导数与微分习题课(附部分参考答案)
- 格式:ppt
- 大小:1.23 MB
- 文档页数:43
第三章 导数与微分同步练习 一、填空 1、若[]1cos 1)0()(lim=--→xf x f x x ,则)0(f '= 。
2、设)100()3)(2)(1()(----=x x x x x x f ,则)0(f '= 。
3、若)(x e f y -=,且x x x f ln )(=',则1=x dxdy = 。
4、若)()(x f x f =-,且3)1(=-'f ,则)1(f '= 。
5、设某商品的需求函数是Q=10-0.2p ,则当价格p=10时,降价10%,需求量将 。
6、设某商品的需求函数为:Q=100-2p ,则当Q=50时,其边际收益为 。
7、已知x x y ln =,则)10(y = 。
8、已知2arcsin )(),2323(x x f x x f y ='+-=,则:0=x dxdy = 。
9、设1111ln22++-+=x x y ,则y '= 。
10、设方程y y x =确定y 是x 的函数,则dy = 。
11、已知()xke x f =',其中k 为常数,求()x f 的反函数的二阶导数=22dyxd 。
二、选择1、设f 可微,则=---→1)1()2(lim1x f x f x ( )A 、)1(-'-x fB 、)1(-'fC 、)1(f '-D 、)2(f ' 2、若2)(0-='x f ,则=--→)()2(lim000x f x x f xx ( )A 、41 B 、41- C 、1 D 、-1 3、设⎪⎩⎪⎨⎧=≠=0001arctan )(x x xx x f ,则)(x f 在0=x 处( )A 、不连续B 、极限不存在 C、连续且可导 D、连续但不可导 4、下列函数在[]1,1-上可微的有( ) A、x x y sin 32+= B、x x y sin =C、21x x y +=D、x x y cos += 5、设)(x f 为不恒等于零的奇函数,且)0(f '存在,则函数xx f x g )()(=( ) A、在0=x 处极限不存在 B、有跳跃间断点0=x C、在0=x 处右极限不存在 D、有可去间断点0=x6、设函数)(),(21x y x y 的弹性分别为)0(,≠b b a ,则函数)()(21x y x y y =的弹性为( ) A、b a - B、b aC、2112y by ay - D、以上都不对 7、已知)(x f e y =,则y ''=( )A、)(x f e B、)]()([)(x f x f e x f ''+' C、)()(x f e x f '' D、)}()]({[2)(x f x f e x f ''+'8、设函数⎩⎨⎧≤+>+=11)ln()(2x bx x x a x f 在1=x 处可导。
第二章 导数与微分(A)1.设函数()x f y =,当自变量x 由0x 改变到x x ∆+0时,相应函数的改变量=∆y ( )A .()x x f ∆+0B .()x x f ∆+0C .()()00x f x x f -∆+D .()x x f ∆02.设()x f 在0x 处可,则()()=∆-∆-→∆xx f x x f x 000lim ( ) A .()0x f '- B .()0x f -' C .()0x f ' D .()02x f '3.函数()x f 在点0x 连续,是()x f 在点0x 可导的 ( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件4.设函数()u f y =是可导的,且2x u =,则=dxdy ( ) A .()2x f ' B .()2x f x ' C .()22x f x ' D .()22x f x5.若函数()x f 在点a 连续,则()x f 在点a ( )A .左导数存在;B .右导数存在;C .左右导数都存在D .有定义6.()2-=x x f 在点2=x 处的导数是( )A .1B .0C .-1D .不存在7.曲线545223-+-=x x x y 在点()1,2-处切线斜率等于( )A .8B .12C .-6D .68.设()x f e y =且()x f 二阶可导,则=''y ( )A .()x f eB .()()x f e x f ''C .()()()[]x f x f e x f '''D .()()[](){}x f x f e x f ''+'2 9.若()⎩⎨⎧≥+<=0,2sin 0,x x b x e x f ax 在0=x 处可导,则a ,b 的值应为( ) A .2=a ,1=b B . 1=a ,2=bC .2-=a ,1=bD .2=a ,1-=b10.若函数()x f 在点0x 处有导数,而函数()x g 在点0x 处没有导数,则()()()x g x f x F +=,()()()x g x f x G -=在0x 处( )A .一定都没有导数B .一定都有导数C .恰有一个有导数D .至少一个有导数11.函数()x f 与()x g 在0x 处都没有导数,则()()()x g x f x F +=,()()()x g x f x G -=在0x 处( )A .一定都没有导数B .一定都有导数C .至少一个有导数D .至多一个有导数12.已知()()[]x g f x F =,在0x x =处可导,则( )A .()x f ,()x g 都必须可导B .()x f 必须可导C .()x g 必须可导D .()x f 和()x g 都不一定可导13.xarctg y 1=,则='y ( ) A .211x +- B .211x + C .221x x +- D . 221x x + 14.设()x f 在点a x =处为二阶可导,则()()=-+→hh a f h a f h 0lim ( ) A .()2a f '' B .()a f '' C .()a f ''2 D .()a f ''- 15.设()x f 在()b a ,内连续,且()b a x ,0∈,则在点0x 处( )A .()x f 的极限存在,且可导B .()x f 的极限存在,但不一定可导C .()x f 的极限不存在D .()x f 的极限不一定存在16.设()x f 在点a x =处可导,则()()=--→hh a f a f n 0lim 。
导数与微分习题及答案导数与微分习题及答案在数学学科中,导数与微分是非常重要的概念。
它们不仅在数学分析中有广泛的应用,还在物理、经济学等领域中起着重要的作用。
