双馈式风力发电变流器资料
- 格式:ppt
- 大小:6.19 MB
- 文档页数:8
双馈异步风力发电机机组变流器基本运行原理一、引言近年来,随着环保意识的提高和可再生能源的重要性日益凸显,风力发电作为一种清洁、可再生的能源形式,受到了广泛的关注和推广。
而风力发电机组作为风力发电系统的核心部件,其稳定性和效率对整个系统的运行影响重大。
双馈异步风力发电机机组变流器作为风力发电机组的关键部件之一,其基本运行原理对整个系统的性能具有重要影响,因此有必要对其进行全面了解和分析。
二、双馈异步风力发电机机组概述双馈异步风力发电机机组是一种常见的风力发电机组类型,其主要由风轮、叶片、主轴、发电机、变流器等组成。
风轮转动驱动主轴旋转,主轴通过传动系统带动发电机工作,发电机将机械能转化为电能输出给电网。
其中变流器起着将发电机输出的交流电转换为直流电,通过逆变器将直流电再转换为交流电,并使得风力发电机组能够与电网实现同步运行的重要作用。
三、双馈异步风力发电机机组变流器基本结构双馈异步风力发电机机组变流器主要由变流器电路、控制系统和通信系统等组成。
其中变流器电路包括整流部分和逆变部分,控制系统负责对变流器进行控制和监测,通信系统用于与上层监控系统进行数据交互。
双馈异步风力发电机机组变流器通常采用IGBT(绝缘栅双极型晶体管)等功率器件,以实现对电流和电压的精确控制。
四、双馈异步风力发电机机组变流器工作原理1.变流器整流部分:发电机输出的交流电首先被变流器整流部分进行整流,将交流电转换为直流电。
这个过程包括整流桥、滤波电路等部分,其主要目的是将交流电转换为基本平稳的直流电,以便后续逆变器的工作。
2.变流器逆变部分:经过整流的直流电被逆变器逆变部分转换为交流电,通过逆变器的PWM控制,将直流电转化为符合电网要求的交流电,并具有同步电网的频率和相位。
逆变部分通过对功率器件的开关控制,将直流电转换为交流电输出到电网。
3.控制系统:变流器的控制系统通过对PWM控制信号的生成和对功率器件的开关控制,实现对变流器的电流和电压的精确控制,使得风力发电机组与电网实现有效的功率传递和稳定的运行。
双馈型风力发电变流器及控制研究发布时间:2023-02-03T02:45:19.615Z 来源:《中国电业与能源》2022年第18期作者:骈志强[导读] 随着社会主义市场经济的逐步发展骈志强内蒙古华电锡林浩特新能源有限公司内蒙古锡林郭勒 011300摘要:随着社会主义市场经济的逐步发展,电能已广泛应用于社会生产及人民生活质量的提升。
为保证电网稳定性,电力企业必须在日常电能生产中引入各种发电技术。
其中,双馈型风力发电变流器大幅提高了风力发电效率,能节省发电资源的消耗,还能减少发电对环境的污染。
关键词:双馈型风力发电;变流器;控制变速恒频双馈风力发电机组以其能量转换效率高、良好的电能质量等特点,成为风电市场的主流机型。
双馈风力发电系统的控制一直是国内外研究的热点,其中双馈风电系统运行控制的核心是变流器的控制。
为充分发挥双馈系统两侧变流器的灵活性,保证电力系统的稳定性,避免传统矢量控制过分依赖电机参数的问题,本文详细分析了双馈型风力发电变流器及其控制。
一、双馈型风力发电变流器特点随着科技的发展,风力发电技术能取代传统的发电技术,节约不可再生资源。
为保证电力输送的稳定性,风力发电的转速不能随着外部环境的影响而不断变化,它需保持在一定的速度范围内。
因此,风力发电机包含变速恒频系统,变速恒频系统有许多类型,双馈感应变速恒频系统应用最广泛,且具有一定的经济性,双馈型发电机最重要的组成部分是绕组、转子绕组,绕组需与电网连接,发电机使用齿轮系统与风力机连接,转子绕组需使用双向变流器与电网连接,二者的结合能控制交流励磁及功率,达到变速及无功补偿的目的。
双馈型风力发电系统需要的电量较少,变流器发电机对转子测电源无太大要求,测电源容量为机组额定容量的40%即可正常运行。
双馈型风力发电变流器体积小、材质轻、柔韧性好,能来回双向转化直流电及交流电,由主电流系统、配电系统、控制系统组成。
变流器可减少并网冲击电流对电机及电网的不利影响,变流器是一种具有过流过压保护功能器件,所以可在高山上建造风力发电设备,以获得更多风源。
浅析双馈型风力发电变流器及其控制发表时间:2016-12-08T15:20:54.363Z 来源:《电力设备》2016年第19期作者:刘洋[导读] 双馈型风力发电变流器是我国社会中常用的一种电力发电应用设备。
(国家电力投资集团公司;宁夏青铜峡能源铝业集团公司;中卫新能源有限公司三级)摘要:双馈型风力发电变流器是我国社会中常用的一种电力发电应用设备,这种发电变流器在我国电力供应市场中的应用,可以大大降低风力发电的工作效率,降低风力发电的运行成本,实现我国风力发电技术的进一步开发与应用,提高电力应用的发展水平,本文对双馈型风力发电变流器的关键技术和实际应用进行技术分析探究,达到对双馈型风力发电变流器的研究与控制,推荐我国新能源的开发与应用。
