。
同时,还需要采用巩固练和案例分析等教学方法,加深学生对知识的理解和掌握,提高解题能力。
在教学过程中,要注重学生的参与和互动,引导学生积极思考,提高学生的自主研究能力和创新思维能力。
三、学法分析学生在研究本节课时,应注重以下学法:1.注重理解和记忆基本概念和公式.2.注重练和巩固,熟练掌握不等式的性质和解法.3.注重思考和探究,通过解一元一次方程的步骤来探索解一元一次不等式的一般步骤.4.注重归纳和总结,掌握一元一次不等式的解法和应用.四、教学过程1.引入:通过生活中的例子引入不等式的概念.2.知识点讲解:讲解一元一次不等式的解法和不等式的性质.3.案例分析:通过案例分析巩固学生对知识点的理解和掌握.4.练巩固:通过练巩固学生对知识点的应用和解题能力.5.归纳总结:通过归纳总结,让学生掌握一元一次不等式的解法和应用.五、教学反思本节课的教学设想,通过教材分析、学情分析、教法分析、学法分析和教学过程等方面的综合考虑,制定了具有可行性和针对性的教学目标和教学方案。
在教学实践中,要注重学生的参与和互动,引导学生积极思考,提高学生的自主研究能力和创新思维能力。
同时,要注重教学反思,及时总结教学效果,不断改进教学方法,提高教学质量。
通过对一元一次方程和一元一次不等式的比较,引导学生发现它们的相似之处和不同之处,特别是在解题的过程中,要注意不等号方向的改变问题。
通过类比推理,让学生理解解不等式的一般步骤,并能够用数轴表示解集。
同时,加强“去分母”和“化系数为1”这两个步骤的训练,帮助学生更好地解决不等式问题。
一元一次不等式组教学设计一元一次不等式组教学设计(通用10篇)教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
下面是店铺收集整理的一元一次不等式组教学设计,希望大家喜欢。
一元一次不等式组教学设计篇1一、学习目标:1、了解一元一次不等式组的概念,理解一元一次不等式组的解集的意义,掌握求一元一次不等式组的解集的常规方法;2、经历知识的拓展过程,感受学习一元一次不等式组的必要性;3、逐步熟悉数形结合的思想方法,感受类比与化归的思想。
二、学习难点:1、重点:一元一次不等式组的解集和解法。
2、难点:一元一次不等式组解集的理解。
三、学习过程:问题情境:现有两根木条a和b,a长10 cm,b长3 cm。
如果再找一根木条。
,用这三根木条钉成一个三角形木框,那么对木条的长度有什么要求?如果设木条长x cm,那么x仅有小于两边之和还不够,仅有大于两边之差也不行,必须同时满足x10+3和x10—3。
类似于方程组引出一元一次不等式组的概念和记法。
探究新知:解下列不等式组解:解不等式(1),得x1,解不等式(2),得x—4。
在同一条数轴上表示不等式(1)、(2)的解集如图:所以,原不等式组的解是x1巩固新知:P140,1,P141,1归纳总结:不等式解集取值法则同大取大,同小取小,大小取中,矛盾无解。
若ab:①当时,•则不等式的公共解集为;②当时,不等式的公共解集为;③当时,不等式的公共解集为;④当时,不等式组。
作业:1、P141,22、解不等式组:(1);(2)(3);(4)3、若不等式组无解,求m的取值范围。
4、解不等式组,并将解集在数轴上表示出来。
5、解不等式组:(1);(2)6、解不等式:(1);(2)7、若关于x的不等式组的解集是,则下列结论正确的是()A、B、C、D、8、若方程组的解是负数,则的取值范围是()A、B、C、D、无解9、若,则x为()A、B、C、或 D、10、已知方程组的解为负数,求m的取值范围。
一、教学目标:1. 让学生理解一元一次不等式的概念及意义。
2. 培养学生掌握一元一次不等式的解法。
3. 提高学生解决实际问题能力,培养学生的逻辑思维能力。
二、教学内容:1. 一元一次不等式的定义及例题解析。
2. 一元一次不等式的解法及步骤。
3. 一元一次不等式在实际问题中的应用。
三、教学重点与难点:1. 教学重点:一元一次不等式的定义,解法及应用。
2. 教学难点:一元一次不等式的解法,尤其是不等式的基本性质。
四、教学方法:1. 采用问题驱动法,引导学生主动探究一元一次不等式的解法。
2. 用实例分析法,让学生了解一元一次不等式在实际问题中的应用。
3. 利用小组合作学习,培养学生的团队协作能力。
五、教学过程:1. 引入新课:通过生活实例,引导学生认识一元一次不等式。
2. 讲解概念:讲解一元一次不等式的定义,让学生理解其意义。
