风电变流器简介
- 格式:doc
- 大小:89.50 KB
- 文档页数:6
风电变流器简介快速浮点运算能力的“双DSP的全数字化控制器”;在发电机的转子压定向矢量控制策略;系统具有输入输出功率因数可调、自动软并网变流器采用三相电压型交-直-交双向变流器技术,核心控制采用具有防尘、防盐雾等运行要求。
变流器可根据海拔进行特殊设计,可以按客户定制实现低温、高温、和最大功率点跟踪控制功能。
功率模块采用高开关频率的IGBT功率QHVERT-DFIG型风电变流器基本原理器件,保证良好的输出波形。
这种整流逆变装置具有结构简单、谐波制,是目前双馈异步风力发电机组的一个代表方向。
变流器工作原理框图如下所示:统,实现了基于风机最大功率点跟踪的发电机有功和无功的解耦控能质量。
这种电压型交-直-交变流器的双馈异步发电机励磁控制系含量少等优点,可以明显地改善双馈异步发电机的运行状态和输出电变流器提供实时监控功能,用户可以实时监控风机变流器运行状态。
侧变流器实现定子磁场定向矢量控制策略,电网侧变流器实现电网电本文将针对市场上主流的双馈型风电变流器进行简介。
型风电变流器系统功能变流器通过对双馈异步风力发电机的转子进行励磁,使得双馈发电机关,目前已实现规模化的生产。
06年成功研制第一台风电变流器以来,不断寻求技术革新严把质量风能作为一种清洁的可再生能源,越来越受到世界各国的重视,我国变流器配电系统提供雷击、过流、过压、过温等保护功能。
的定子侧输出电压的幅值、频率和相位与电网相同,并且可根据需要风能资源丰富,近几年来国家政策也大力扶持风电产业。
我公司自求扩展),用户可通过这些接口方便的实现变流器与系统控制器及风进行有功和无功的独立解耦控制。
机和电网造成的不利影响。
变流器提供多种通信接口,如Profibus, CANopen等(可根据用户要场远程监控系统的集成控制。
变流器控制双馈异步风力发电机实现软并网,减小并网冲击电流对电转子侧逆变器、直流母线单元、电网侧整流器。
原理图如下:控制器、监控界面等部件。
变流器主回路系统包含如下几个基本单元:QHVERT-DFIG型风电变流器系统构成变流器由主电路系统、配电系统以及控制系统构成。
直驱风电变流器的工作原理一、直驱风电发电原理直驱风电系统是指由风轮机直接驱动发电机,不经过齿轮箱来提高转速的方案。
直驱发电机输出低速高扭矩的电能,而关闭通电断形成二极管电流,将正常工作的发电机驱动其转子。
由于转子是由稳态转速,可有效增大电磁磁场的产生。
本原理满足了直驱机的工作要求,可行性强,“零回馈”再次验证了直驱机传动的理论合理性。
二、直驱风电变流器的功能直驱风力发电系统旨在将风轮机产生的机械能转换为电能,并将其接入电网。
而直驱风电变流器则扮演了转换风轮机产生的交流电能为直流电能的角色,并且将其接入电网的关键角色。
直驱风电变流器的功能可以归纳为以下几个方面:1. 将风轮机产生的交流电能转换为直流电能2. 控制变流系统,使其在不同风速下工作可靠3. 与电网连接,将直流电能转换为电网所需的交流电能4. 监测和保护系统,确保变流器的正常运行和安全在接下来的部分,我们将分别详细介绍这些功能的工作原理和相关知识。
三、直驱风电变流器的工作原理1. 将风轮机产生的交流电能转换为直流电能风轮机产生的交流电能需要被转换为直流电能,这样才能被更高效地转换为电网所需的交流电能。
直驱风电变流器的核心部件之一就是整流器,它的作用是将交流电能转换为直流电能。
整流器由多个晶闸管或者二极管构成,通过适当的控制晶闸管的导通角度和时间,可以将风轮机产生的交流电能进行整流。
这样就可以得到稳定的直流电能,为后续的电能转换做好准备。
2. 控制变流系统,使其在不同风速下工作可靠直驱风电变流器需要根据风速的变化来调节输出的电能,以保证系统的稳定运行并获得最大的发电效率。
变流系统一般由PWM(Pulse Width Modulation)控制技术控制,通过控制开关管的导通时间和频率来调整输出电压和频率。
当风速较小时,需要较低的电压和频率来保证系统的正常运行;而当风速较大时,则需要较高的电压和频率来提高发电效率。
变流系统通过PWM技术可以精确控制输出电能,使其能够适应不同风速下的工作需求。
直驱风电变流器是将风机转子直接驱动发电机时所使用的电力转换设备。
它的主要作用是将由直流发电机输出的电能,通过转换成交流电,再通过升压、电网同步等控制处理,最终将可用风能输入到电网中。