本文将为大家提供一些导数与微分的习题,并附上详细的答案,希望能够帮助大家更好地理解和掌握这一内容。
1. 习题一:求函数 f(x) = x^2 + 3x - 2 在点 x = 2 处的导数。
解答:根据导数的定义,我们有f'(x) = lim(h→0) [f(x+h) - f(x)] / h。
代入函数 f(x) = x^2 + 3x - 2 和 x = 2,得到f'(2) = lim(h→0) [(2+h)^2 + 3(2+h) - 2 - (2^2 + 3(2) - 2)] / h。
化简后得到f'(2) = lim(h→0) [4h + h^2 + 6h] / h = lim(h→0) (h^2 + 10h) / h = lim(h→0) (h + 10) = 10。
因此,函数 f(x) = x^2 + 3x - 2 在点 x = 2 处的导数为 10。
2. 习题二:求函数 g(x) = 2sin(x) + cos(x) 在点x = π/4 处的导数。
解答:同样地,我们可以利用导数的定义来求解。
根据定义,g'(x) = lim(h→0) [g(x+h) - g(x)] / h。
代入函数 g(x) = 2sin(x) + cos(x) 和x = π/4,得到g'(π/4) = lim(h→0) [2sin(π/4+h) + cos(π/4+h) - (2sin(π/4) + cos(π/4))] / h。
化简后得到g'(π/4) = lim(h→0) [2(sin(π/4)cos(h) + cos(π/4)sin(h)) + (cos(π/4)cos(h) -sin(π/4)sin(h))] / h。
第二单元 导数与微分一、基本题1、设()23f '=,则()()232limh f h f h h→--+=2、()cos x y e -=,则()0y '=3、3sin y x =,则dy =4、y =1|x dy ==5、()3ln f x x x =,则()1f ''=6、设()62ln 3x y e =+,则()8y =7、设()23sin 7n y x e -=+,则()n y =8、设210cos 2x y e x x =++,则()10y = ;()12y =9、设()()22f x x y ef e =+,则dy dx=10、曲线2x y e -=+在点0x =处的切线方程为 法线方程为 11、()()()()()123......10f x x x x x x =----,则()1f '= 12、()22,43f x y x xy y =-+,则()()1,1,limh f y h f y h→+-=13、ln 2y z x x ⎛⎫=+ ⎪⎝⎭,则()1,0z x ∂=∂ ;()1,0y f '=14、()zu xy =,则du = 15、2ln xz y=,则12x y dz ===16、yz x=在点()2,1处当0.1x ∆=,0.2y ∆=时的z ∆= ;dz = 17、设233z x xy y =-+,则22z x∂=∂ ;22z y ∂=∂ ;2zy x ∂=∂∂18、22,x z f x y y ⎛⎫=- ⎪⎝⎭,则x f '= ;y f '=19、一元函数可微、可导、连续、极限之间关系:可微可导是连续的 条件; 连续是极限存在的 条件 极限存在是连续的 条件; 连续是可微可导的 条件20、多元函数可微、可导(偏导数存在)、连续之间关系:(1)(),f x y 在点(),x y 处可微分是在该点连续的 条件; (),f x y 在点(),x y 处连续是在该点可微分的 条件(2)(),f x y 在点(),x y 处两偏导数存在是在该点处可微分的 条件; (),f x y 在点(),x y 处可微分是在该点处两偏导数存在的 条件 (3)(),f x y 在点(),x y 处两偏导数存在且连续是在该点处可微分的 条件(4)(),f x y 在点(),x y 处两二阶混合偏导22,z zx y y x∂∂∂∂∂∂连续 是该两混合偏导相等的 条件二、计算题1、xaaa x e y e e x =++ ()0,1a a >≠,求y ' 2、()3ln 32cos 2sin 332x x y e x x +=+-+,求(0)y '3、()2sin 2x y x =,求y ' 4、sin x y x =y '5、y =y ' 6、设ln tan x y arc t ⎧⎪=⎨=⎪⎩,求dy dx7、设sin cos t tx e ty e t⎧=⎨=⎩,求0t dy =8、设()ln(2)111x x f x x x -≤⎧=⎨->⎩,求()2f '-,()f x '9、设函数()22111x f x x ax b x ⎧≤⎪=+⎨⎪+>⎩在点1x =处可导,求,a b10、设()2135f x x x -=++,求()f x '11、设()3sin 2sin 3cos24f x x x =+-,求()f x '12、设()2cos 2z x x y =-,求22z x∂∂;22z y ∂∂;2zx y ∂∂∂13、设(),,sin u v z e u xy v x y +===+,求zx ∂∂;z y∂∂ 14、设()223x z x y =-,求zx ∂∂;z y∂∂ 15、设()2,cos 2,ln 32x y z e x t y t -===+,求dz dt16、函数()y y x =由方程:()1cos x y e e xy -+=所确定的隐函数,求0x dy dx=17、设方程22220x z y z y ++=确定函数(),z z x y =,求zx ∂∂;z y∂∂ 18、设函数(),z z x y =由方程22xy z e z e -+-=所确定,求212x y dz==-19、设()22,y z xf xy g x y x ⎛⎫=++ ⎪⎝⎭,求z x ∂∂;z y ∂∂三、证明题1、设()2arcsin 3y z xy x =+,证明:220z zx xy y x y ∂∂-+=∂∂ 2、设()2sin 2323x y z x y z +-=+-,证明:1z zx y∂∂+=∂∂导数与微分答案二、基本题1、设()23f '=,则()()232limh f h f h h →--+=()4212f '-=-2、设()12f '=-,则()()11limh f f h h→-+=()12f '-=3、()cos x y e -=,则()0y '=sin14、3sin y x =,则233cos dy x x dx =5、()3ln