[理学]多元函数积分法及其应用
- 格式:ppt
- 大小:1.55 MB
- 文档页数:45
多元函数微分法及其应用总结多元函数微分法及其应用是高等数学中一个重要的内容。
多元函数是指自变量有两个或者多个的函数,如z=f(x,y)。
而微分法是研究函数的变化率的一种方法。
本文将对多元函数微分法及其应用进行总结。
1. 多元函数微分法的基本概念多元函数的微分可以分为偏导数和全微分两种形式。
对于多元函数z=f(x,y),其偏导数表示函数在某一自变量上的变化率,可以记作∂z/∂x,∂z/∂y。
全微分表示函数在所有自变量上的变化率,可以记作dz。
多元函数的微分法有很多性质和定理,如链式法则、高阶偏导数、隐函数定理等。
2. 多元函数的极值与最值利用多元函数微分法,我们可以求多元函数的极值与最值。
对于多元函数z=f(x,y),其极值、最值的求解步骤大致如下:(1)求函数的偏导数,得到所有的偏导数;(2)令所有的偏导数等于零,求解出关于x和y的方程;(3)求解方程组,得到x和y的解;(4)将解代回原函数,求得z的值;(5)比较求得的z值,得到最大值或最小值。
3. 多元函数的泰勒展开多元函数的泰勒展开是利用多元函数在某一点附近进行近似求解的一种方法。
对于多元函数z=f(x,y),其泰勒展开公式为:f(x+Δx,y+Δy) = f(x,y) + (∂f/∂x)Δx + (∂f/∂y)Δy + 1/2(∂²f/∂x²)(Δx)² + 1/2(∂²f/∂y²)(Δy)² + (∂²f/∂x∂y)ΔxΔy + O(Δx²,Δy²)这里的O(Δx²,Δy²)表示高阶无穷小,Δx和Δy表示自变量的增量。
4. 多元函数微分法的应用多元函数微分法广泛应用于物理学、工程学和经济学等领域。
具体应用如下:(1)在物理学中,多元函数微分法可以用于描述粒子在空间中的运动轨迹,求解最优路径等问题。
(2)在工程学中,多元函数微分法可以用于建模和优化设计,如求解最优结构、最优控制等问题。
1第八章 多元函数微分法及其应用(A)1.填空题.填空题(1)若()y x f z ,=在区域D 上的两个混合偏导数y x z ∂∂∂2,xy z ∂∂∂2,则在D 上,上, x y zy x z ∂∂∂=∂∂∂22。
(2)函数()y x f z ,=在点()00,y x 处可微的处可微的 条件是()y x f z ,=在点()00,y x 处的偏导数存在。
偏导数存在。
(3)函数()y x f z ,=在点()00,y x 可微是()y x f z ,=在点()00,y x 处连续的处连续的 条件。
条件。
2.求下列函数的定义域.求下列函数的定义域(1)y x z -=;(2)22arccos yx zu +=3.求下列各极限.求下列各极限(1)x xyy x sin lim 00→→; (2)11lim 00-+→→xy xy y x ; (3)22222200)()cos(1lim y x y x y x y x ++-→→ 4.设()xy x z ln =,求y x z ∂∂∂23及23yx z ∂∂∂。
5.求下列函数的偏导数.求下列函数的偏导数(1)x y arctg z =;(2)()xy z ln =;(3)32z xy e u =。
6.设u t uv z cos 2+=,te u =,t v ln =,求全导数dt dz。
7.设()z y e u x-=,t x =,t y sin =,t z cos =,求dtdu 。
8.曲线⎪⎩⎪⎨⎧=+=4422y yx z ,在点(2,4,5)处的切线对于x 轴的倾角是多少?轴的倾角是多少? 9.求方程1222222=++c z b y a x 所确定的函数z 的偏导数。
的偏导数。
10.设y x ye z x2sin 2+=,求所有二阶偏导数。
,求所有二阶偏导数。
11.设()y x f z ,=是由方程y zz x ln =确定的隐函数,求x z∂∂,yz ∂∂。
多元函数微分学及其应用归纳总结一、多元函数的微分与偏导数1. 多元函数的微分定义为函数在其中一点上的线性逼近。
对于二元函数,微分为 dz=f_x*dx+f_y*dy,其中 f_x 和 f_y 分别为函数的偏导数。
对于一般的 n 元函数也可类似定义。
2.多元函数的偏导数表示函数沿着其中一个变量的变化率。
对于二元函数f(x,y),其偏导数f_x表示x方向上的变化率,f_y表示y方向上的变化率。
一般而言,当存在偏导数且连续时,函数在该点可微分。
3.偏导数的计算方法与一元函数相似,利用极限的定义求出偏导数表达式,对于高阶偏导数,可以反复求导。
4.混合偏导数表示函数在二个或二个以上变量上求偏导数后再对另外一个或另外几个变量求偏导数,其次序不影响结果。
二、多元函数的求导法则1. 多元函数的和、差、常数倍法则:设函数 f 和 g 在其中一点连续可导,则(f±g)'=f'±g',(kf)'=kf'。
2.多元函数的乘积法则:设函数f和g在其中一点连续可导,则(f·g)'=f'·g+g'·f。