3. 例题解析:分析典型例题,让学生掌握一元一次不等式的解法。
4. 练习巩固:布置练习题,让学生自主完成,巩固所学知识。
5. 实际应用:讲解一元一次不等式在实际问题中的应用,提高学生解决问题的能力。
6. 课堂小结:总结本节课所学内容,强调重点知识。
7. 作业布置:布置课后作业,巩固所学知识。
六、教学评价:1. 采用课堂问答、练习题和小组讨论等方式,及时了解学生对一元一次不等式的理解和掌握情况。
2. 关注学生在解决问题时的思维过程和方法,鼓励学生创新和发散思维。
3. 结合课后作业和测验,全面评估学生对一元一次不等式的掌握程度。
七、教学资源:1. 教案、PPT等教学资料。
2. 练习题和测试题。
3. 教学视频或课件,用于辅助讲解和演示。
八、教学进度安排:1. 课时安排:本节课计划用2课时完成。
2. 教学环节时间分配:引入新课(10分钟),讲解概念(15分钟),例题解析(20分钟),练习巩固(15分钟),实际应用(10分钟),课堂小结(5分钟),作业布置(5分钟)。
九、教学反馈与调整:1. 课后收集学生作业,分析学生掌握情况,对存在的问题进行针对性的讲解和辅导。
一元一次不等式(一)教案教学目标:1. 理解一元一次不等式的概念和性质。
2. 学会解一元一次不等式。
3. 能够应用一元一次不等式解决实际问题。
教学重点:1. 一元一次不等式的概念和性质。
2. 解一元一次不等式的方法。
教学难点:1. 一元一次不等式的概念和性质的理解。
2. 解一元一次不等式的方法的掌握。
教学准备:1. 教师准备PPT或者黑板,用于展示一元一次不等式的例子和解法。
2. 教师准备一些练习题,用于巩固学生的学习。
教学过程:一、导入(5分钟)1. 引入一元一次不等式的概念,通过比较大小的方式让学生理解不等式的含义。
2. 给出一些实际问题,让学生尝试用不等式来表示问题。
二、讲解一元一次不等式的概念和性质(15分钟)1. 讲解一元一次不等式的定义,让学生明白一元一次不等式的组成和特点。
2. 讲解一元一次不等式的性质,让学生理解不等式的大小关系和运算规则。
三、解一元一次不等式的方法(15分钟)1. 讲解解一元一次不等式的方法,让学生明白解不等式的步骤和规则。
2. 通过示例演示解一元一次不等式的过程,让学生跟随步骤进行解题。
四、练习解一元一次不等式(10分钟)1. 让学生独立解一些简单的一元一次不等式,教师进行指导和纠正。
2. 让学生解一些复杂的一元一次不等式,教师进行讲解和分析。
五、总结和巩固(5分钟)1. 对本节课的内容进行总结,让学生回顾和巩固所学的知识。
2. 给出一些巩固练习题,让学生进行练习和复习。
教学反思:通过本节课的教学,学生应该能够理解一元一次不等式的概念和性质,学会解一元一次不等式,并能够应用一元一次不等式解决实际问题。
教师在教学过程中要注意引导学生理解和掌握一元一次不等式的概念和性质,通过示例和练习让学生熟练掌握解一元一次不等式的方法。
教师还要关注学生的学习情况,及时进行指导和纠正,确保学生能够顺利掌握一元一次不等式的解法。
六、应用一元一次不等式解决实际问题(10分钟)1. 通过一些实际问题,让学生用一元一次不等式来表示问题。
一元一次不等式(一)教案一、教学目标:1. 让学生理解一元一次不等式的概念,掌握一元一次不等式的解法。
2. 培养学生运用不等式解决问题的能力。
3. 引导学生通过自主学习、合作交流,提高数学素养。
二、教学内容:1. 一元一次不等式的定义及例题解析。
2. 一元一次不等式的解法及步骤。
3. 解不等式组的方法。
三、教学重点与难点:1. 重点:一元一次不等式的定义,解法及应用。
2. 难点:不等式组的解法及应用。
四、教学方法:1. 采用自主学习、合作交流的教学方法,让学生在探究中掌握知识。
2. 利用多媒体课件,直观展示一元一次不等式的解法。
3. 设计具有梯度的练习题,巩固所学知识。
五、教学过程:1. 导入新课:通过复习相关知识,引导学生回顾已学过的一元一次方程,为新课的学习做好铺垫。
2. 自主学习:让学生自主探究一元一次不等式的定义,并列出几个例子进行分析。
3. 课堂讲解:讲解一元一次不等式的解法,引导学生掌握解题步骤。
4. 合作交流:学生分组讨论,互相解释不等式解法,分享解题心得。
5. 练习巩固:设计一些练习题,让学生独立解答,检验学习效果。
6. 课堂小结:对本节课的主要内容进行总结,强调重点知识点。