f x x x =,则()15f ''=6、设()62ln 3x y e =+,则()824x y e =7、设()2sin 7n y x -=,则()49sin 7ny x =-8、设210cos 2x y e x x =++,则()10102101021022cos 21010!22cos 210!2x x y e x e x π⎛⎫=++⋅+=-+ ⎪⎝⎭ ;()12122121221222cos 21222cos 22x x y e x e x π⎛⎫=++⋅=+ ⎪⎝⎭9、设()()22f x x y e f e =+,则()()()222222f x x x dy xe f x xf e e dx''=⋅+⋅10、曲线2x y e -=+在点0x =处的切线方程为3y x =- 法线方程为3y x =+11、()()()()()123......10f x x x x x x =----,则()19!f '=-()()()()()123......10f x x x x x x =----⇒⎡⎤⎣⎦()()()()()()()()()123......10123......10f x x x x x x x x x x x '''=----+----⎡⎤⎡⎤⎣⎦⎣⎦ ()()()()()()()23......10123......10x x x x x x x x x '=---+----⇒⎡⎤⎡⎤⎣⎦⎣⎦()()()()11121311009!f '=⋅-⋅-⋅⋅⋅-+=-12、一元函数可微、可导、连续、极限之间关系:可微可导是连续的 充分 条件; 连续是极限存在的 充分 条件 极限存在是连续的 必要 条件; 连续是可微可导的必要 条件 13、()212y x x x x =-+-不可导点2x =-14、ln 2y z x x ⎛⎫=+ ⎪⎝⎭,则()1,01z x ∂=∂ ;()11,02y f '=15、()22,43f x y x xy y =-+,则()()()01,1,lim1,46y h f y h f y f y y h→+-'==-+16、2lnxz y=,则1212x y dz dx dy ===-17、设233z x xy y =-+,则222z x∂=∂ ;226z y y ∂=∂ ;23zy x ∂=-∂∂ 18、()z u xy =,则()()()()11ln z z zdu yz xy dx xz xy dy xy xy dz --=++19、yz x =在点()2,1处当0.1x ∆=,0.2y ∆=时的()()2.1,1.22,10.0714z f f ∆=-= 21110.10.20.07542y dz dx dy dz x x =-+⇒=-⋅+⋅=20、22,x z f x y y ⎛⎫=- ⎪⎝⎭,则1212x f f xf y '''=+ ;1222y xf f yf y '''=--21、(1)(),f x y 在点(),x y 处可微分是在该点连续的 充分 条件; (),f x y 在点(),x y 处连续是在该点可微分的 必要 条件(2)(),f x y 在点(),x y 处两偏导数存在是在该点处可微分的 必要 条件; (),f x y 在点(),x y 处可微分是在该点处两偏导数存在的 充分 条件 (3)(),f x y 在点(),x y 处两偏导数存在且连续是在该点处可微分的 充分条件(4)(),f x y 在点(),x y 处两二阶混合偏导22,z zx y y x∂∂∂∂∂∂连续是该两混合偏导相等的 充分 条件22、曲线2cos 2sin 3x t y t z t=⎧⎪=⎨⎪=⎩上对应于6t π=处的切线方程213z x π-==- , 法平面方程:()1302x y z π⎛⎫--+-+-= ⎪⎝⎭23、曲面27z e z xy -+=在点()2,3,0处的切平面方程()()()322310032120x y z x y z -+---=⇒+--= , 法线方程 :230231x y z ---==-二、计算题1、x a aa x e y e e x =++ ()0,1a a >≠,求y '【解】:()()111ln x a a x a a a x x a a e a x x a a e y e a e x e x e a a e ax e x ---'''=⋅+⋅+=⋅+⋅+2、()3ln 32cos 2sin 332xx y e x x +=+-+,求y ' 【解】:()()()33213323ln 32323cos 22sin 2032x xx x x y e x e x x ⋅⋅+-++'=-+-+ ()()33233ln 323cos 22sin 232x x x e x e x x -+=-++3、sin x y x =y ' 【解】:()1sin sin ln 223xx xy xex x ==++⇒()()1s i n l n22s i n 1c o s l n 3232x x x y e x x x x x x -⎛⎫'=⋅+++⋅+ ⎪⎝⎭4、()2sin 2x y x =,求y ' 【解】:()222lnsin 2lnsin 22cos 2sin 22ln sin 22sin 2x x xxxx y x e y e x x x x ⎛⎫'==⇒=+⋅⋅⎪⎝⎭ ()2l n s i n 222l n s i n 22c ot 2xx e x xx x =+⋅5、y =y ' 【解】:1)()()()()()21ln ln 1ln 13ln 5ln 1ln 212y x x x x x =+--++--+ 2)等式两边同时对x 求导()()212135211221221x y y x x xx x --'=-++-⇒+--+ ()()2213511122121x y y x xx x x ⎡⎤'=++--⎢⎥+--+⎣⎦()()2213511122121x x xx x x ⎡⎤=++--⎢⎥+--+⎣⎦6、函数()y y x =由方程:()1cos x y e e xy -+=所确定的隐函数,求0x dydx =【解】:1)0x =时0y =2)()()()1cos sin x y x y e e xy e e y xy y xy ''''-+=⇒-⋅=-⋅+⎡⎤⎣⎦ ()0,0sin sin 01sin sin x x x y yy e y xy e y xyy y e x xy e x xy==++''=⇒==--7、求由方程:()()cos sin xyy x =所确定的函数()y y x =的导数dydx【解】:1)等式两边同时取对数()()ln cos ln sin x y y x = 2)等式两边同时对x 求导数:()()sin cos ln cos ln sin cos sin y xy x y y x y y x-''+⋅⋅=+⋅⇒ ()()ln cos cot ln sin tan y y xdy dx x x y -=+8、设ln tan x y arc t⎧⎪=⎨=⎪⎩,求dy dx【解】:1)()()2222121ln 12tan 1tan 1t t t x t x t x y arc t y arc t y t ⎧'=⎧⎪⎧+=+⎪⎪⎪=⇒⎨⎨⎨=⎪⎪⎪⎩=⎩'=⎪+⎩2)1t t y dy dx x t'==' 9、设2323sin 10y x t t e t y ⎧=++⎨-+=⎩,求t dy dx =【解】:1)0t =时,1y =2) 6262cos sin cos 01sin t t y y yt t t y x t x t e t e y t e t y y e t '=+⎧'=+⎧⎪⇒⇒⎨⎨⋅''⋅+⋅-='=⎩⎪-⎩3)0,1cos cos 1sin 1sin 62622y y y yt t t y t e te ty dy dy e e t e t dx x t dxt ===⋅⋅'--==⇒=='++ 10、设()ln 111x x f x x x ≥⎧=⎨-<⎩,求()2f ',()f x '【解】:1)()()()2212ln 2x x f f x x =='''===2)()()11ln x f x x f x x'>⇒=⇒=, ()()111x f x x f x '<⇒=-⇒= 1x =为分段点,且()1=ln1=0f ()()()111101lim lim 111x x f x f x f x x ---→→---'===--, ()()()()()()11111ln 01lim lim lim 11111111x x x f x f x x f f f f x x ++++-+→→→--''''====⇒=⇒=-- ()1111x f x xx ⎧>⎪'=⎨⎪≤⎩11、设函数()22111x f x x ax b x ⎧≤⎪=+⎨⎪+>⎩在点1x =处可导,求,a b【解】:1)可导必连续,故()()()()211112lim lim 1lim lim 11x x x x f x f x f ax b x -+-+→→→→==⇒=+=+ 即11a b b a +=⇒-=-2)因为可导,故()()()()()()111111lim lim 11x x f x f f x f f f x x -+-+→→--''=⇒=-- ()()()()221111211111lim lim lim lim 11111x x x x x x ax b ax a x a x x x x x -+-+→→→→--++--+=⇒==----+ 1,2a b =-=12、设()2135f x x x -=++,求()f x '【解】:1)()()()()()()22135131521325f x x x f x x x f x x x '-=++⇒=++++⇒=++=+ 13、设()3sin 2sin 3cos24f x x x =+-,求()f x '【解】:()()()3232sin 2sin 312sin 4261f x x x f x x x =+--⇒=-- ()2612f x x x '⇒=-14、设()2cos 2z x x y =-,求22z x∂∂;22z y ∂∂;2zx y ∂∂∂【解】:1)()()()()22222322cos 22sin 26sin 24cos 2z z x y x x y x x y x x y x x∂∂=---⇒=----∂∂2)()()22222sin 24cos 2z z x x y x x y y y ∂∂=-⇒=--∂∂3)()()22222sin 24cos 2zx y x x y x y∂=-+-∂∂15、设(),,sin u v z e u xy v x y +===+,求zx ∂∂;z y∂∂ 【解】:()()()()()sin u v u v x x u v z z u z ve xy e x y x u x v x++∂∂∂∂∂''''=⋅+⋅=⋅+⋅+∂∂∂∂∂()()()sin cos cos xy x y u v u v ye e x y y x y e ++++=+⋅+=++⎡⎤⎣⎦()()()()()sin u v u v y y u v z z u z ve xy e x y y u y v y++∂∂∂∂∂''''=⋅+⋅=⋅+⋅+∂∂∂∂∂()()()sin cos cos xy x y u v u v xe e x y x x y e++++=+⋅+=++⎡⎤⎣⎦16、设()223x z x y =-,求zx ∂∂;z y∂∂ 【解】:()()22ln 2323x x x y z x y e-=-=()()22ln 2322ln 2323x x y z x e x x y x x y -⎛⎫∂=⋅-+ ⎪∂-⎝⎭()212323x z x x y y -∂=--∂ ,17、设()2,cos 2,ln 32x y z e x t y t -===+,求dzdt【解】:()()()22cos2ln 32cos2ln 326ln 322sin 232t t t t t dz z ee t dt t -+-+⎡⎤⎡⎤⎣⎦⎣⎦+⎛⎫=⇒=⋅-- ⎪+⎝⎭ 18、设方程22220x z y z y ++=确定函数(),z z x y =,求zx ∂∂;z y∂∂ 【解】:1)()222,,2F x y z x z y z y =++2222,41,4x y z F xz F yz F x y z '''==+=+2)2224x z F z xz x F x y z '∂=-=-'∂+, 222414y z F z yz y F x y z '∂+=-=-'∂+19、设方程()222sin xy e y x y +=+确定函数()y y x =,求dy dx【解1】:()()()()()()22222s i n 2c o s 22x y x y e y x y e y x y y x y x y '''''+=+⇒⋅++=+⋅+()()22222cos 22cos xyxy x x y ye y xe y y x y +-'⇒=+-+ 【解2】:1)()()222,sin xy F x y e