3.多元函数的商法则:设函数f和g在其中一点连续可导且g不为零,则(f/g)'=(f'·g-g'·f)/g^24. 复合函数求导法则:设函数 y=f(u) 和 u=g(x) 在其中一点可导,则复合函数 y=f(g(x)) 的导数为dy/dx=f'(u)·g'(x),其中 x 和 u 为中间变量。
三、多元函数的极值与梯度1.多元函数的极值包括极大值和极小值。
在二元函数中,极值的必要条件为偏导数为零,充分条件为偏导数存在且满足一定条件。
2.多元函数的梯度是一个向量,其方向与函数在其中一点上变化最快的方向一致,大小表示变化率的大小。
梯度为零的点可能为极值点。
多元微积分是微积分的一个重要分支,它是研究多元函数的微分和积分的方法和理论。
在实际应用中,多元微积分有着广泛的应用领域,包括物理学、工程学、经济学等众多学科。
一个经典的应用领域是物理学。
在物理学中,多元微积分被用于描述物体在空间中的运动。
通过对位置、速度、加速度等物理量进行微分和积分,我们可以得到关于物体运动的重要信息。
例如,当我们研究一个物体在弹性力场中的运动时,我们需要使用多元微积分的方法来解决微分方程,从而获得物体的运动方程。
这对于物体的运动轨迹、速度和加速度等的计算是非常重要的。
除了物理学,工程学也是多元微积分的重要应用领域。
在工程学中,多元微积分被广泛应用于建模和优化问题。
例如,在电气工程中,我们经常通过对电流和电压进行微分来计算电路元件的特性。
在机械工程中,多元微积分被用于描述物体的运动和力学性质。
通过对位移、速度和加速度进行微分和积分,我们可以得到关于物体在空间中运动的重要信息,如轨迹、动能和势能等。
这些信息对于设计和优化机械系统是至关重要的。
此外,多元微积分还在经济学中发挥了重要的作用。
在经济学中,我们经常需要对变量之间的关系进行建模和分析。
多元微积分提供了一个强有力的工具,可以帮助经济学家解决复杂的问题。
例如,在经济学中,我们经常需要计算边际收益、边际成本等经济变量。
通过对相关函数进行微分和积分,我们可以快速准确地计算出这些重要的经济指标。
这对于决策和政策的制定是非常重要的。
总之,多元微积分的应用是非常广泛的,涉及到物理学、工程学、经济学等多个学科的研究领域。
在实践中,多元微积分可以帮助我们解决各种复杂的问题,包括描述物体运动、建模和优化工程系统以及分析经济变量等。
多元微积分的理论和方法的发展对于科学研究和实际应用的推动起到了重要的作用。
因此,加强对多元微积分的学习和理解,将对我们的学习和工作产生积极的影响。
第六章 多元函数微分法及其应用 6.1多元函数06.34) 设()1sin,,0,01arctan xy y yf x y x y xy xπ-=->>+,求 (Ⅰ) ()()lim ,y g x f x y →+∞=(Ⅱ) ()0lim x g x +→6.2偏导数08.3)已知(,)f x y = ( B )(A )(0,0)x f ',(0,0)y f '都存在 (B )(0,0)x f '不存在,(0,0)y f '存在 (C )(0,0)x f '不存在,(0,0)y f '不存在 (D )(0,0)x f ',(0,0)y f '都不存在6.3全微分02.1)考虑二元函数(,)f x y 的下面4条性质:①(,)f x y 在00(,)x y 处连续②(,)f x y 在00(,)x y 处两个偏导数连续③(,)f x y 在00(,)x y 处可微④(,)f x y 在00(,)x y 处两个偏导数存在.若用“P Q ⇒”表示可由性质P 推出Q ,则有 ( A )(A )②⇒③⇒①. (B )③⇒②⇒①. (C )③⇒④⇒①. (D )③⇒①⇒④. 07.2) 二元函数f (x , y )在点(0,0) 处可微的一个充分条件是 ( C ) (A )(,)(0,0)lim [(,)(0,0)]0x y f x y f →-=.(B) 0(,0)(0,0)lim0x f x f x →-=,且0(0,)(0,0)lim 0y f y f y→-=.(C)(,)lim0x y →=.(D) 0lim[(,0)(0,0)]0x x x f x f →''-=,且0lim[(0,)(0,0)]0y y y f y f →''-=.05.34) 设二元函数)1ln()1(y x xez yx +++=+,则=)0,1(dzdy e edx )2(2++ .06.34) 设函数()f u 可微,且()102f '=,则()224Z f x y =-在点(1,2)处的全微分()1,2dz=42dx dy -6.4多元复合函数求导法则05.12) 设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ具有一阶导数,则必有 [ B ](A ) 2222yu x u ∂∂-=∂∂. (B ) 2222y u x u ∂∂=∂∂. (C) 222y uy x u ∂∂=∂∂∂. (D) 222x u y x u ∂∂=∂∂∂. 