7. 课后作业:布置一些有关一元一次不等式的练习题,让学生课后巩固。
8. 教学反思:在课后对教学过程进行反思,总结成功与不足之处,为下一步教学做好准备。
六、教学评价:1. 通过课堂表现、练习解答和课后作业,评价学生对一元一次不等式的掌握程度。
2. 关注学生在解题过程中的思维过程,培养学生的逻辑思维能力。
3. 鼓励学生积极参与课堂讨论,提高学生的合作能力。
七、教学资源:1. 教材:一元一次不等式相关章节。
2. 多媒体课件:用于展示和解题演示。
3. 练习题:涵盖不同难度的题目,用于巩固所学知识。
4. 小组讨论工具:如白板、便签纸等。
八、教学进度安排:1. 第1-2课时:介绍一元一次不等式的定义和基本性质。
2. 第3-4课时:教授一元一次不等式的解法和应用。
一元一次不等式组的数学教案一、教学目标1. 让学生理解一元一次不等式组的含义和特点。
2. 学会解一元一次不等式组的方法。
3. 能够应用一元一次不等式组解决实际问题。
二、教学内容1. 一元一次不等式组的定义2. 解一元一次不等式组的方法3. 一元一次不等式组的应用三、教学重点与难点1. 重点:一元一次不等式组的解法及应用。
2. 难点:解含多个不等式的复杂不等式组。
四、教学方法1. 采用问题驱动法,引导学生主动探究一元一次不等式组的解法。
2. 通过案例分析,让学生学会将实际问题转化为不等式组问题。
3. 利用数形结合法,帮助学生直观地理解不等式组的解集。
五、教学过程1. 导入:回顾一元一次方程的解法,引导学生思考如何解决不等式问题。
2. 新课导入:介绍一元一次不等式组的定义和特点。
3. 案例分析:给出具体的不等式组案例,引导学生运用解法求解。
4. 方法讲解:讲解解一元一次不等式组的方法,如“同大取大、同小取小、大小小大中间找、大大小小无解了”等。
5. 练习巩固:让学生独立解决一些简单的不等式组问题,加深对解法的理解。
6. 拓展提高:引入含有多个不等式的复杂不等式组,引导学生运用解法求解。
8. 课后作业:布置一些有关一元一次不等式组的练习题,巩固所学知识。
9. 教学反思:根据学生的反馈,调整教学方法和解题策略,提高教学效果。
10. 教学评价:通过课堂表现、作业完成情况和课后反馈,评价学生对一元一次不等式组的掌握程度。
六、教学案例分析1. 案例一:小明有2个苹果,小华有3个苹果,请问谁有更多的苹果?解:根据题意,可以列出不等式组:\[\begin{cases}2 <3 \\\end{cases}\]解得:小明没有小华有更多的苹果。
2. 案例二:某商品打8折后的价格不超过120元,原价是多少?解:设商品原价为x元,根据题意,可以列出不等式组:\[\begin{cases}0.8x \leq 120 \\\end{cases}\]解得:商品原价不超过150元。
一元一次不等式组教案一、教学目标1.掌握一元一次不等式组的概念和解法。
2.能够熟练地列出一元一次不等式组。
3.能够找到一元一次不等式组的解集。
4.能够通过实际问题应用一元一次不等式组的解法。
二、教学重点和难点1.重点:一元一次不等式组的列式和解法。
2.难点:实际问题应用一元一次不等式组的解法。
三、教学准备1.教师准备:课件、教学演示示例、黑板或白板、彩色粉笔或马克笔,教学素材。
2.学生准备:课本、笔记工具。
四、教学流程第一步:引入通过一个简单的实际问题引入不等式组的概念,例如:小明有2块钱,买1个苹果和2个橙子需要3块钱,求小明能买多少个苹果和多少个橙子。
第二步:概念讲解1.介绍一元一次不等式组的概念,即由一个或多个一元一次不等式组成的方程组。
2.解释不等式组的解的含义,即满足所有不等式的变量取值的集合。
第三步:列式和解法1.通过具体的例子,教授如何列式一元一次不等式组。
–例如:解决小明购买水果的问题。
–假设苹果的价格为x元,橙子的价格为y元。
–得出苹果和橙子的价钱总和:x + 2y = 3。
–小明只有2块钱,所以x + 2y ≤ 2。
–通过列式,得到一元一次不等式组:x + 2y = 3,x + 2y ≤ 2。
2.进一步讲解解法:–针对每个不等式,找出变量范围,画出直线或曲线表示解集。
–通过求解交集,确定所有不等式的解集。
第四步:例题练习1.出示一些简单的一元一次不等式组例题,让学生独立尝试解答。
2.点评学生答案,解析解决问题的方法和步骤,指导学生找出解集。
第五步:应用实际问题1.给出一些实际问题,例如:购买水果、解开锁的密码等。
