极限与连续导数与微分习题课
- 格式:ppt
- 大小:967.50 KB
- 文档页数:21
微积分第三版上册课后练习题含答案微积分是数学的一个分支,它主要研究函数、极限、连续、导数、积分等概念和它们之间的关系。
微积分是自然科学、工程技术和经济管理等领域中不可或缺的数学工具。
本文将介绍微积分第三版上册的课后练习题,以及它们的答案和解析。
章节列表微积分第三版上册共分为12章,分别是:1.函数与极限2.导数及其应用3.曲线图形的相关概念4.定积分5.定积分应用6.不定积分7.不定积分的应用8.微分方程初步9.空间解析几何10.空间直线与平面11.空间曲面12.重积分每一章都包含了大量的练习题,这些题目是对每个章节中理论知识点的考察和巩固,同时也能够帮助读者构建更深入的理解。
练习题样例下面是微积分第三版上册第一章的一组练习题样例:1.1节练习1.求函数$f(x)=\\frac{x-1}{x+1}$在点x0=2处的导数。
2.求极限$\\displaystyle\\lim_{x \\to +\\infty}(\\sqrt{x^2+3x}-\\sqrt{x^2-5})$。
3.求函数$f(x)=\\sqrt{1+x}-1$的二阶导数。
1.2节练习1.求$f(x)=\\frac{1}{x}$的导函数和导数。
2.已知函数f(x)=x3+3x2+1,求它的单调区间和极值点。
3.求函数f(x)=x4−8x2的导函数和导数。
课后练习题答案微积分第三版上册的课后练习题答案可以在教材的补充练习答案中找到,答案涵盖了书中各章节的所有练习题。
下面是上述练习题的答案和解析。
1.1节练习答案1.$f'(2)=\\frac{2}{9}$2.$\\displaystyle\\lim_{x \\to +\\infty}(\\sqrt{x^2+3x}-\\sqrt{x^2-5})=+\\infty$3.$f''(x)=\\frac{1}{4(x+1)^{\\frac{3}{2}}}$1.2节练习答案1.$f'(x)=-\\frac{1}{x^2}$,$f''(x)=\\frac{2}{x^3}$2.f(x)在$(-\\infty,-1)$上单调递减,在$(-1,+\\infty)$上单调递增。
大一高数1-9的习题答案大一高数1-9的习题答案大一高数是大学数学的基础课程之一,对于理工科学生来说是非常重要的一门课程。
在学习过程中,习题是帮助我们巩固知识、提高能力的重要工具。
下面我将为大家提供大一高数1-9章节的习题答案,希望能对大家的学习有所帮助。
第一章:极限与连续1. 求以下极限:a) lim(x→2) (x^2 - 4) / (x - 2)答案:2b) lim(x→1) (x^2 - 1) / (x - 1)答案:2c) lim(x→0) sinx / x答案:12. 判断以下函数在给定点是否连续:a) f(x) = x^2 + 3x - 2, x = 2答案:连续b) f(x) = 1 / x, x = 0答案:不连续第二章:导数与微分1. 求以下函数的导数:a) f(x) = 3x^2 - 2x + 1答案:f'(x) = 6x - 2b) f(x) = sinx + cosx答案:f'(x) = cosx - sinxc) f(x) = e^x + ln(x)答案:f'(x) = e^x + 1 / x2. 求以下函数的微分:a) f(x) = 2x^3 - 5x^2 + 3x - 1答案:df(x) = (6x^2 - 10x + 3)dx b) f(x) = √x + ln(x)答案:df(x) = (1 / (2√x) + 1 / x)dx 第三章:定积分1. 求以下定积分:a) ∫(0 to 1) x^2 dx答案:1 / 3b) ∫(1 to 2) 2x dx答案:3c) ∫(0 to π) sinx dx答案:22. 求以下定积分:a) ∫(0 to 1) (x^3 + 2x^2 + x) dx 答案:7 / 12b) ∫(1 to 2) (2x^2 + 3x + 1) dx答案:19 / 3第四章:不定积分1. 求以下函数的不定积分:a) ∫(3x^2 - 2x + 1) dx答案:x^3 - x^2 + x + Cb) ∫(2sinx + cosx) dx答案:-2cosx + sinx + C2. 求以下函数的不定积分:a) ∫(2x^3 + 3x^2 + x) dx答案:(1 / 2)x^4 + x^3 + (1 / 2)x^2 + C b) ∫(e^x + 1 / x) dx答案:e^x + ln|x| + C第五章:级数1. 判断以下级数是否收敛:a) ∑(n = 1 to ∞) (1 / n^2)答案:收敛b) ∑(n = 1 to ∞) (1 / n)答案:发散2. 判断以下级数是否收敛:a) ∑(n = 1 to ∞) (1 / 2^n)答案:收敛b) ∑(n = 1 to ∞) (n / 2^n)答案:收敛第六章:多元函数微分学1. 求以下函数的偏导数:a) f(x, y) = x^2 + 2xy + y^2答案:∂f / ∂x = 2x + 2y, ∂f / ∂y = 2x + 2yb) f(x, y) = sinx + cosy答案:∂f / ∂x = cosx, ∂f / ∂y = -siny2. 求以下函数的全微分:a) f(x, y) = x^3 + 2xy^2答案:df = (3x^2 + 2y^2)dx + (4xy)dyb) f(x, y) = e^x + ln(y)答案:df = e^xdx + (1 / y)dy第七章:多元函数积分学1. 