y x y =+-+ ()()22222cos ,22cos xy xy x y F ye x x y F xe y y x y ''=-+=+-+2)()()()()222222222cos 2cos 2cos 2cos xy xy x xy xy y ye x x y x x y ye F dy dx F xe y x y xe y x y -++-'=-=-='-+-+ 20、设函数(),z z x y =由方程22xy z e z e -+-=所确定,求212x y dz ==-【解】:1)(),,22xy z F x y z e z e -=+--, 12,12x y z ==-⇒= ,,2xy xy z x y z F ye F xe F e --'''=-=-=- 12,,12224xy x z x y z z F z ye z e x F e xe -==-='∂∂=-=⇒='∂-∂-, 12,,12222xy y z x y z z F z xe z e y F e y e -==-='∂∂=-=⇒='∂-∂- 2)2122242x y e e dzdx dy e e==-=+-- 21、设()22,y z xf xy g x y x ⎛⎫=++ ⎪⎝⎭,求z x ∂∂;z y ∂∂ 【解】:1)()()1222z y f xy xyf xy xg g x x ∂'''=++-∂2)()21212z x f xy yg g y x∂'''=++∂三、证明题1、设()2arcsin 3y z xy x =+,证明:220z z x xy y x y∂∂-+=∂∂ 2、设()2sin 2323x y z x y z +-=+-,证明:1z z x y ∂∂+=∂∂ 设()(),,2sin 2323F x y z x y z x y z =+---+。
第二章 导数与微分练习题及习题详细解答练习题2.11.已知质点作直线运动的方程为23s t =+,求该质点在5t =时的瞬时速度.解 由引例2.1可知,质点在任意时刻的瞬时速度d 2d sv t t==.代入5t =,得10v =. 2.求曲线cos y x =在点π(6处的切线方程和法线方程. 解 由导数的几何意义知,曲线cos y x =在π(6点切线的斜率 ππ661(cos )(sin )2x x k x x =='==-=-,所以,切线方程为1π()226y x -=--,即612π=0x y +-.法线方程为π2()6y x =-,即1262π=0x y -+. 3.讨论函数32,0()31,013,1x f x x x x x ⎧≤⎪=+<≤⎨⎪+>⎩在0x =和1=x 处的连续性与可导性.解 在0x =处,0lim ()lim 22x x f x --→→==,0lim ()lim (31)1x x f x x ++→→=+=, 由于0lim ()lim ()x x f x f x -+→→≠,所以不连续,根据可导与连续的关系知,也不可导. 在1x =处,11lim ()lim(31)4x x f x x --→→=+=,311lim ()lim(3)4x x f x x ++→→=+=,(1)4f =, 所以连续.又00(1)(1)3(1)lim lim 3x x f x f xf x x---∆→∆→+∆-∆'===∆∆, 2300(1)(1)33()()(1)lim lim 3x x f x f x x x f x x+++∆→∆→+∆-∆+∆+∆'===∆∆,所以可导.4.已知函数()f x 在点0x 处可导,且0()f x A '=,求下列极限:000(5)()(1)limx f x x f x x ∆→-∆-∆; 000(2)()(2)lim h f x h f x h →+-解 (1)000000(5)()(5)()55()55limlim x x f x x f x f x x f x f x A x x ∆→∆→-∆--∆-'=-=-=-∆-∆;(2)000000(2)()(2)()22()22limlim h h f x h f x f x h f x f x A h h →→+-+-'===.5.求抛物线2y x =上平行于直线43y x =-+的切线方程.解 由于切线平行于43y x =-+,所以斜率为4k =-.又2k y x '==,所以2x =-.对应于抛物线上的点为(2,4)-,所以切线方程为44(2)y x -=-+,即440x y ++=.练习题2.21.求下列函数的导数:(1)100(21)y x =-; (2)22e xxy +=;(3)sin(3π)y x =+; (4)2cos y x =; (5)2e sin x y x =; (6)2ln(1)y x =+; (7)tan 2y x =; (8)cot 3y x =; (9)arctan(31)y x =+; (10)arcsin(41)y x =+. 解 (1)9999100(21)(21)200(21)y x x x ''=--=-; (2)22222e (2)e (41)xxxxy x x x ++''=+=+;(3)cos(3π)(3π)3cos(3π)y x x x ''=+⋅+=+; (4)2cos (cos )2sin cos sin 2y x x x x x ''=⋅=-=-;(5)22222(e )sin e (sin )2e sin e cos e (2sin cos )xxxxxy x x x x x x '''=+=+=+; (6)22212(1)11x y x x x''=⋅+=++; (7)22sec 2(2)2sec 2y x x x ''=⋅=; (8)22csc 3(3)3csc 3y x x x ''=-⋅=-;(9)2213(31)1(31)1(31)y x x x ''=⋅+=++++;(10)(41)y x ''=+=2.设y =d d y x .解对于y =[]1ln ln(1)ln(2)ln(3)ln(4)3y x x x x =+++-+-+ 两边对x 求导,得111111()31234y y x x x x '=+--++++ 所以1111()1234y x x x x '=+--++++ 3.求曲线31x ty t =+⎧⎨=⎩上,点(1,0)处的切线方程. 解 点(1,0)对应参数t 的值为0. 设k 为曲线上对应(1,0)点的切线斜率,则32000d ()30d (1)1t t t y t t k x t ==='===='+,于是,所求切线方程为0y =,即x 轴.4.