2.让学生分组讨论解决方法,并在黑板上展示他们的解法。
3.每组选代表上台解释他们的解法,并与其他组进行讨论和比较。
第六步:总结和拓展1.归纳一元一次不等式组的概念和解法。
2.提出类似的问题,拓展学生的思维。
五、课堂小结通过本节课的学习,我们学会了一元一次不等式组的列式和解法,并通过实际问题的应用加深了对一元一次不等式组的理解和掌握。
一元一次不等式组教案6篇(实用版)编制人:__审核人:__审批人:__编制单位:__编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!一元一次不等式组教案6篇通过教案的内容是可以看出教师的教学能力的,教案是教师与学生和家长进行有效的沟通和交流,共同关注学生的学习进展,本店铺今天就为您带来了一元一次不等式组教案6篇,相信一定会对你有所帮助。
第九章 不等式与不等式组主备人:何山丹一元一次不等式及解法一.课程目标、重点与难点:1.课程目标:(1)知识与技能:了解一元一次不等式概念;解一元一次不等式并用数轴表示出来。
(2)过程与方法:通过对比一元一次方程及解法去体会学习,发展学生的思维水平。
(3)情感态度与价值观:通过对这节课的学习培养类比思想和认真态度,培养良好的学习习惯。
2.教学重难点:(1)重点:一元一次不等式概念;解一元一次不等式并用数轴表示。
(2)难点;一元一次不等式的解法;一元一次不等式的列法。
3.教学用具:多媒体。
4.教学方法:启发引导,自主合作,探究创新。
二.教研纪实:(一板)1.多元导入:(1)不等式性质:不等式的性质1:如果a>b ,那么a ±c>b ±c;不等式的性质2:如果a>b ,并且c>0,那么ac>bc (c a >cb )。
不等式的性质3 如果a>b ,并且c<0,那么ac<bc (c a <c b )。
不等式的性质4:若a<b ,b<c ,则a<c.这个性质也叫做不等式的传递性。
(2)一元一次方程:一个未知数;含有未知数项的次数是1;等式俩边是整式(分式和整数式);(3)一元一次方程解法: 例:-32(2-x)=-1 (乘以-3) 解:去分母得2(2-x )=3去括号得4-2x=3移项得-2x=3-4合并同类项得-2x=-1 (乘以-21)系数化1得x=21即把方程化成x=a 得形式2.新课探究、自学指导:多媒体展示:(1) x=4 ; (2) x>4 ;(3)3x=30; (4)3x>30(5)+12=+1; (6)+12<+1 ;(7)-32(2-x)=-1 (8)-32(2-x)>-1观察:启发学生找异同点,从而引出一元一次不等式的概念(自主得出概念)即: 一元一次不等式:一个未知数未知数次数为1不等式俩边是整式。
一元一次不等式的解法教案设计一、教学目标:1. 让学生掌握一元一次不等式的概念及解法。
2. 培养学生运用不等式解决实际问题的能力。
3. 引导学生理解不等式解集的意义。
二、教学内容:1. 一元一次不等式的定义及表示方法。
2. 一元一次不等式的解法及步骤。
3. 不等式解集的表示方法。
4. 实际问题中的一元一次不等式应用。
三、教学重点与难点:1. 重点:一元一次不等式的解法及应用。
2. 难点:不等式解集的表示方法。
四、教学方法:1. 采用问题驱动法,引导学生探究一元一次不等式的解法。
2. 利用实例分析,让学生掌握不等式在实际问题中的应用。
3. 采用小组讨论法,培养学生合作解决问题的能力。
4. 利用多媒体辅助教学,提高教学效果。
五、教学过程:1. 导入新课:介绍一元一次不等式的定义及表示方法。
2. 探究解法:引导学生探究一元一次不等式的解法及步骤。
3. 实例分析:分析实际问题中的一元一次不等式应用。
4. 小组讨论:让学生分组讨论不等式解集的表示方法。
5. 总结提升:总结一元一次不等式的解法及应用。
6. 课后作业:布置相关练习题,巩固所学知识。
教学评价:通过课后作业的完成情况、课堂表现及小组讨论的参与度来评价学生的学习效果。