求以下二重积分:a) ∬(D) x^2 dA, D为单位圆盘答案:π / 3b) ∬(D) y dA, D为正方形区域,顶点为(0, 0), (1, 0), (0, 1), (1, 1) 答案:12. 求以下二重积分:a) ∬(D) (x + y) dA, D为上半平面答案:无穷大b) ∬(D) (2x + 3y) dA, D为单位正方形答案:5 / 2第八章:无穷级数1. 判断以下级数是否收敛:a) ∑(n = 1 to ∞) (1 / n^3)答案:收敛b) ∑(n = 1 to ∞) (1 / 2^n)答案:收敛2. 判断以下级数是否收敛:a) ∑(n = 1 to ∞) (n / 2^n)答案:收敛b) ∑(n = 1 to ∞) (n^2 / 2^n)答案:收敛第九章:常微分方程1. 求以下常微分方程的通解:a) dy / dx = x^2答案:y = (1 / 3)x^3 + Cb) dy / dx = 2x + 1答案:y = x^2 + x + C2. 求以下常微分方程的特解:a) dy / dx = y^2, y(0) = 1答案:y = 1 / (1 - x)b) dy / dx = 2x, y(0) = 3答案:y = x^2 + 3以上是大一高数1-9章节的习题答案,希望能对大家的学习有所帮助。
第二章 导数与微分练习题及习题详细解答练习题2.11.已知质点作直线运动的方程为23s t =+,求该质点在5t =时的瞬时速度.解 由引例2.1可知,质点在任意时刻的瞬时速度d 2d sv t t==.代入5t =,得10v =. 2.求曲线cos y x =在点π(6处的切线方程和法线方程. 解 由导数的几何意义知,曲线cos y x =在π(6点切线的斜率 ππ661(cos )(sin )2x x k x x =='==-=-,所以,切线方程为1π()226y x -=--,即612π=0x y +-.法线方程为π2()6y x =-,即1262π=0x y -+. 3.讨论函数32,0()31,013,1x f x x x x x ⎧≤⎪=+<≤⎨⎪+>⎩在0x =和1=x 处的连续性与可导性.解 在0x =处,0lim ()lim 22x x f x --→→==,0lim ()lim (31)1x x f x x ++→→=+=, 由于0lim ()lim ()x x f x f x -+→→≠,所以不连续,根据可导与连续的关系知,也不可导. 在1x =处,11lim ()lim(31)4x x f x x --→→=+=,311lim ()lim(3)4x x f x x ++→→=+=,(1)4f =, 所以连续.又00(1)(1)3(1)lim lim 3x x f x f xf x x---∆→∆→+∆-∆'===∆∆, 2300(1)(1)33()()(1)lim lim 3x x f x f x x x f x x+++∆→∆→+∆-∆+∆+∆'===∆∆,所以可导.4.已知函数()f x 在点0x 处可导,且0()f x A '=,求下列极限:000(5)()(1)limx f x x f x x ∆→-∆-∆; 000(2)()(2)lim h f x h f x h →+-解 (1)000000(5)()(5)()55()55limlim x x f x x f x f x x f x f x A x x ∆→∆→-∆--∆-'=-=-=-∆-∆;(2)000000(2)()(2)()22()22limlim h h f x h f x f x h f x f x A h h →→+-+-'===.5.求抛物线2y x =上平行于直线43y x =-+的切线方程.解 由于切线平行于43y x =-+,所以斜率为4k =-.又2k y x '==,所以2x =-.对应于抛物线上的点为(2,4)-,所以切线方程为44(2)y x -=-+,即440x y ++=.练习题2.21.求下列函数的导数:(1)100(21)y x =-; (2)22e xxy +=;(3)sin(3π)y x =+; (4)2cos y x =; (5)2e sin x y x =; (6)2ln(1)y x =+; (7)tan 2y x =; (8)cot 3y x =; (9)arctan(31)y x =+; (10)arcsin(41)y x =+. 解 (1)9999100(21)(21)200(21)y x x x ''=--=-; (2)22222e (2)e (41)xxxxy x x x ++''=+=+;(3)cos(3π)(3π)3cos(3π)y x x x ''=+⋅+=+; (4)2cos (cos )2sin cos sin 2y x x x x x ''=⋅=-=-;(5)22222(e )sin e (sin )2e sin e cos e (2sin cos )xxxxxy x x x x x x '''=+=+=+; (6)22212(1)11x y x x x''=⋅+=++; (7)22sec 2(2)2sec 2y x x x ''=⋅=; (8)22csc 3(3)3csc 3y x x x ''=-⋅=-;(9)2213(31)1(31)1(31)y x x x ''=⋅+=++++;(10)(41)y x ''=+=2.设y =d d y x .