初识双馈变流器共41页
- 格式:ppt
- 大小:4.18 MB
- 文档页数:41
浅谈双馈异步发电机变流器工作原理与故障处理发表时间:2020-10-12T08:24:16.404Z 来源:《中国电业》(发电)》2020年第14期作者:宋汉胜[导读] 双馈异步发电机变流器,是通过调节转子绕组励磁电流的频率、幅值、相位和相序来实现变速恒频控制的。
分析双馈电机运行原理和励磁控制方法的基础上,对变速恒频控制、恒压控制、并网控制以及亚同步速、同步速和超同步速三种不同运行状态之间的动态转换控制技术,进行了试验研究,为兆瓦级变速恒频双馈风力发电机励磁控制系统的设计奠定了基础。
宋汉胜国华(河北)新能源有限公司河北张家口 075000摘要:双馈异步发电机变流器,是通过调节转子绕组励磁电流的频率、幅值、相位和相序来实现变速恒频控制的。
分析双馈电机运行原理和励磁控制方法的基础上,对变速恒频控制、恒压控制、并网控制以及亚同步速、同步速和超同步速三种不同运行状态之间的动态转换控制技术,进行了试验研究,为兆瓦级变速恒频双馈风力发电机励磁控制系统的设计奠定了基础。
关键词:风力发电;变流器;IGBT;变流器故障引言双馈风力发电系统变速恒频变流器的核心技术是基于电力电子和计算机控制的交流励磁控制技术。
本文在华锐SL1500机组的基础上,讲述双馈异步发电系统变流器的工作原理和常见故障处理。
一、变频器基础知识变频器本质上是一种通过频率变换方式来进行转矩(速度)和磁场变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。
我们现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。
1变频器的基本结构1.1变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。
1.2变频器分为控制电路、整流电路、直流电路、逆变电路。
控制电路:完成对主电路的控制整流电路:将交流电变换成直流电直流中间电路:对整流电路的输出进行平滑滤波逆变电路:将直流电再逆变成交流电2电力电子器件定义电力电子器件又称为功率半导体器件,用于电能变换和电能控制电路中的大功率电子器件(通常指电流为数十至数千安,电压为数百伏以上),又称功率电子器件。
双馈变流器工作原理双馈变流器(Double-Fed Induction Generator,DFIG)是一种常用于风力发电系统中的变流器,它的工作原理是利用电力电子技术将风能转化为电能,并将其送入电网中供应给用户使用。
双馈变流器相比其他变流器具有更高的效率和更好的控制性能,因此在风力发电领域得到了广泛应用。
双馈变流器由两部分组成:一部分是风力发电机组,另一部分是变流器。
风力发电机组通常由风轮、发电机和装有电磁铁的转子组成。
当风轮受到风力作用时,会转动,带动发电机产生电能。
而转子上的电磁铁则可以通过改变其磁场强度来调节发电机的输出电压和频率。
在传统的风力发电系统中,发电机的输出直接通过变频器转换为交流电并输入电网。
然而,这种方式存在一些问题,比如变频器的容量较大,成本较高,同时对系统的稳定性和可靠性要求较高。
为了解决这些问题,双馈变流器应运而生。
双馈变流器的工作原理是将发电机的转子绕组分成两部分:一部分连接到固定的电网,另一部分通过变流器连接到电网。
这样,发电机的输出电流可以分成两部分:一部分通过固定的电网回馈给发电机,另一部分通过变流器送入电网。
这种方式可以减小变流器的容量,降低成本,同时提高系统的稳定性和可靠性。
具体来说,双馈变流器通过改变发电机转子上电磁铁的磁场强度来调节发电机的输出电压和频率。
当风轮转动时,发电机产生的电能通过变流器送入电网。