以下是直驱风电变流器的工作原理及作用:
1. 工作原理:直流电源输入变流器,通过控制系统分别控制功率器件的开关状况,将输入的直流电源转换成交流电源输出给电网。
具体的转换方式通常有多种,其中一种常用的方式是采用三相桥式单元,将输入的直流电源通过H 桥模块转换成交流电源。
2. 直驱风机的工作方式:直驱风电变流器一般用于直驱风机的发电模式,即将风机的转子直接驱动发电机,消除了传统齿轮传动过程中的损失和振动,提高了风电发电的效率和稳定性。
3. 控制系统:直驱风电变流器的控制系统通常包括电源模块、驱动模块、信号调节模块和保护控制模块等。
控制系统需要精确地控制电压、电流和频率等参数,以保证变流器的稳定性和运行正常。
4. 作用:直驱风电变流器的作用是将风机出力的直流电转换成交流电,并连接到电网。
其中,升压、电网同步及逆变等控制处理是直驱风电变流器的核心所在。
具体地,升压处理将输出交流电压提高到适合电网连接的电压,电网同步处理保证输出电力与电网相同相位,逆变处理则是将输出交流电变成电网要求的正弦波形式。
需要注意的是,直驱风电变流器的设计和工作原理与其他类型的风电变流器有所区别。
在实际应用中,需要根据具体的风机特性和电网情况,选择合适的变流器类型及具体参数进行设计和调试,以保证其正常运行和高效输出适合电网的电能。
风力发电机变流器工作原理
风力发电机变流器的工作原理基于电力电子技术,其核心部件是绝缘栅双极型晶体管(IGBT)。
风力发电机产生的电能是交流电,其频率和电压都不稳定,无法直接输送到电网中。
因此,需要将其转换为直流电,再通过逆变器将其转换为稳定的交流电,才能输送到电网中。
这就是风电变流器的主要工作原理。
风电变流器的工作流程如下:首先,风力发电机产生的交流电经过变压器降压,然后通过整流桥将其转换为直流电。
接着,直流电经过滤波电容器进行滤波,去除掉直流电中的脉动成分,使其变得更加稳定。
然后,直流电经过逆变器,通过PWM(脉宽调制)技术将其转换为稳定的交流电,并将其输送到电网中。
以上信息仅供参考,如需了解更多信息,建议查阅相关书籍或咨询专业人士。
风电变流器工作原理
1风电变流器概述
风电变流器是将风力发电机产生的交流电信号转换为具有稳定电压、频率和波形的直流电信号输出,在实际风力发电系统中扮演着非常关键的角色。
2风电变流器的组成和工作原理
风电变流器通常由整流器、滤波器和逆变器三部分组成。
整流器将风力发电机产生的交流电转换为直流电,同时进行恒流限制,滤波器主要用来过滤掉直流电中的高谐波和噪声信号,以避免对电网的干扰。
逆变器将经过整流和滤波的直流电信号再次转换为交流电信号,使其具有符合电网要求的电压、频率和波形。
风电变流器的工作原理是:在风力发电机工作的过程中,交流电信号首先经过整流器,被转换为直流电。
经过滤波器过滤后的直流电信号进入逆变器,再次被转化为符合电网标准的交流电信号,最后被输送到电网中。
3风能发电的特点和应用
风能发电是一种非常环保、可持续的能源形式,具有资源分布广泛、环境污染少、成本低廉等优势。
在全球范围内,越来越多的国家开始大力发展风能发电产业,以应对不断增长的能源需求和环境保护的需求。
风能发电在实际应用中需要与电网进行协同,将产生的电能输送到电网中。
因此,风电变流器在风能发电领域中占据着非常关键的地位,其稳定、高效的转换能力,为风能发电的实现提供了可靠保障。
4风电变流器的发展趋势
随着科技的不断发展和创新,风电变流器的技术也在不断进步。
当前,风电变流器的主要发展趋势包括提高转换效率、减少噪声和谐波、增加可靠性和智能化等方面。
未来,风能发电将成为能源领域的一个重要组成部分,而风电变流器作为其核心装置,也将继续发挥其不可替代的作用,为全球能源领域发展做出贡献。
风电变流器简介
风能作为一种清洁得可再生能源,越来越受到世界各国得重视,我国风能资源丰富,近几年来国家政策也大力扶持风电产业。
我公司自06年成功研制第一台风电变流器以来,不断寻求技术革新严把质量关,目前已实现规模化得生产。
本文将针对市场上主流得双馈型风电变流器进行简介。
QHVERT-DFIG型风电变流器系统功能
变流器通过对双馈异步风力发电机得转子进行励磁,使得双馈发电机得定子侧输出电压得幅值、频率与相位与电网相同,并且可根据需要进行有功与无功得独立解耦控制。
变流器控制双馈异步风力发电机实现软并网,减小并网冲击电流对电机与电网造成得不利影响。