解对于y =[]1ln ln(1)ln(2)ln(3)ln(4)3y x x x x =+++-+-+ 两边对x 求导,得111111()31234y y x x x x '=+--++++ 所以1111()1234y x x x x '=+--++++ 3.求曲线31x ty t =+⎧⎨=⎩上,点(1,0)处的切线方程. 解 点(1,0)对应参数t 的值为0. 设k 为曲线上对应(1,0)点的切线斜率,则32000d ()30d (1)1t t t y t t k x t ==='===='+,于是,所求切线方程为0y =,即x 轴.4.求由方程3330y x xy --=所确定的隐函数的导数d d y x. 解 方程两边对x 求导,可得22333()0y y x y xy ''--+=由上式解出y ',便得隐函数的导数为22x yy y x+'=-(20y x -≠). 练习题2.31.求下列函数的微分:(1)22sin 34y x x x =+-+; (2)2ln y x x x =-; (3)2(arccos )1y x =-; (4)arctan y x x =; (5)ln tan 2x y =; (6)sin ln 57xy x x x x=++-; (7)1cos 2xy -=; (8)3(e e )x x y -=+.解 (1)22d (sin 34)d (2sin 23)d y x x x x x x x '=+-+=+-; (2)2d (ln )d (ln 12)d y x x x x x x x '=-=+-; (3)2d ((arccos )1)d y x x x '=-=;(4)2d (arctan )d (arctan )d 1xy x x x x x x '==++; (5)2111d (ln tan )d sec d d csc d 222sin tan 2x x y x x x x x x x '==⋅⋅==;(6)2sin cos sin d (ln 57)d (ln 6)d x x x xy x x x x x x x x-'=++-=++; (7)11cos cos d (2)d 2ln 2sec tan d xxy x x x x --'==-⋅;(8)32d (e e )d 3(e e )(e e )d x x x x x xy x x ---'⎡⎤=+=+-⎣⎦. 2.填空. (1)23d d()x x =(2)21d d()1x x =+ (3)2cos2d d()x x = (4)21d d()x x= 解 (1)3x C +; (2)arctan x C +; (3)sin 2x C +; (4)1C x-+. 3解=()f x =064x =,1x ∆=.因为000()()()f x x f x f x x '+∆≈+∆,()f x ''==所以1188.062516=≈=+=.4.半径为10m 的圆盘,当半径改变1cm 时,其面积大约改变多少?解 圆盘面积函数为2S πR =,并取0R 10m =,R 1cm 0.01m ∆==.因为 S 2πR '= 所以面积改变量2S dS 2πR R 2π100.010.2π0.628m ∆≈=⋅∆=⨯⨯=≈.习题二1.如果函数()f x 在点0x 可导,求:(1)000()()limh f x h f x h →--; (2)000()()lim h f x h f x h hαβ→+--.解 (1)0000000()()()()limlim ()h h f x h f x f x h f x f x h h →-→----'=-=--; (2)00000000()()()()()()lim lim h h f x h f x h f x h f x f x f x h h hαβαβ→→+--+-+--=0000000()()()()limlim ()()h h f x h f x f x h f x f x h hαβαβαβαβ→→+---'=+=+-2.求函数3y x =在点(2,8)处的切线方程和法线方程. 解 由导数的几何意义,得3222()312x x k x x =='===切,112k =-法. 所以,切线方程为812(2)y x -=-即12160x y --=.法线方程为18(2)12y x -=--即12980x y +-=.3.设2, 1(), 1x x f x ax b x ⎧≤=⎨+>⎩,试确定,a b 的值,使()f x 在1x =处可导.解 若()f x 在1x =处可导,则必在1x =处连续.1lim ()1x f x -→=,1lim ()x f x a b +→=+, 11lim ()lim ()x x f x f x -+→→=,即1a b +=. 又2111()(1)1(1)limlim lim(1)211x x x f x f x f x x x ----→→→--'===+=--, 111()(1)1(1)(1)lim lim lim 111x x x f x f ax b a x f a x x x ++-+→→→-+--'====--- 所以 2a =,1b =-. 4.求下列各函数的导数:(1)231251y x x x =-++; (2)2sin y x x =; (3)1cos y x x =+; (4)1ln 1ln xy x-=+.解 (1)23413(251)45y x x x x x''=-++=++;(2)22(sin )2sin cos y x x x x x x ''==+; (3)221(cos )sin 1()cos (cos )(cos )x x x y x x x x x x '+-''==-=+++;(4)21ln (1ln )(1ln )(1ln )(1ln )()1ln (1ln )x x x x x y x x ''--+--+''==++ 2211(1ln )(1ln )2(1ln )(1ln )x x x x x x x -+--==-++ . 