求由方程3330y x xy --=所确定的隐函数的导数d d y x. 解 方程两边对x 求导,可得22333()0y y x y xy ''--+=由上式解出y ',便得隐函数的导数为22x yy y x+'=-(20y x -≠). 练习题2.31.求下列函数的微分:(1)22sin 34y x x x =+-+; (2)2ln y x x x =-; (3)2(arccos )1y x =-; (4)arctan y x x =; (5)ln tan 2x y =; (6)sin ln 57xy x x x x=++-; (7)1cos 2xy -=; (8)3(e e )x x y -=+.解 (1)22d (sin 34)d (2sin 23)d y x x x x x x x '=+-+=+-; (2)2d (ln )d (ln 12)d y x x x x x x x '=-=+-; (3)2d ((arccos )1)d y x x x '=-=;(4)2d (arctan )d (arctan )d 1xy x x x x x x '==++; (5)2111d (ln tan )d sec d d csc d 222sin tan 2x x y x x x x x x x '==⋅⋅==;(6)2sin cos sin d (ln 57)d (ln 6)d x x x xy x x x x x x x x-'=++-=++; (7)11cos cos d (2)d 2ln 2sec tan d xxy x x x x --'==-⋅;(8)32d (e e )d 3(e e )(e e )d x x x x x xy x x ---'⎡⎤=+=+-⎣⎦. 2.填空. (1)23d d()x x =(2)21d d()1x x =+ (3)2cos2d d()x x = (4)21d d()x x= 解 (1)3x C +; (2)arctan x C +; (3)sin 2x C +; (4)1C x-+. 3解=()f x =064x =,1x ∆=.因为000()()()f x x f x f x x '+∆≈+∆,()f x ''==所以1188.062516=≈=+=.4.半径为10m 的圆盘,当半径改变1cm 时,其面积大约改变多少?解 圆盘面积函数为2S πR =,并取0R 10m =,R 1cm 0.01m ∆==.因为 S 2πR '= 所以面积改变量2S dS 2πR R 2π100.010.2π0.628m ∆≈=⋅∆=⨯⨯=≈.习题二1.如果函数()f x 在点0x 可导,求:(1)000()()limh f x h f x h →--; (2)000()()lim h f x h f x h hαβ→+--.解 (1)0000000()()()()limlim ()h h f x h f x f x h f x f x h h →-→----'=-=--; (2)00000000()()()()()()lim lim h h f x h f x h f x h f x f x f x h h hαβαβ→→+--+-+--=0000000()()()()limlim ()()h h f x h f x f x h f x f x h hαβαβαβαβ→→+---'=+=+-2.求函数3y x =在点(2,8)处的切线方程和法线方程. 解 由导数的几何意义,得3222()312x x k x x =='===切,112k =-法. 所以,切线方程为812(2)y x -=-即12160x y --=.法线方程为18(2)12y x -=--即12980x y +-=.3.设2, 1(), 1x x f x ax b x ⎧≤=⎨+>⎩,试确定,a b 的值,使()f x 在1x =处可导.解 若()f x 在1x =处可导,则必在1x =处连续.1lim ()1x f x -→=,1lim ()x f x a b +→=+, 11lim ()lim ()x x f x f x -+→→=,即1a b +=. 又2111()(1)1(1)limlim lim(1)211x x x f x f x f x x x ----→→→--'===+=--, 111()(1)1(1)(1)lim lim lim 111x x x f x f ax b a x f a x x x ++-+→→→-+--'====--- 所以 2a =,1b =-. 4.求下列各函数的导数:(1)231251y x x x =-++; (2)2sin y x x =; (3)1cos y x x =+; (4)1ln 1ln xy x-=+.解 (1)23413(251)45y x x x x x''=-++=++;(2)22(sin )2sin cos y x x x x x x ''==+; (3)221(cos )sin 1()cos (cos )(cos )x x x y x x x x x x '+-''==-=+++;(4)21ln (1ln )(1ln )(1ln )(1ln )()1ln (1ln )x x x x x y x x ''--+--+''==++ 2211(1ln )(1ln )2(1ln )(1ln )x x x x x x x -+--==-++ . 5.求下列函数的导数:(1)36()y x x =-; (2)y =;(3)2sin (21)y x =-; (4)21sin y x x=; (5)ln1xy x=-; (6)[]ln ln(ln )y x =; (7)ln(y x =; (8)arcsin 2x y x =+解 (1)3533526()()6()(31)y x x x x x x x ''=--=--;(2)322(1)y x -'==-; (3)2sin(21)cos(21)(21)2sin(42)y x x x x ''=-⋅-⋅-=-; (4)22221111111()sin(sin )2sin cos ()2sin cos y x x x x x x x x x x x x'''=+=+⋅-=-; (5)lnln ln(1)1x y x x x ==---,∴1111(1)y x x x x -'=-=--; (6)[]{}[]1ln ln(ln )ln(ln )(ln )ln ln(ln )y x x x x x x ''''=⋅⋅=;(7)((1y x ''==+=;(8)1arcsin22x y '=++arcsin arcsin 22x x=+=.6.