同时,电网也会向发电机输送电能。
双馈变流器通过控制变流器的电压和频率,可以实现对发电机的有源功率和无功功率的控制。
双馈变流器的优势主要体现在以下几个方面:1. 较低的成本:相比传统的风力发电系统,双馈变流器的容量较小,可以降低系统的成本。
2. 更好的控制性能:双馈变流器可以实现对发电机有源功率和无功功率的精确控制,可以根据电网需求灵活调节输出功率。
3. 提高系统的稳定性和可靠性:双馈变流器通过将一部分发电机的输出电流回馈给发电机,可以增强系统的稳定性和可靠性。
双馈异步风力发电机机组变流器基本运行原理一、引言近年来,随着环保意识的提高和可再生能源的重要性日益凸显,风力发电作为一种清洁、可再生的能源形式,受到了广泛的关注和推广。
而风力发电机组作为风力发电系统的核心部件,其稳定性和效率对整个系统的运行影响重大。
双馈异步风力发电机机组变流器作为风力发电机组的关键部件之一,其基本运行原理对整个系统的性能具有重要影响,因此有必要对其进行全面了解和分析。
二、双馈异步风力发电机机组概述双馈异步风力发电机机组是一种常见的风力发电机组类型,其主要由风轮、叶片、主轴、发电机、变流器等组成。
风轮转动驱动主轴旋转,主轴通过传动系统带动发电机工作,发电机将机械能转化为电能输出给电网。
其中变流器起着将发电机输出的交流电转换为直流电,通过逆变器将直流电再转换为交流电,并使得风力发电机组能够与电网实现同步运行的重要作用。
三、双馈异步风力发电机机组变流器基本结构双馈异步风力发电机机组变流器主要由变流器电路、控制系统和通信系统等组成。
其中变流器电路包括整流部分和逆变部分,控制系统负责对变流器进行控制和监测,通信系统用于与上层监控系统进行数据交互。
双馈异步风力发电机机组变流器通常采用IGBT(绝缘栅双极型晶体管)等功率器件,以实现对电流和电压的精确控制。
四、双馈异步风力发电机机组变流器工作原理1.变流器整流部分:发电机输出的交流电首先被变流器整流部分进行整流,将交流电转换为直流电。
这个过程包括整流桥、滤波电路等部分,其主要目的是将交流电转换为基本平稳的直流电,以便后续逆变器的工作。
2.变流器逆变部分:经过整流的直流电被逆变器逆变部分转换为交流电,通过逆变器的PWM控制,将直流电转化为符合电网要求的交流电,并具有同步电网的频率和相位。
逆变部分通过对功率器件的开关控制,将直流电转换为交流电输出到电网。
3.控制系统:变流器的控制系统通过对PWM控制信号的生成和对功率器件的开关控制,实现对变流器的电流和电压的精确控制,使得风力发电机组与电网实现有效的功率传递和稳定的运行。
浅析双馈型风力发电变流器及其控制发表时间:2016-12-08T15:20:54.363Z 来源:《电力设备》2016年第19期作者:刘洋[导读] 双馈型风力发电变流器是我国社会中常用的一种电力发电应用设备。
(国家电力投资集团公司;宁夏青铜峡能源铝业集团公司;中卫新能源有限公司三级)摘要:双馈型风力发电变流器是我国社会中常用的一种电力发电应用设备,这种发电变流器在我国电力供应市场中的应用,可以大大降低风力发电的工作效率,降低风力发电的运行成本,实现我国风力发电技术的进一步开发与应用,提高电力应用的发展水平,本文对双馈型风力发电变流器的关键技术和实际应用进行技术分析探究,达到对双馈型风力发电变流器的研究与控制,推荐我国新能源的开发与应用。
关键词:双馈型;风力发电变流器;发电变流器控制引言:社会主义经济发展结构的逐步完善,为社会主义社会各个层面的经济变革发展提供了发展新空间,风力发电代替传统煤炭发电,成为现代社会电力资源供用发展的重要组成、双馈型风力发电变流器在我国风力发电企业中的应用广泛程度得到进一步优化,双馈型风力发电变流器采用循环变流器和直交变流器的同步应用,是双馈型风力发电变流器在工作中,有用功的比重提高,风力发电中电流转换水平和转换渠道更加灵活,风力发电系统的运行成本降低,为推进我国社会经济发展动力的逐步完善提供发展新动力。