5.求下列函数的导数:(1)36()y x x =-; (2)y =;(3)2sin (21)y x =-; (4)21sin y x x=; (5)ln1xy x=-; (6)[]ln ln(ln )y x =; (7)ln(y x =; (8)arcsin 2x y x =+解 (1)3533526()()6()(31)y x x x x x x x ''=--=--;(2)322(1)y x -'==-; (3)2sin(21)cos(21)(21)2sin(42)y x x x x ''=-⋅-⋅-=-; (4)22221111111()sin(sin )2sin cos ()2sin cos y x x x x x x x x x x x x'''=+=+⋅-=-; (5)lnln ln(1)1x y x x x ==---,∴1111(1)y x x x x -'=-=--; (6)[]{}[]1ln ln(ln )ln(ln )(ln )ln ln(ln )y x x x x x x ''''=⋅⋅=;(7)((1y x ''==+=;(8)1arcsin22x y '=++arcsin arcsin 22x x=+=.6.若以310cm /s 的速率给一个球形气球充气,那么当气球半径为2cm 时,它的表面积增加的有多快?解 设气球的体积为V ,半径为R ,表面积为S ,则34π3V R =,24πS R =. d d d d d d V V R t R t =⋅,d d d d d d S S Rt R t =⋅, 2d d d d dV 12d 8πd d d d dt 4πd S S V R V R t R t V R R t ∴=⋅⋅=⋅⋅=, 将3d 10cm /s d V t =,2cm R =代入得,2d 10cm /s d St=.7.求下列函数的高阶导数:(1)2sin 2y x x =,求y '''; (2)y =5x y =''. 解 (1)Q 22sin 22cos2y x x x x '=+,22sin 24cos24cos24sin 2y x x x x x x x ''=++-22sin 28cos 24sin 2x x x x x =+-,∴24cos28cos216sin 28sin 28cos2y x x x x x x x x '''=+---212cos 224sin 28cos 2x x x x x =--.(2)Q 2y '==y ''==23222(24)(16)x x x -=-,∴5x y =''1027=. 8.求由下列方程所确定的隐函数的导数: (1)3330y x xy +-=; (2)arctan ln yx=. 解 (1)方程两边对x 求导,得22333()0y y x y xy ''+-+=,从中解出y ',得22y x y y x-'=-. (2)方程两边对x 求导,得2222112221()xy y x yy y x x y x''-+⋅=⋅++, 从中解出y ',得x yy x y+'=-. 9.用对数求导法求下列各函数的导数:(1)y =; (2)cos (sin )x y x = (s i n 0)x >.解 (1)方程两边取对数,得11ln ln(23)ln(6)ln(1)43y x x x =++--+,两边对x 求导,得1211234(6)3(1)y y x x x '=+-+-+, 即211[234(6)3(1)y x x x '=+-+-+ (2)方程两边取对数,得cos ln ln(sin )cos lnsin x y x x x ==⋅两边对x 求导,得11sin ln sin cos cos sin y x x x x y x'=-⋅+⋅⋅ sin lnsin cos cot x x x x =-⋅+⋅,即cos (sin )(sin lnsin cos cot )x y x x x x x '=-⋅+⋅.10.求由下列各参数方程所确定的函数()y y x =的导数:(1)33cos sin x a t y b t ⎧=⎪⎨=⎪⎩; (2)e cos e sin tt x t y t ⎧=⎪⎨=⎪⎩,求π2d d t y x =. 解 (1)22d d 3sin cos d tan d d 3cos sin d yy b t t bt t x x a t t a t===--;(2)Q d d e (sin cos )sin cos d d d e (cos sin )cos sin d t t yy t t t tt x x t t t t t++===--, ∴π2d d t y x =π2sin cos 101cos sin 01t t tt t=++===---. 11.求下列函数的微分: (1)ln sin2x y =; (2)1arctan 1x y x+=-; (3)e 0x yxy -=; (4)24ln y y x +=.解 (1)111d (lnsin )d (cos )d cot d 22222sin 2x x xy x x x x '==⋅⋅=; (2)2221(1)(1)1d d d 1(1)11()1x x y x x x x x x-++=⋅=+-++- (3)方程两边同时取微分,得d(e )d()0x yxy -=,2d de (d d )0x yy x x yy x x y y-⋅-+=, 整理得22d d xy y y x x xy-=+.