若以310cm /s 的速率给一个球形气球充气,那么当气球半径为2cm 时,它的表面积增加的有多快?解 设气球的体积为V ,半径为R ,表面积为S ,则34π3V R =,24πS R =. d d d d d d V V R t R t =⋅,d d d d d d S S Rt R t =⋅, 2d d d d dV 12d 8πd d d d dt 4πd S S V R V R t R t V R R t ∴=⋅⋅=⋅⋅=, 将3d 10cm /s d V t =,2cm R =代入得,2d 10cm /s d St=.7.求下列函数的高阶导数:(1)2sin 2y x x =,求y '''; (2)y =5x y =''. 解 (1)Q 22sin 22cos2y x x x x '=+,22sin 24cos24cos24sin 2y x x x x x x x ''=++-22sin 28cos 24sin 2x x x x x =+-,∴24cos28cos216sin 28sin 28cos2y x x x x x x x x '''=+---212cos 224sin 28cos 2x x x x x =--.(2)Q 2y '==y ''==23222(24)(16)x x x -=-,∴5x y =''1027=. 8.求由下列方程所确定的隐函数的导数: (1)3330y x xy +-=; (2)arctan ln yx=. 解 (1)方程两边对x 求导,得22333()0y y x y xy ''+-+=,从中解出y ',得22y x y y x-'=-. (2)方程两边对x 求导,得2222112221()xy y x yy y x x y x''-+⋅=⋅++, 从中解出y ',得x yy x y+'=-. 9.用对数求导法求下列各函数的导数:(1)y =; (2)cos (sin )x y x = (s i n 0)x >.解 (1)方程两边取对数,得11ln ln(23)ln(6)ln(1)43y x x x =++--+,两边对x 求导,得1211234(6)3(1)y y x x x '=+-+-+, 即211[234(6)3(1)y x x x '=+-+-+ (2)方程两边取对数,得cos ln ln(sin )cos lnsin x y x x x ==⋅两边对x 求导,得11sin ln sin cos cos sin y x x x x y x'=-⋅+⋅⋅ sin lnsin cos cot x x x x =-⋅+⋅,即cos (sin )(sin lnsin cos cot )x y x x x x x '=-⋅+⋅.10.求由下列各参数方程所确定的函数()y y x =的导数:(1)33cos sin x a t y b t ⎧=⎪⎨=⎪⎩; (2)e cos e sin tt x t y t ⎧=⎪⎨=⎪⎩,求π2d d t y x =. 解 (1)22d d 3sin cos d tan d d 3cos sin d yy b t t bt t x x a t t a t===--;(2)Q d d e (sin cos )sin cos d d d e (cos sin )cos sin d t t yy t t t tt x x t t t t t++===--, ∴π2d d t y x =π2sin cos 101cos sin 01t t tt t=++===---. 11.求下列函数的微分: (1)ln sin2x y =; (2)1arctan 1x y x+=-; (3)e 0x yxy -=; (4)24ln y y x +=.解 (1)111d (lnsin )d (cos )d cot d 22222sin 2x x xy x x x x '==⋅⋅=; (2)2221(1)(1)1d d d 1(1)11()1x x y x x x x x x-++=⋅=+-++- (3)方程两边同时取微分,得d(e )d()0x yxy -=,2d de (d d )0x yy x x yy x x y y-⋅-+=, 整理得22d d xy y y x x xy-=+.(4)方程两边同时取微分,得312d d 4d y y y x x y+=, 整理得324d d 21x yy x y =+.12.利用微分求近似值:(1)sin3030︒'; (2解 (1)设()sin f x x =,则0π306x ︒==,π30360x '∆==,()cos f x x '=.11 / 11 000sin3030()()()f x x f x f x x ︒''=+∆≈+∆πππsincos 0.507666360=+⋅≈ (2)设()f x =064x =,1x ∆=,561()6f x x -'=.000()()()f x x f x f x x '=+∆≈+∆5611(64)12 2.00526192-⋅=+≈ 13.已知单摆的振动周期2T =2980cm/s g =,l 为摆长(单位为cm ),设原摆长为20cm ,为使周期T 增大0.05s ,摆长约需加长多少?解由2T =224πgT l =,02T =0.05s T ∆=,22πgT l '=. 所以027d 0.050.050.05 2.23cm 2ππgT l l l T '∆≈=⋅∆=⋅===≈, 即摆长约需加长2.23cm .。
大学第四版高等数学教材答案【前言】在大学学习的过程中,高等数学是一门非常重要的课程。
为了更好地帮助同学们进行学习,提供一个参考,下面是大学第四版高等数学教材的答案。
【第一章微分学】1.1 导数与微分练习题答案:1. 求函数f(x) = 3x^2 - 2x的导数。
答:f'(x) = 6x - 2.2. 计算函数f(x) = x^3 - 2x^2 + 4x - 1在x = 2处的导数。
答:f'(2) = 6.1.2 函数的凹凸性和拐点练习题答案:1. 求函数f(x) = x^3 - 3x^2 + 2x的凹凸性和拐点。
答:f''(x) = 6x - 6,令f''(x) = 0,解得x = 1。
当x小于1时,f''(x)小于0,函数凹;当x大于1时,f''(x)大于0,函数凸。
所以在x = 1处有拐点。
2. 设函数f(x) = x^4 - 8x^2 + 12x,求其在[-2, 4]上的最大值和最小值。
答:首先求f'(x) = 4x^3 - 16x + 12,求解得到导数的零点x = -2, 1, 2。