关键词:双馈型;风力发电变流器;发电变流器控制引言:社会主义经济发展结构的逐步完善,为社会主义社会各个层面的经济变革发展提供了发展新空间,风力发电代替传统煤炭发电,成为现代社会电力资源供用发展的重要组成、双馈型风力发电变流器在我国风力发电企业中的应用广泛程度得到进一步优化,双馈型风力发电变流器采用循环变流器和直交变流器的同步应用,是双馈型风力发电变流器在工作中,有用功的比重提高,风力发电中电流转换水平和转换渠道更加灵活,风力发电系统的运行成本降低,为推进我国社会经济发展动力的逐步完善提供发展新动力。
一、双馈型风力发电变流器及其控制技术的分析(一)双馈型风力发电变流器关键技术分析双馈型风力发电变流器在现代风力发电中的应用范围得到广泛应用,是我国社会电力资源供应的重要组成部分,双馈型风力发电变流器的关键技术主要分为交直流变流器,循环供应变流器以及矩形供应变流器三种类型,本文结合双馈型风力发电变流器在实际应用中的三种类型,对双馈型风力发电变流器的变流关键技术进行分析。
1.交直流变流器双馈型风力发电变流器的交直变流器通过外部电流传输,将风力资源转换为电力运行中电流运输结构和运输质量的综合性应用,达到应用变流器储存电感或电容,实现风力资源转化为电力资源,当电流传输中电力资源供应与电力系统的供应中出现电力资源应用和分析,交直流变流器对电力输送系统进行系统保护,电流传输的安全性和电力资源控制管理在实际应用作用增强。
双馈风力发电机书
《双馈风力发电机书》
双馈风力发电机是一种高效、可靠的风力发电设备。
它通过创新的设计和先进的技术,实现了对风能的高效转换,为清洁能源的开发做出了重要贡献。
首先,双馈风力发电机采用了双馈结构,即转子和定子之间都带有传导电流的绕组。
这种结构使得发电机能够在不同风速下保持较高的效率。
通过合理调节定子和转子之间的电流比例,双馈发电机能够自动调整转速来适应不同的风速,从而最大限度地提高发电效率。
其次,双馈风力发电机还具备较高的抗风能力。
风力发电过程中,风速的变化会对发电机的工作产生一定的影响。
而双馈发电机的设计可以有效地减小这种影响,使其在高风速情况下仍能保持较高的输出功率。
这使得双馈风力发电机在恶劣气候条件下依然能够稳定运行,为电网提供稳定可靠的清洁能源。
另外,双馈风力发电机还具备较低的维护成本。
相比传统的全功率变频器风力发电机,双馈发电机的变频器功率较小,不仅减少了设备的体积和重量,也降低了设备的成本。
同时,双馈发电机的寿命也更长,更换和维修的频率较低,进一步降低了维护成本。
综上所述,双馈风力发电机作为一种高效、可靠的风力发电设备,具备很多优势。
它的双馈结构、抗风能力和低维护成本,使其成为清洁能源的重要组成部分。
在未来的发展中,双馈风力发电机有望发挥更大的作用,为人类创造更加清洁、可持续的能源未来。
双馈风力发电变流器控制策略研究摘要:近年来社会用电需求的不断增大,电力工程建设数量也逐渐增多。
随着双馈风力发电技术的日益成熟,单机并网功率越来越大,对风力发电系统运行的稳定性提出了挑战。
大功率负载的突投突切,引起电网电压的波动和三相不平衡;非线性负载的投入,会向电网注入大量谐波,从而导致并网电流谐波问题,造成设备寿命缩短甚至损坏。
本文就双馈风力发电变流器控制策略展开探讨。
关键词:双馈风力发电;变流器;控制引言作为清洁无污染、可持续利用的能源形式,风力发电以其迅猛的产业发展趋势,已成为新能源发电的一种重要利用形式。
变流器是风力发电和电网的接口装置,其控制性能对并网系统的安全稳定运行具有重要作用。
在一般的风电变流器控制系统中,均假定电网电压是理想的正弦标准信号,但是在实际电网中,由于线路阻抗以及外界干扰的影响,电网电压会出现不平衡现象,如何保证并网变流器在电网电压不平衡条件下正常运行是目前急需解决的关键问题。
1双馈风力发电机数学模型发电机在d,q坐标系下磁链方程如下:式中:分别为定子与转子磁链d,q轴分量;L.为定子等效电感;L}为转子等效电感;L.为定转子互感;分别为定子与转子电流d,q轴分量。
系统在d,q坐标系下功率转矩方程如下:2倍频分量产生机理在电网电压不平衡条件下,双馈风力发电并网系统的视在功率为(1)式中:为电网电压dq轴的正负序分量; 为电网电流dq轴的正负序分量;*为取共轭.对应的有功功率和无功功率分别为(2)式中:P0、Q0为基波分量馈入电网的有功、无功功率平均值;Pc2、Ps2为有功功率余弦和正弦二倍频谐波分量;Qc2、Qs2为无功功率余弦和正弦二倍频谐波分量.结合式(1)和式(2)可以求得各个功率分量的矩阵表达式,即(3)由网侧变流器直流侧功率平衡可得(4)式中:udc、idc为直流侧电容的电压和电流;P1为双馈风力发电机侧变流器的输出功率;P2为双馈风力发电网侧变流器的输入功率.根据电容器的特性和式(2)可得功率平衡的表达式,即(5)式中,C为直流侧电容。