(4)方程两边同时取微分,得312d d 4d y y y x x y+=, 整理得324d d 21x yy x y =+.12.利用微分求近似值:(1)sin3030︒'; (2解 (1)设()sin f x x =,则0π306x ︒==,π30360x '∆==,()cos f x x '=.11 / 11 000sin3030()()()f x x f x f x x ︒''=+∆≈+∆πππsincos 0.507666360=+⋅≈ (2)设()f x =064x =,1x ∆=,561()6f x x -'=.000()()()f x x f x f x x '=+∆≈+∆5611(64)12 2.00526192-⋅=+≈ 13.已知单摆的振动周期2T =2980cm/s g =,l 为摆长(单位为cm ),设原摆长为20cm ,为使周期T 增大0.05s ,摆长约需加长多少?解由2T =224πgT l =,02T =0.05s T ∆=,22πgT l '=. 所以027d 0.050.050.05 2.23cm 2ππgT l l l T '∆≈=⋅∆=⋅===≈, 即摆长约需加长2.23cm .。
高等数学教案、第一章 函数、极限与与连续本章将在分别研究数列的极限与函数的极限的基础上,讨论极限的一些重要性质以及运算法则,函数的连续性,闭区间上连续函数的性质。
具体的要求如下:1. 理解极限的概念(理解极限的描述性定义,对极限的N -ε、δε-定义可在学习过程中逐步加深理解,对于给出ε求N 或δ不作过高要求)。
2. 掌握极限四则运算法则。
3. 了解极限存在准则(夹逼准则和单调有界准则),会用两个重要极限求极限。
4. 了解无穷小、无穷大及无穷小的阶的概念.能够正确运用等价无穷小求极限。
5。
理解函数在一点连续的概念,理解区间内(上)连续函数的概念。
6. 了解间断点的概念,会求函数的间断点并判别间断点的类型。
7. 了解初等函数的连续性和闭区间上连续函数的性质(最大、最小值定理、零点定理、介值定理)。
第一章共12学时,课时安排如下绪论 §1.1、函数 §1.2初等函数 2课时 §1。
4数列极限及其运算法则 2课时 §1.4函数极限及其运算法则 2课时 §1。
4两个重要极限 无穷小与无穷大 2课时 §1.4函数的连续性 2课时 第一章 习题课 2课时绪论数学:数学是研究空间形式和数量关系的一门学科,数学是研究抽象结构及其规律、特性的学科.数学具有高度的抽象性、严密的逻辑性和应用的广泛性。
关于数学应用和关于微积分的评价:恩格斯:在一切理论成就中,未必再有像17世纪下叶微积分的微积分的发现那样被看作人类精神的最高胜利了。
如果在某个地方我们看到人类精神的纯粹的和唯一的功绩,那就正是这里.华罗庚:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之迷,日用之繁,无处不用数学。
张顺燕:微积分是人类的伟大结晶,它给出了一整套科学方法,开创了科学的新纪元,并因此加强和加深了数学的作用。
……有了微积分,人类才有能力把握运动和过程;有了微积分,就有了工业革命,有了大工业生产,也就有了现代的社会。
微积分上册 一元函数微积分与无穷级数第2章 极限与连续2.1 数列的极限1.对于数列n x ,若a x k →2(∞→k ),a x k →+12(∞→k ),证明:a x n → (∞→n ). 证. 0>∀ε, a x k →2 (∞→k ), Z K ∈∃∴1, 只要122K k >, 就有ε<-a x k 2; 又因a x k →+12(∞→k ), Z K ∈∃∴2, 只要12122+>+K k , 就有ε<-+a x k 12. 取{}12,2m ax 21+=K K N , 只要N n >, 就有ε<-a x n , 因此有a x n → (∞→n ). 2.若a x n n =∞→lim ,证明||||lim a x n n =∞→,并举反例说明反之不一定成立.证明: a x n n =∞→lim ,由定义有:N ∃>∀,0ε,当N n >时恒有ε<-||a x n又 ε<-≤-||||||a x a x n n对上述同样的ε和N ,当N n >时,都有ε<-||||a x n 成立 ∴ ||||lim a x n n =∞→反之,不一定成立.如取 ,2,1,)1(=-=n x nn显然 1||lim =∞→n n x ,但n n x ∞→lim 不存在.2.2 函数的极限1. 用极限定义证明:函数()x f 当0x x →时极限存在的充要条件是左、右极限各自存在且相等.证: 必要性. 若()A x f x x =→0lim , 0>∀ε, 0>∃δ, 当δ<-<00x x 时, 就有()ε<-A x f . 因而, 当δ<-<00x x 时, 有()ε<-A x f , 所以()A x f x x =+→0lim ; 同时当δ<-<x x 00时, 有()ε<-A x f , 所以()A x f x x =-→0lim .充分性. 若()A x f x x =+→0lim ,()A x f x x =-→0lim . 0>∀ε, 01>∃δ, 当100δ<-<x x 时, 就有()ε<-A x f , 也02>∃δ, 当200δ<-<x x 时, 有()ε<-A x f . 