01.4)设(2),x z e f x y -=--且当0y =时,2,z x =则zx ∂=∂22(2)x y x x y e e ----+ 07.1) 设f (u ,v )为二元可微函数,(,)y x z f x y =,则zx∂∂=112ln .y x f yx f y y -''⋅+⋅07.234) 设f (u ,v )是二元可微函数,(,),y x z f x y =则z z xy x y ∂∂-=∂∂1222.y x f f x y''-+ 09.1)设函数(,)f u v 具有二阶连续偏导数,z=(,)f x xy 则2zx y∂∂∂=12222xf f xyf '''''++ 09.3)设()y x z x e =+,则(1,0)zx ∂∂=2ln 21+ 09农)设(,)f u v 为二元可微函数,(sin(),)xyZ f x y e =+,则zx∂∂=12cos()xy f x y yf e ''++ 01.1)设函数(,)f x y 在点(1,1处可微,且(1,1)(1,1)(1,1)1,2,3,f ff x y ∂∂===∂∂ ()(,(,))x f x f x x ϕ=.求31()x d x dx ϕ=(符合函数求导+求值(1)ϕ) 01.34)设(,,)u f x y z =有连续的一阶偏导数,又函数()y y x =及()z z x =分别由下列两式确定:2xye xy -=和0sin ,x zxt e dt t -=⎰求dudx03.34) 设f (u ,v )具有二阶连续偏导数,且满足12222=∂∂+∂∂v fu f ,又)](21,[),(22y x xy f y x g -=,求.2222yg x g ∂∂+∂∂【详解】v f x u f y x g ∂∂+∂∂=∂∂,.vf y u f x yg ∂∂-∂∂=∂∂ 故 v f vf x v u f xy u f y xg ∂∂+∂∂+∂∂∂+∂∂=∂∂2222222222,.2222222222v f vf y u v f xy u f x yg ∂∂-∂∂+∂∂∂-∂∂=∂∂ 所以 222222222222)()(vf y x u f y x yg x g ∂∂++∂∂+=∂∂+∂∂=.22y x + 04.2) 设22(,)xyz f x y e =-,其中f 具有连续二阶偏导数,求2,,z z zx y x y∂∂∂∂∂∂∂. 【详解】122xy z x f ye f x ∂''=+∂,122xy zy f xe f y∂''=-+∂, 21112222[(2)]xy xy xy zx f y f xe e f xye f x y∂''''''=⋅-+⋅++∂∂2122[(2)]xy xy ye f y f xe ''''+⋅-+⋅ 222111222242()(1)xy xy xy xyf x y e f xye f e xy f '''''''=-+-++++. 05.34)设f (u )具有二阶连续导数,且)()(),(y x yf x y f y x g +=,求.222222yg y x g x ∂∂-∂∂ 【详解】 由已知条件可得)()(2y x f x y f x y x g '+'-=∂∂,)(1)()(242322y xf y y x f x y x y f x y xg ''+''+'=∂∂, )()()(1yx f y x y x f x y f x y g '-+'=∂∂, )()()()(13222222y xf yx y x f y x y x f y x x y f x y g ''+'+'-''=∂∂,所以 222222y g y x g x ∂∂-∂∂=)()()(2222y x f y x y x f x y x y f x y ''+''+')()(222y x f y x x y f x y ''-''- =).(2xyf x y ' 09.2) 设(,,)z f x y x y xy =+-,其中f 具有2阶连续偏导数,求dz 与2z x y∂∂∂【解析】123123,z zf f yf f f xf x y∂∂''''''=++=-+∂∂ 所以123123()()z zdz dx dy f f yf dx f f xf dy x y∂∂''''''=+=+++-+∂∂21112132122233313233.1.(1)..1(1).[.1.(1).]zf f f x f f f x f y f f f x x y∂'''''''''''''''''''=+-+++-++++-+∂∂ 31122331323()()f f f xyf x y f x y f '''''''''''=+-++++- 10.2)设函数(,)f x y μ=具有二阶连续偏导数,且满足等式2222241250x x y y μμμ∂∂∂++=∂∂∂∂,确定a ,b 的值,使等式在变换x ay ξ=+,x by η=+下化简为20μξη∂=∂∂.6.5隐函数的求导公式05.1) 设有三元方程1ln =+-xz e y z xy ,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程 [ D ](A )只能确定一个具有连续偏导数的隐函数z=z(x ,y ).