一、双馈型风力发电变流器及其控制技术的分析(一)双馈型风力发电变流器关键技术分析双馈型风力发电变流器在现代风力发电中的应用范围得到广泛应用,是我国社会电力资源供应的重要组成部分,双馈型风力发电变流器的关键技术主要分为交直流变流器,循环供应变流器以及矩形供应变流器三种类型,本文结合双馈型风力发电变流器在实际应用中的三种类型,对双馈型风力发电变流器的变流关键技术进行分析。
1.交直流变流器双馈型风力发电变流器的交直变流器通过外部电流传输,将风力资源转换为电力运行中电流运输结构和运输质量的综合性应用,达到应用变流器储存电感或电容,实现风力资源转化为电力资源,当电流传输中电力资源供应与电力系统的供应中出现电力资源应用和分析,交直流变流器对电力输送系统进行系统保护,电流传输的安全性和电力资源控制管理在实际应用作用增强。
讨论一下双馈变流器与全功率变流器的技术难度那个更大一些?看了最近的广发证券海得控制的调研报告。
里面有一段是这样描述的。
于是产生这样的疑问,希望行内人士多发表自己的看法。
“对于双馈变流器来说,风速比较大的时候,30%能量由电机流向电网。
当风速比较小的时候,30%的能量由电网流向电机,所以从控制的角度来看,由于双馈变流器需要一端控制电网,另外一端控制电机,所以双馈变流器比全功率变流器设计更加复杂,控制更难。
所以说,一家公司如果已经拥有双馈变流器技术,那么他再开发全功率变流器就非常容易,反之则不是。
”另外,据我个人了解,目前国内进行风电变流器开发的单位也以全功率型居多,特别是新进入的企业,如荣信、江苏大全、上海科祺、江苏南自通华等。
阳光电源好像也是全功率型的销售情况比较好。
是不是从这方面可以推断双馈型变流器控制难度是不是要比全功率型的要大?为什么新进入的好多企业以全功率型作为突破口呢?是不是因为大家都看好直驱是未来风电机组的发展趋势?海得控制和深圳禾望做双馈型变流器比较成功,但其核心技术好像都是来自艾默生。
国内有单独研究双馈变流器且应用比较成功的厂家吗?不论是双馈变流器还是全功率变流器,所用功率器件几乎都是进口。
难点之一就是结构布局。
最大的难点在于软件设计和控制算法。
结构布局相对容易抄袭,而软件设计和控制算法抄袭难度很大。
全功率,基本上也就是用功率模块堆起来的,也可以说是用双馈的模块堆积起来的,你说哪个难度大?模块并联当然有一定的难度,但这方面的难度让功率器件厂商给解决了一部分,因为功率器件厂商可以提供模组。
国内的厂家也容易学习参考,因为这东西看得见,摸得着。
控制算法基本要靠猜测+验证了。
我觉得国内开发变流器的难点还是在控制算法这块。
这块花费的时间要长双馈和全功率变流器有许多相同的地方,也有许多不同的地方,情况如下:1、都采用了PWM背靠背方案,两者拓扑、主要器件及配置方案基本相同,可以理解将双馈变流器的的接线由转子改到定子即可2、控制策略方面,网侧和电机侧的策略基本相同,网侧控制电压恒定和1功率因素,机侧控制发电机力矩3、不太相同的是并网策略和低电压穿越策略。
双馈型风力发电变流器及其控制随着环保意识的日益增强和可再生能源的广泛应用,风力发电技术得到了快速发展。
双馈型风力发电变流器作为风力发电系统中的关键设备之一,在提高风能利用率和电能质量方面具有重要作用。
本文将介绍双馈型风力发电变流器的工作原理、特点优势及其控制方式。
双馈型风力发电变流器是一种交直流变换设备,可将风力发电机发出的交流电转换为直流电,再供给电力系统使用。