取{}21,m in δδδ=,则当δ<-<00x x 时, 就有()ε<-A x f . 所以()A x f x x =→0lim .2.写出下列极限的精确定义:(1)A x f x x =+→)(lim 0,(2)A x f x =-∞→)(lim ,(3)+∞=+→)(lim 0x f x x ,(4)-∞=+∞→)(lim x f x ,(5)A x f x =+∞→)(lim .解:(1)设R x U f →)(:0是一个函数,如果存在一个常数R A ∈,满足关系:0,0>∃>∀δε,使得当δ<-<00x x 时,恒有ε<-|)(|A x f ,则称A 是)(x f 当+→0x x 时的极限,记作A x f x x =+→)(lim 0或 )()(0+→=x x A x f . (2)设R f D f →)(:是一函数,其中0,),,()(>>--∞⊃αααR f D .若存在常数R A ∈,满足关系:0)(,0>∈∃>∀R X ε,使得当X x -<时,恒有ε<-|)(|A x f 成立,则称A 是)(x f 当-∞→x 时的极限,记作:A x f x =-∞→)(lim 或 A x f =)()(-∞→x .(3)设R x U f →)(:0是任一函数,若0>∀M ,0>∃δ,使得当δ<-<00x x 时,恒有M x f >)(,则称当+→0x x 时)(x f 的极限为正无穷大,记作+∞=+→)(lim 0x f x x 或 +∞=)(x f )(0+→x x . (4)设R f D f →)(:是一函数,其中R f D ∈>+∞⊃ααα,0),,()(,若存在常数R A ∈,满足关系:0>∀M ,0)(>∈∃R X ,使得当X x >时,恒有M x f -<)(则称当+∞→x 时)(x f 的极限为负无穷大,记作:-∞=+∞→)(lim x f x 或 -∞=)(x f )(+∞→x .(5)设R f D f →)(:是一函数,其中R f D ∈>+∞⊃ααα,0),,()(,若存在常数R A ∈,满足关系:0,0>∃>∀X ε,使得当X x >时,恒有ε<-|)(|A x f 成立,则称A是)(x f 当+∞→x 时的极限,记作:A x f x =+∞→)(lim 或 A x f =)()(+∞→x .2.3 极限的运算法则1.求∑=∞→+⋯++Nn N n 1211lim. 解. ()()⎪⎭⎫ ⎝⎛+-=+=+=+⋯++111212211211n n n n n n n⎪⎭⎫ ⎝⎛+-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=+⋯++∑=1112111312121122111N N N n Nn 21112lim 211lim1=⎪⎭⎫ ⎝⎛+-=+⋯++∴∞→=∞→∑N nN Nn N 2.求xe e xxx 1arctan11lim110-+→. 解. +∞=+→x x e 10lim , 0lim 10=-→xx e,,21arctan lim 11lim 1arctan11lim 0110110π=-+=-++++→--→→x ee x e e x xxx xxx ,21arctan lim 11lim 1arctan11lim 0110110π=-+=-+---→→→x e e x e e x x xx x x x 21arctan 11lim 110π=-+∴→x e e x xx3.设)(lim 1x f x →存在,)(lim 2)(12x f x x x f x →+=,求)(x f . 解:设 )(lim 1x f x →=A ,则A x x x f ⋅+=2)(2再求极限:A A A x x x f x x =+=⋅+=→→21)2(lim )(lim 211⇒ 1-=A∴ x x xA x x f 22)(22-=+=.4.确定a ,b ,c ,使 0)1(3)1()1(lim 2221=-+-+-+-→x x c x b x a x 成立.解:依题意,所给函数极限存在且 0)1(lim 21=-→x x∴ 0]3)1()1([lim 221=+-+-+-→x c x b x a x ⇒ 2=c∴ 上式左边=])32)(1(11[lim ))1(321(lim 21221++-+--+=-+-+-+→→x x x x b a x x x b a x x])32)(1(1)32([lim 221++---+++=→x x x x b a x同理有 0]1)32([lim 21=--++→x x b x ⇒ 21=b ∴ 163)23)(1(8)1(3lim )32)(1(1)32(21lim221221=++---=++---++-=→→x x x x x x xx a x x 故 2,21,163===c b a 为所求.2.4 极限存在准则1. 设1x =10,n n x x +=+61,( ,2,1=n ).试证数列{n x }的极限存在,并求此极限. 证: 由101=x , 4612=+=x x , 知21x x >. 假设1+>k k x x , 则有21166+++=+>+=k k k k x x x x . 由数学归纳法知, 对一切正整数n , 有1+>n n x x ,即数列{n x }单调减少. 又显然, () ,2,10=>n x n , 即{n x }有界. 故n n x ∞→lim 存在.令a x n n =∞→lim , 对n n x x +=+61两边取极限得a a +=6, 从而有062=--a a ,,3=∴a 或2-=a , 但0,0≥∴>a x n , 故3lim =∞→n n x2.