(B)可确定两个具有连续偏导数的隐函数x =x (y ,z)和z=z(x ,y ). (C)可确定两个具有连续偏导数的隐函数y =y (x ,z)和z=z(x ,y ). (D)可确定两个具有连续偏导数的隐函数x =x (y ,z)和y =y (x ,z).(考查隐函数存在定理,只需令F (x ,y ,z)=1ln -+-xz e y z xy , 分别求出三个偏导数y x z F F F ,,,再考虑在点(0,1,1)处哪个偏导数不为0,则可确定相应的隐函数.)10.12)设函数(,)z f x y =,由方程,0y z F x x ⎛⎫=⎪⎝⎭确定,其中F 为可微函数,且20F '≠,则z zxy x y∂∂+=∂∂ ( B ) (A )x (B )z (C )x - (D )z - 04.2) 设函数(,)z z x y =由方程232x z z e y -=+确定, 则3z zx y∂∂+=∂∂2.04.3) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y ) ≠ 0,则)()(22v g v g vu f'-=∂∂∂.02.34)设函数(,,)u f x y z =有连续偏导数,且(,)z z x y =由方程x y zxe ye ze -=所确定,求du .08.3) 设(,)z z x y =是由方程()22x y z x y z ϕ+-=++所确定的函数,其中ϕ具有2阶导数且1ϕ'≠-时.(1)求dz (2)记()1,z z u x y x y x y ⎛⎫∂∂=- ⎪-∂∂⎝⎭,求u x ∂∂. 【详解】(I) ()()22xdx ydy dz x y z dx dy dz ϕ'+-=++⋅++()()()122dz x dx y dy ϕϕϕ'''⇒+=-++-+ ()()221x dx y dy dz ϕϕϕ''-++-+⇒='+()1ϕ'≠-(II) 由上一问可知22,11z x z yx y ϕϕϕϕ''∂-+∂-+==''∂+∂+, 所以 ()11221222,()()1111z z x y y x u x y x y x y x y x y ϕϕϕϕϕϕ''∂∂-+-+-+=-=-=⋅=''''-∂∂-++-++所以 ()()()()223322(1)2(1)2(12)2(12)11111x z u x x x x ϕϕϕϕϕϕϕϕϕϕϕϕ'-∂''+''-+'''''''∂++-++∂==-=-=-∂''''++++.6.6偏导数的应用01.1)函数(,)f x y 在点(0,0)附近有定义,且(0,0)3,(0,0)1,x y f f ''==则 ( C ) (A )(0,0)|3dz dx dy =+ (B )曲面(,)z f x y =在点(0,0,(0,0))f 的法向量为(3,1,1)(C )曲线(,)0z f x y y =⎧⎨=⎩在点(0,0,(0,0))f 的切向量为(1,0,3)(D )曲线(,)z f x y y =⎧⎨=⎩在点(0,0,(0,0))f 的切向量为(3,0,1)03.1) 已知函数f (x ,y )在点(0,0)的某个邻域内连续,且1)(),(lim2220,0=+-→→y x xyy x f y x ,则 (A) 点(0,0)不是f (x ,y )的极值点. (B) 点(0,0)是f (x ,y )的极大值点. (C) 点(0,0)是f (x ,y )的极小值点.(D) 根据所给条件无法判断点(0,0)是否为f (x ,y )的极值点. [ A ] 解: 由1)(),(lim2220,0=+-→→y x xyy x f y x 知,分子的极限必为零,从而有f(0,0)=0, 且 222)(),(y x xy y x f +≈- y x ,(充分小时),于是 .)()0,0(),(222y x xy f y x f ++≈-可见当y=x 且x 充分小时,04)0,0(),(42>+≈-x x f y x f ;而当y= -x 且x 充分小时,04)0,0(),(42<+-≈-x x f y x f . 故点(0,0)不是f(x,y)的极值点03.34) 设可微函数f (x ,y )在点),(00y x 取得极小值,则下列结论正确的是 [ A ] (A) ),(0y x f 在0y y =处的导数等于零. (B )),(0y x f 在0y y =处的导数大于零. (C) ),(0y x f 在0y y =处的导数小于零. (D) ),(0y x f 在0y y =处的导数不存在. 