其工作原理是采用双馈(交流和直流)线路,通过电力电子器件(如IGBT、SGCT等)的开关动作,控制交流和直流电流的双向流动,实现能量的交直流转换。
高效性:双馈型风力发电变流器具有较高的能量转换效率,可实现风能的最大化利用。
灵活性:双馈型风力发电变流器可通过控制开关器件的占空比,调节输出电流的幅值、频率和相位,满足不同风速和负荷条件下的运行需求。
稳定性:双馈型风力发电变流器可有效平抑风速波动带来的影响,提高电力系统的稳定性。
维护性:双馈型风力发电变流器采用模块化设计,便于维护和检修,降低了运维成本。
矢量控制:通过控制交流侧电流的幅值和相位,实现有功功率和无功功率的解耦控制,提高电力系统的稳定性。
直接功率控制:采用瞬时功率采样,通过控制逆变侧电流的幅值和相位,直接控制有功功率和无功功率,具有快速的动态响应。
神经网络控制:利用神经网络技术,建立风力发电变流器数学模型,实现自适应控制和优化运行。
模糊控制:基于模糊逻辑理论,通过模糊控制器对变流器进行非线性控制,具有良好的鲁棒性和适应性。
双馈型风力发电变流器作为风力发电系统的关键设备之一,具有高效、灵活、稳定和维护简便等特点及优势。
其控制方式多种多样,包括矢量控制、直接功率控制、神经网络控制和模糊控制等,可根据实际应用场景选择合适的控制方式以实现最优运行。
随着风电技术的不断发展,双馈型风力发电变流器在未来将发挥更加重要的作用,为可再生能源的广泛应用和绿色能源转型提供强有力的支持。
随着环境保护和可持续发展的日益重视,风力发电作为一种清洁、可再生的能源,越来越受到人们的。
1、双馈型风力发电系统的运行原理双馈型风力发电系统结构图如图1所示,由风轮机、齿轮箱、变桨结构、偏航机构、双馈电机、变流器、变压器、电网等构成。
其工作过程为:当风吹动风轮机转动时,风轮机将其捕获的风能转化为机械能再通过齿轮箱传递到双馈电机,双馈电机将机械能转化为电能,再经变流器及变压器将其并入电网。
通过系统控制器及变流器对桨叶、双馈电机进行合理的控制使整个系统实现风能最大捕获,同时,通过对变桨机构、变流器及Crowbar 保护电路的控制来应对电力系统的各种故障。
双馈异步发电机的定子与转子两侧都可以馈送能量,由于转子侧是通过变频器接入的低频电流起到了励磁作用,因此又名交流励磁发电机。
双馈异步发电机主机结构特点是:定子与一般三相交流发电机定子一样,具有分布式绕组;转子不是采用同步发电机的直流集中绕组,而是采用三相分布式交流绕组,与三相绕线式异步机的转子结构相似。
正常工作时,定子绕组并入工频电网,转子绕组由一个频率、幅值、相位都可以调节的三相变频电源供电,转子励磁系统通常采用交-直-交变频电源供电。
图1、双馈风力发电系统结构图双馈异步发电机在稳态运行时,定子旋转磁场和转子旋转磁场在空间上保持相对静止,此时有如下数学关系表达式:12r n n n =±2160f n n f r p ±=1211r n n n s n n −==±式中,1n 、r n 、2n 分别为定子电流产生磁场的旋转速度、转子旋转速度和转子电流产生磁场相对于转子的旋转速度,1f 、2f 分别为定、转子电流频率,p n 为发电机极对数,ss n n n s −=为发电机的转差率。
由上式可知,当发电机转子转速r n 发生变化时,若调节转子电流频率2f 相应变化,可使1f 保持恒定不变,实现双馈异步发电机的变速恒频控制。
当r n <1n 时,电机处于亚同步速运行状态,转子旋转磁场相对于转子的旋转方向与转子旋转方向相同,变频器向转子提供交流励磁,定子向电网馈出电能;当r n >1n 时,电机处于超同步速运行状态,转子旋转磁场相对于转子的旋转方向与转子旋转方向相反,此时定、转子均向电网馈出电能;当r n =1n 时,2f =0,变频器向转子提供直流励磁,此时电机作为普通隐极式同步发电机运行。