英文回答:Wind generator group transformers are an important part of the wind power generation system, whose main function is to convertmunication power to direct current power, and then again tomunicate power and ultimately to the grid. In the course of operations, the control system continuously monitors the operational status of wind generators and adjusts the mode of operation of transformers as required to ensure efficient conversion of electrical power and safe and stable output. This is in line with our party ' s philosophy of energy efficiency reduction and renewable energy development and is an importantponent of our energy strategy. We will continue to support and promote the development of wind power technologies and actively guide and regulate the healthy development of the wind power industry in order to achieve the cross—cutting and sustainable development of our clean energy industry.风力发电机组变流器是风力发电系统中的重要组成部分,其主要功能是将交流电转换为直流电,然后再次将直流电转换为交流电,并最终输送到电网中。
双馈型风力发电变流器及其控制随着环保意识的日益增强和可再生能源的广泛应用,风力发电技术得到了快速发展。
双馈型风力发电变流器作为风力发电系统中的关键设备之一,在提高风能利用率和电能质量方面具有重要作用。
本文将介绍双馈型风力发电变流器的工作原理、特点优势及其控制方式。
双馈型风力发电变流器是一种交直流变换设备,可将风力发电机发出的交流电转换为直流电,再供给电力系统使用。
其工作原理是采用双馈(交流和直流)线路,通过电力电子器件(如IGBT、SGCT等)的开关动作,控制交流和直流电流的双向流动,实现能量的交直流转换。
高效性:双馈型风力发电变流器具有较高的能量转换效率,可实现风能的最大化利用。
灵活性:双馈型风力发电变流器可通过控制开关器件的占空比,调节输出电流的幅值、频率和相位,满足不同风速和负荷条件下的运行需求。
稳定性:双馈型风力发电变流器可有效平抑风速波动带来的影响,提高电力系统的稳定性。
维护性:双馈型风力发电变流器采用模块化设计,便于维护和检修,降低了运维成本。
矢量控制:通过控制交流侧电流的幅值和相位,实现有功功率和无功功率的解耦控制,提高电力系统的稳定性。
直接功率控制:采用瞬时功率采样,通过控制逆变侧电流的幅值和相位,直接控制有功功率和无功功率,具有快速的动态响应。
神经网络控制:利用神经网络技术,建立风力发电变流器数学模型,实现自适应控制和优化运行。
模糊控制:基于模糊逻辑理论,通过模糊控制器对变流器进行非线性控制,具有良好的鲁棒性和适应性。
双馈型风力发电变流器作为风力发电系统的关键设备之一,具有高效、灵活、稳定和维护简便等特点及优势。
其控制方式多种多样,包括矢量控制、直接功率控制、神经网络控制和模糊控制等,可根据实际应用场景选择合适的控制方式以实现最优运行。
随着风电技术的不断发展,双馈型风力发电变流器在未来将发挥更加重要的作用,为可再生能源的广泛应用和绿色能源转型提供强有力的支持。
随着环境保护和可持续发展的日益重视,风力发电作为一种清洁、可再生的能源,越来越受到人们的。