然后求解f''(x) = 12x^2 - 16,代入得到f''(-2) = 20, f''(1) = -4, f''(2) = 20。
通过计算得知,在x = -2处为极小值,x = 1处为极大值。
所以最小值为f(-2) = 20,最大值为f(1) = 5。
【第二章积分学】2.1 不定积分练习题答案:1. 求函数f(x) = 3x^2 - 2x + 1的不定积分。
答:∫(3x^2 - 2x + 1)dx = x^3 - x^2 + x + C,其中C为常数。
2. 计算不定积分∫(4x^3 - 6x^2 + 2x + 5)dx。
答:∫(4x^3 - 6x^2 + 2x + 5)dx = x^4 - 2x^3 + x^2 + 5x + C,其中C为常数。
第二章导数与微分(A)1 .设函数y 二f x ,当自变量x 由x 0改变到x 0 * e x 时,相应函数的改变量 y =()A. f x 0 : =x B . fx^_x C . f x 0 : =x f x 0D . f x 0 x2. 设f(x )在 x 处可,则曲区弋ix °)= () A. - f x oB . f -X 。
C . f x oD . 2f x o3 .函数f x 在点x 0连续,是f x 在点x 0可导的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件4.设函数y = f u 是可导的,且u =x 2,则dy=()dxA. f x 2B . xf x 2C . 2xf x 2D . x 2f x 25. 若函数f x 在点a 连续,则f x 在点a () A .左导数存在;B .右导数存在;C .左右导数都存在D .有定义6 . f(x)=x-2在点x=2处的导数是() A . 1 B . 0 C . -1 D .不存在 7.曲线y =2x 3 -5x 2 • 4x -5在点2,-1处切线斜率等于()A . 8B . 12C . -6D . 68. 设y=e f 卜且f(x 二阶可导,则y"=() A . e f (x ) B . e f *)f "(x ) C . e f (x )〔f "(x f "(x jD . e f (x X 【f *(x 9 + f*(x 》e axx < 09. 若f"〔b+sin2x, x,0在x=°处可导'则a,b的值应为()717118.210. 若函数f x 在点X o 处有导数,而函数 g x 在点X o 处没有导数,则 F X 二 f X g X , G X A f X — g X 在 x ° 处()A .一定都没有导数B . 一定都有导数C .恰有一个有导数D .至少一个有导数11. 函数fx 与g X 在X o 处都没有导数,则Fx 二fx^gx , G x i= f x -g x 在 X o 处()A .一定都没有导数B . 一定都有导数C .至少一个有导数D .至多一个有导数12. 已知F x 二f !g x 1,在x 二X 。
第二章 导数与微分(A)1.设函数()x f y =,当自变量x 由0x 改变到x x ∆+0时,相应函数的改变量=∆y ( )A .()x x f ∆+0B .()x x f ∆+0C .()()00x f x x f -∆+D .()x x f ∆0 2.设()x f 在0x 处可,则()()=∆-∆-→∆xx f x x f x 000lim( )A .()0x f '-B .()0x f -'C .()0x f 'D .()02x f ' 3.函数()x f 在点0x 连续,是()x f 在点0x 可导的 ( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 4.设函数()u f y =是可导的,且2x u =,则=dxdy( ) A .()2x f ' B .()2x f x ' C .()22x f x ' D .()22x f x 5.若函数()x f 在点a 连续,则()x f 在点a ( )A .左导数存在;B .右导数存在;C .左右导数都存在D .有定义 6.()2-=x x f 在点2=x 处的导数是( ) A .1 B .0 C .-1 D .不存在7.曲线545223-+-=x x x y 在点()1,2-处切线斜率等于( ) A .8 B .12 C .-6 D .68.设()x f e y =且()x f 二阶可导,则=''y ( )A .()x f e B .()()x f e x f '' C .()()()[]x f x f e x f ''' D .()()[](){}x f x f e x f ''+'29.若()⎩⎨⎧≥+<=0,2sin 0,x x b x e x f ax 在0=x 处可导,则a ,b 的值应为( )A .2=a ,1=bB . 1=a ,2=bC .2-=a ,1=bD .2=a ,1-=b10.若函数()x f 在点0x 处有导数,而函数()x g 在点0x 处没有导数,则()()()x g x f x F +=,()()()x g x f x G -=在0x 处( )A .一定都没有导数B .一定都有导数C .恰有一个有导数D .至少一个有导数11.函数()x f 与()x g 在0x 处都没有导数,则()()()x g x f x F +=,()()()x g x f x G -=在0x 处( )A .一定都没有导数B .一定都有导数C .至少一个有导数D .至多一个有导数 12.已知()()[]x g f x F =,在0x x =处可导,则( ) A .()x f ,()x g 都必须可导 B .()x f 必须可导C .()x g 必须可导D .()x f 和()x g 都不一定可导13.xarctg y 1=,则='y ( )A .211x +-B .211x + C .221x x +- D . 221x x +14.设()x f 在点a x =处为二阶可导,则()()=-+→hh a f h a f h 0lim ( )A .()2a f '' B .()a f '' C .()a f ''2 D .()a f ''- 15.设()x f 在()b a ,内连续,且()b a x ,0∈,则在点0x 处( )A .()x f 的极限存在,且可导B .()x f 的极限存在,但不一定可导C .()x f 的极限不存在D .()x f 的极限不一定存在 16.设()x f 在点a x =处可导,则()()=--→hh a f a f n 0lim。