06.1234) 设(,)f x y 与(,)x y ϕ均为可微函数,且(,)0y x y ϕ'≠. 已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是 [ D ] (A )若00(,)0x f x y '=,则00(,)0y f x y '=. (B )若00(,)0x f x y '=,则00(,)0y f x y '≠. (C )若00(,)0x f x y '≠,则00(,)0y f x y '=. (D )若00(,)0x f x y '≠,则00(,)0y f x y '≠.09.2) 设函数(,)z f x y =的全微分为dz xdx ydy =+,则点(0,0)( D ) (A )不是(,)f x y 的连续点 (B )不是(,)f x y 的极值点 (C )是(,)f x y 的极大值点(D )是(,)f x y 的极小值点04.1) 设z =z (x ,y )是由0182106222=+--+-z yz y xy x 确定的函数,求),(y x z z =的极值点和极值.【详解】 因为 0182106222=+--+-z yz y xy x ,所以02262=∂∂-∂∂--x z z x z yy x , 0222206=∂∂-∂∂--+-yz z y z y z y x . 令 ⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂0,0y z xz 得⎩⎨⎧=-+-=-,0103,03z y x y x 故 ⎩⎨⎧==.,3y z y x将上式代入0182106222=+--+-z yz y xy x ,可得⎪⎩⎪⎨⎧===3,3,9z y x 或 ⎪⎩⎪⎨⎧-=-=-=.3,3,9z y x 由于 02)(22222222=∂∂-∂∂-∂∂-xzz x z x z y ,,02222622=∂∂∂-∂∂⋅∂∂-∂∂∂-∂∂--yx zz x z y z y x z y x z02)(22222022222=∂∂-∂∂-∂∂-∂∂-∂∂-yzz y z y z y y z y z ,所以 61)3,3,9(22=∂∂=x zA ,21)3,3,9(2-=∂∂∂=y x zB ,35)3,3,9(22=∂∂=yzC , 故03612>=-B AC ,又061>=A ,从而点(9,3)是z (x ,y )的极小值点,极小值为z (9,3)=3. 类似地,由61)3,3,9(22-=∂∂=---xzA ,21)3,3,9(2=∂∂∂=---y x zB ,35)3,3,9(22-=∂∂=---yzC ,可知03612>=-B AC ,又061<-=A ,从而点(-9, -3)是z (x ,y )的极大值点,极大值为 z (-9, -3)= -3.05.2) 已知函数z =f (x ,y ) 的全微分ydy xdx dz 22-=,并且f (1,1,)=2. 求f (x ,y )在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值.【详解】 由题设,知x x f 2=∂∂,y yf 2-=∂∂, 于是 )(),(2y C x y x f +=,且 y y C 2)(-=',从而 C y y C +-=2)(,再由f (1,1)=2,得 C =2, 故 .2),(22+-=y x y x f令0,0=∂∂=∂∂y fx f 得可能极值点为x =0,y =0. 且 2)0,0(22=∂∂=xf A ,0)0,0(2=∂∂∂=y x f B ,2)0,0(22-=∂∂=yfC ,042>=-=∆AC B ,所以点(0,0) 不是极值点,从而也非最值点.再考虑其在边界曲线1422=+y x 上的情形:令拉格朗日函数为 )14(),(),,(22-++=y x y x f y x F λλ, 解 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+='=+-=+∂∂='=+=+∂∂=',014,02122,0)1(2222y x F y y y y f F x x x fF y xλλλλλ得可能极值点4,2,0===λy x ;4,2,0=-==λy x ;1,0,1-===λy x ;.1,0,1-==-=λy x 代入f (x ,y )得,2)2,0(-=±f 3)0,1(=±f ,可见z =f (x ,y )在区域}14),{(22≤+=y x y x D 内的最大值为3,最小值为-2.05.4) 求f (x ,y )=222+-y x 在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值.(同上) 07.1)求函数2222(,)2f x y x y x y =+-在区域22{(,)4,0}D x y x y y =+≤≥上的最大值和最小值。