证明数列 nn n x x x x ++=<<+3)1(3,3011收敛,并求其极限.证明:利用准则II ,单调有界必有极限来证明.∴301<<x ,由递推公式33312131213213)1(30111112=++<++=++=++=<x x x x x x∴ 302<<x 同理可证:30<<n x 有界又 03)3)(3(333)1(311112111112>++-=+-=-++=-x x x x x x x x x x∴ 12x x > 同理 23x x > ,… ,1->n n x x ∴数列 }{n x 单调递增,由准则II n n x ∞→lim 存在,设为A ,由递推公式有:AA A ++=3)1(3 ⇒ 3±=A (舍去负数)∴ 3lim =∞→n n x .3.设}{n x 为一单调增加的数列,若它有一个子列收敛于a ,证明a x n n =∞→lim .证明:设}{k n x 为}{n x 的一子列,则}{k n x 也为一单调增加的数列,且a x k k n n =∞→lim对于1=ε,N ∃,当N n >时有1||<-a x k n 从而||1||||||||a a a x a a x x k k k n n n +<+-≤+-=取|}|1|,|,|,max {|1a x x M N n n += ,对一切k n 都有 M x k n ≤|| 有界.由子列有界,且原数列}{n x 又为一单调增加的数列,所以,对一切n 有M x n ≤||有界,由准则II ,数列}{n x 极限存在且a x n n =∞→lim .2.5 两个重要极限1. 求]cos 1[cos lim n n n -++∞→.解: 原式 =21sin 21sin2lim nn n n n -+++-+∞→⎪⎪⎭⎫⎝⎛++=-+=-+-+-+++-=+∞→n n n n n n nn nn nn n 1110212121sin21sin2lim 2. 求)1sin(lim 2++∞→n n π.解. 原式=()()n nn n n nn n -+-=-+++∞→+∞→1sin 1lim )1sin(lim 22ππππ()()()()0111sin 1lim 222=-+⋅-+-+-=+∞→n nn n nnnn πππ3. 求x x xx )1cos 1(sinlim +∞→. 解. 原式=()[]()e t t t tttt tt xt =⎥⎦⎤⎢⎣⎡+=+=→→=22sin 2sin 10212012sin 1lim cos sin lim 令4. 设 ⎩⎨⎧+-=32)cos 1(2)(x x x x f 00≥<x x 求 20)(lim x x f x →. 解: 1lim )(lim 232020=+=++→→x x x x x f x x ,1)cos 1(2lim )(lim 2020=-=--→→x x x x f x x ∴ 1)(lim2=→xx f x .2.6 函数的连续性1. 研究函数()[]x x x g -=的连续性,并指出间断点类型. 解. n x =,Z n ∈ (整数集)为第一类 (跳跃) 间断点.2. 证明方程)0(03>=++p q px x 有且只有一个实根.证. 令()()()0,0,3>∞+<∞-++=f f q px x x f , 由零点定理, 至少存在一点ξ使得()0=ξf , 其唯一性, 易由()x f 的严格单调性可得.3.设⎪⎩⎪⎨⎧≤<-+>=-01),1ln(0 ,)(11x x x e x f x ,求)(x f 的间断点,并说明间断点的所属类型. 解. )(x f 在()()()+∞-,1,1,0,0,1内连续, ∞=-→+111lim x x e,0lim 111=-→-x x e, ()00=f , 因此,1=x 是)(x f 的第二类无穷间断点; (),lim lim 1110--→→==++e ex f x x x()()01ln lim lim 00=+=--→→x x f x x , 因此0=x 是)(x f 的第一类跳跃间断点.4.讨论nx nxn e e x x x f ++=∞→1lim )(2的连续性.解. ⎪⎩⎪⎨⎧<=>=++=∞→0,0,00,1lim)(22x x x x x e e x x x f nxnxn , 因此)(x f 在()()+∞∞-,0,0,内连续, 又()()00lim 0==→f x f x , ()x f ∴在()+∞∞-,上连续.5.设函数),()(+∞-∞在x f 内连续,且0)(lim=∞→xx f x ,证明至少存在一点ξ,使得0)(=+ξξf .证:令x x f x F +=)()(,则01]1)([lim )(lim>=+=∞→∞→x x f x x F x x ,从而0)(>xx F .由极限保号性定理可得,存在01>x 使0)(1>x F ;存在02<x 使0)(2<x F .)(x F 在],[12x x 上满足零点定理的条件,所以至少存在一点ξ使得0)(=ξF ,即0)(=+ξξf .6.讨论函数nnx x x x f 2211lim )(+-=∞→的连续性,若有间断点,判别其类型.解: ⎪⎩⎪⎨⎧-=101)(x f 1||1||1||>=<x x x ,显然 1±=x 是第一类跳跃间断点,除此之外均为连续区间.7.证明:方程)0,0(sin >>+=b a b x a x 至少有一个正根,且不超过b a +. 