例
故数列的一个通项公式为
题
an (1)n.
6.1.2 数列的通项公式
巩n
1 2n
,写出数列的前5项.
固 知
解
a1
1 21
1; 2
识
a2
1 22
1; 4
典 型 例
a3
1 23
1; 8
a4
1 24
1; 16
题
a5
1 25
1. 32
练习
1.数列“1,2,3,4,5”与数列“5 ,4, 3,2,1 ”是否
(4)
知
6.1.2 数列的通项公式
观察下面数列的特点,用适当的数填空。
创
设 (1) 1,3,( 5 ),7,9, ( 11 ),13…
情 境
(2) 2,4,( 8 ),16,32,( 64 ),128,( 256 )… (3) ( 1 ),4,9,16,25,( 36 ),49…
兴
趣 导
: 思考2 数列项与项数是何关系?
第6章 数列
6.1 数列的概念
6.1.1 数列的定义
将正整数从小到大排成一列数为
1,2,3,4,5,….
(1)
创
将所有正偶数从小到大进行排成一列数为
设
2,4,6,8,10,….
(2)
情 境
-1的1次幂,2次幂,3次幂,4次幂,…排成的一列数为
-1,1,-1,1,….
(3)
兴
趣 导
17建筑施工3+2班学生的学号由小到大排成一列数为
运
为同一个数列?
用
知
不是
识
强
2.设数列 {an} 为“-5,-3,-1,1,3,5,…” ,指出其中a3、a6各是什么数?