六、教学案例与分析1. 案例引入:presented a real-life problem that can be solved using one-variable linear inequality.2. 分析步骤:walked through the steps to solve the inequality and find the solution set.3. 案例讨论:students participated in a class discussion to explore different methods for solving one-variable linear inequalities and the importance of understanding the solution set.七、练习与巩固1. 练习题设计:designed exercises that allowed students to practice solving one-variable linear inequalities, including word problems that required students to translate English sentences into mathematical expressions.2. 练习题解答:students worked independently on the exercises, and then discussed their solutions with a partner before sharing with the class.3. 巩固知识:reviewed the key concepts and solved any monmisconceptions that students may have had during the exercises.八、拓展与应用1. 拓展内容:introduced more plex one-variable linear inequalities, such as those with absolute value or inequalities involving multiple variables.2. 应用实例:demonstrated how one-variable linear inequalities can be used to solve real-world problems, such as determining the range of possible values for a variable in a given situation.3. 学生自主探究:students were given the opportunity to explore more plex inequalities on their own and apply their knowledge to solve problems related to their interests.九、课堂小结1. 回顾课程内容:reviewed the mn topics covered in the lesson, including the definition of one-variable linear inequality, its solution method, and the interpretation of the solution set.2. 强调重点:emphasized the importance of understanding the solution set and being able to solve real-world problems using one-variable linear inequalities.3. 布置作业:assigned homework that allowed students to practice and reinforce their understanding of one-variable linear inequalities.十、教学反思1. 教学效果:reflected on the effectiveness of the lesson in helping students understand the concepts of one-variable linear inequality andits solution method.2. 学生反馈:considered feedback from students to assess whether the lesson was able to meet their learning needs and if they were able to grasp the key concepts.3. 改进措施:planned improvements for future lessons, such as providing more examples, using different teaching methods, or adjusting the pace of the lesson to better cater to the diverse learning styles of students.十一、多元一次不等式的解法1. 教学目标:让学生掌握多元一次不等式的概念及解法。