变流器提供多种通信接口,如Profibus, CANopen等(可根据用户要求扩展),用户可通过这些接口方便得实现变流器与系统控制器及风场远程监控系统得集成控制。
变流器配电系统提供雷击、过流、过压、过温等保护功能。
变流器提供实时监控功能,用户可以实时监控风机变流器运行状态。
变流器可根据海拔进行特殊设计,可以按客户定制实现低温、高温、防尘、防盐雾等运行要求。
QHVERT-DFIG型风电变流器基本原理
变流器采用三相电压型交-直-交双向变流器技术,核心控制采用具有快速浮点运算能力得“双DSP得全数字化控制器”;在发电机得转子侧
变流器实现定子磁场定向矢量控制策略,电网侧变流器实现电网电压定向矢量控制策略;系统具有输入输出功率因数可调、自动软并网与最大功率点跟踪控制功能。
功率模块采用高开关频率得IGBT功率器件,保证良好得输出波形。
这种整流逆变装置具有结构简单、谐波含量少等优点,可以明显地改善双馈异步发电机得运行状态与输出电能质量。
这种电压型交-直-交变流器得双馈异步发电机励磁控制系统,实现了基于风机最大功率点跟踪得发电机有功与无功得解耦控制,就是目前双馈异步风力发电机组得一个代表方向。
变流器工作原理框图如下所示:
QHVERT-DFIG型风电变流器系统构成
变流器由主电路系统、配电系统以及控制系统构成。
包括定子并网开关、整流模块、逆变模块、输入/输出滤波器、有源Crowbar电路、控制器、监控界面等部件。
变流器主回路系统包含如下几个基本单元:
转子侧逆变器、直流母线单元、电网侧整流器。
原理图如下:
配电系统由并网接触器、主断路器、继电器、变压器等组成,自身集成有并网控制系统,用户无须再配置并网柜,提高了系统集成度,节约了机舱空间,柜中还可提供现场调试得220V电源。
控制系统由高速数字信号处理器(DSP)、人机操作界面与可编程逻辑控制器(PLC)共同构成。
整个控制系统配备不间断电源(UPS),便于电压跌落时系统具有不间断运行能力。
上述各功能分配到控制柜、功率柜、并网柜中:
控制柜:控制柜主要对采集回得各种模拟数字信号进行分析,发出控制指令,控制变流器得运行状态
控制柜主要由主控箱、PLC、滤波器、电源模块等组成。
功率柜:主要负责转子滑差能量得传递。
功率柜主要由功率模块、有源Crowbar等构成。
并网柜:主要用于变流器与发电机系统与电网连接控制、一些控制信号得采集以及二次回路得配置。
并网柜主要由断路器、接触器、信号采集元件、UPS、加热器、信号接口部分等构成。
变流器控制结构框图如下:
QHVERT-DFIG型风电变流器技术特征
QHVERT-DFIG型风电变流器可以优化风力发电系统得运行,实现宽风速范围内得变速恒频发电,改善风机效率与传输链得工作状况,减少发电机损耗,提高运行效率,提升风能利用率。
QHVERT-DFIG型风电变流器具有以下一些特点:
²优异得控制性能
²完备得保护功能
²良好得电网适应能力
²具备高可靠性,适应高低温、高海拔等恶劣地区运行
²模块化设计,组合式结构,安装维护便捷
²丰富得备品备件;专业、快速得技术服务
QHVERT-DFIG型风电变流器最新动态
2009年3月至今,在河北建设投资公司与东方汽轮机有限公司得支持下,北京清能华福风电技术有限公司自主研发生产得1、5MW风电变流器在河北海兴风电场成功并网发电,通过240小时验收,目前已无故障连续运行8000多小时。
成功经历了夏季高温、冬季降雪后得低温、海边盐雾等运行环境得考验,事实证明了:清能华福变流器可以达到满功率发电与连续运行得要求,系统品质达到了风场应用得要求。
2009年12月28日经过2天得现场调试,北京清能华福风电技术有限公司自主研发得1、5MW风电变流器在国电联合动力技术有限公司及其现场调试所相关技术人员得支持下,已于哲里根图风场全部并网成功满发,截止目前运行状态稳定。
目前在赤峰、大安等风场正陆续进行变流器吊装施工。
附:北京清能华福风电技术有限公司简介
北京清能华福风电技术有限公司成立于2006年7月,由“国内高压变频器领域最具影响力得企业”——北京利德华福电气技术有限公司投资控股,就是专门从事开发、制造风电变流器与控制系统产品得高新技术企业。
公司坐落于中关村科技园,依托清华大学电力系统国家重点实验室得一流技术以及利德华福专业化、规模化、现代化得生产厂房,凭借雄
厚得资金、科研、市场、服务实力,为国家大力鼓励、扶持得风力发电事业,提供其拥有自主知识产权得核心装备——兆瓦级风力发电机变流器及其电控系统。