一元一次不等式组教案一、教学目标:1. 让学生理解一元一次不等式组的含义和特点。
2. 培养学生掌握解一元一次不等式组的方法和技巧。
3. 提高学生解决实际问题的能力,培养学生的逻辑思维能力。
二、教学内容:1. 一元一次不等式组的定义和特点。
2. 解一元一次不等式组的方法和步骤。
3. 实际问题中的一元一次不等式组的应用。
三、教学重点与难点:1. 教学重点:一元一次不等式组的解法及实际应用。
2. 教学难点:不等式组解法的灵活运用,解决实际问题。
四、教学方法:1. 采用问题驱动法,引导学生主动探究一元一次不等式组的解法。
2. 利用案例分析法,让学生通过实际问题理解一元一次不等式组的应用。
3. 运用讨论法,鼓励学生相互交流、合作解决问题。
五、教学过程:1. 导入新课:通过生活实例引入一元一次不等式组的概念。
2. 讲解概念:讲解一元一次不等式组的定义和特点。
3. 演示解法:利用数轴或表格展示解一元一次不等式组的方法和步骤。
4. 练习巩固:布置一些简单的练习题,让学生巩固所学知识。
5. 案例分析:分析一些实际问题,让学生运用一元一次不等式组解决问题。
7. 作业布置:布置一些课后练习题,巩固所学知识。
8. 课后反思:教师反思教学效果,针对学生的掌握情况调整教学策略。
六、教学评价:1. 采用课堂练习、课后作业和小组讨论等方式评价学生对一元一次不等式组的掌握程度。
2. 关注学生在解决问题时的思维过程和方法,鼓励创新和合作。
3. 定期检查学生的学习进度,及时发现和解决问题。
七、教学拓展:1. 引导学生思考:如何将一元一次不等式组应用于实际生活中?2. 介绍一元一次不等式组在其他数学领域的应用。
3. 鼓励学生参加数学竞赛或研究项目,提高解决问题的能力。
八、教学资源:1. PPT课件:展示一元一次不等式组的定义、解法和实际应用。
2. 练习题库:提供丰富的练习题,满足不同层次学生的需求。
3. 案例分析资料:结合实际问题,帮助学生理解一元一次不等式组的应用。
9.2 一元一次不等式导学案
第1课时 一元一次不等式的解法
1.理解一元一次不等式的概念;(重点)
2.掌握一元一次不等式的解法.(重点、难点)
一、复习回顾
1.什么叫不等式?
2.不等式的解及解集?
3.不等式的性质?
二、情境导入
问题:圣诞节到了,小明去买贺卡花了x 元,买邮票花了3元,他总共花了8元, 请问(1)小明买贺卡花了多少元?
(2)如果小明总共花的钱不足8元呢?根据题意你能列出一个式子吗?
三、新知探究
探究一:自学课本P122内容 ,并解决以下问题:
1.找出一元一次不等式的定义.
2.把你认为重要的词加上着重符号.
3.定义中有几个要点?
想一想:1、下列各式中哪些是一元一次不等式? ①4<5 ② ③ X+3y>10
④ ⑤X<5X+3 ⑥ X<5
2、若31-m x +2<4是一元一次不等式,则m 的值为______.
探究二:自学课本P122至P123内容 ,并解决以下问题:
1.解一元一次不等式有几个步骤,分别是?
2.哪些步骤运用了不等式的性质?
3.哪些步骤最容易出错?为什么?
4.解题格式上有哪些需要注意?
5.解一元一次不等式与解一元一次方程有什么异同?
四、实践应用
看谁做得又快又对!
1.解下列不等式,并在数轴上表示解集.
(1) ; (2) ; (3) 681
<+X 1232>+x x 223127+<-+x x 35421-<-x x m m 3
465 2541-<--
拓展应用
1、已知不等式x +8>4x +m (m 是常数)的解集是x <3,求m 的值.
2.已知关于x ,y 的方程组 的解满足x >y ,求p 的取值范围. 五:课堂小结 通过本节课的学习,你学到了什么?
六:作业布置:
习题9.2:第1,2,3题
⎩⎨
⎧-=++=+1
34,123p y x p y x。