证明:设b x a x x f --=sin )(,考虑区间],0[b a +0)0(<-=b f ,0))sin(1()(≥+-=+b a a b a f ,当0))sin(1()(=+-=+b a a b a f 时,b a x +=是方程的根;当0))sin(1()(>+-=+b a a b a f 时,由零点定理,至少),0(b a +∈∃ξ使0)(=ξf ,即 0sin =--b a ξξ成立,故原方程至少有一个正根且不超过b a +.2.7 无穷小与无穷大、无穷小的比较1. 当0→x 时,下面等式成立吗?(1))()(32x o x o x =⋅;(2))()(2x o xx o =;(3) )()(2x o x o =. 解. (1)()()()002232→→=⋅x xx o x x o x , ()()()032→=⋅∴x x o x o x (2) ()()()0)(,00)()(2222→=∴→→=x x o x x o x x x o xxx o(3) ()2xx o不一定趋于零, )()(2x o x o =∴不一定成立(当0→x 时) 2. 当∞→x 时,若)11(12+=++x o c bx ax ,则求常数c b a ,,.解. 因为当∞→x 时,若)11(12+=++x o c bx ax , 所以01lim 111lim 22=+++=++++∞→+∞→c bx ax x x c bx ax x x , 故c b a ,,0≠任意.3.写出0→x 时,无穷小量3x x +的等价无穷小量.解: 11lim 1lim lim303630=+=+=+→→→x xx xxx x x x∴ 当0→x ,3x x +~6x第3章 导数与微分3.1 导数概念1. 设函数)(x f 在0x 处可导,求下列极限值. (1)hh x f h x f h )3()2(lim000--+→;(2)000)()(lim 0x x x xf x f x x x --→.解.(1) 原式()()()000000533)3(22)2(lim x f h x f h x f h x f h x f h '=⎥⎦⎤⎢⎣⎡⋅---+⋅-+=→(2) 原式()[]()()()()00000000)(limx f x f x x x x x x f x f x f x x x -'=----=→2.设函数R f →+∞),0(:在1=x 处可导,且),0(,+∞∈∀y x 有)()()(y xf x yf xy f += 试证:函数f 在),0(+∞内可导,且)1()()(f xx f x f '+='. 解:令1==y x ,由()()()y xf x yf xy f +=有()()121f f =得()01=f .()+∞∈∀,0x ,()()()()()()()()()()xx f f x x f xx f x x f x x f x f x x x x xf x x f x x x f x x f x x f x f x x x x +'=+∆-⎪⎭⎫⎝⎛∆+=∆-⎪⎭⎫ ⎝⎛∆++⎪⎭⎫ ⎝⎛∆+=∆-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∆+=∆-∆+='→∆→∆→∆→∆111lim 11lim 1lim lim 0000 故()x f 在()+∞,0内处处可导,且()()()xx f f x f +'='1. 3.设()f x 在(,)-∞+∞内有意义,且(0)0f =,(0)1f '=, 又121221()()()()()f x x f x x f x x ϕϕ+=+,其中22()cos xx x x e ϕ-=+, 求()f x '.解: ()()()()()()()()x x f x x f x x f x x f x x f x f x x ∆-∆+∆=∆-∆+='→∆→∆ϕϕ00lim lim()()()()()()()()()001lim 0lim 00ϕϕϕϕ'+'=∆-∆+∆-∆=→∆→∆x f x f xx x f x x f x f x x ()x e x x x 22cos -+==ϕ4.设函数0)(=x x f 在处可导,且21arctan lim )(0=-→x f x e x,求)0(f '.解:由已知,必有0]1[lim )(0=-→x f x e,从而0)(lim 0=→x f x ,而0)(=x x f 在连续,故0)0(=f .于是)0(1)0()(1lim )(lim 1arctan lim200)(0f xf x f x f x e x x x x f x '=-==-=→→→. 故21)0(='f .5.设)(x f 具有二阶导数,)(,sin )()2(lim )(2x dF t xx f t x f t x F t 求⎥⎦⎤⎢⎣⎡-+=∞→.解: 令t h 1=,则)(2 sin )()2(lim)(0x f x hhxh x f h x f x F t '=⋅-+=→.从而)(2)(2)(x f x x f x F ''+'=',dx x f x x f dx x F x dF )]()([2)()(''+'='=.6.设f 是对任意实数y x ,满足方程 22)()()(xy y x y f x f x f +++= 的函数,又假设1)(lim=→xx f x ,求:(1))0(f ;(2))0(f '; (3))(x f '. 解:(1)依题意 R y x ∈∀,,等式 22)()()(xy y x y f x f y x f +++=+ 成立令0==y x 有 )0(2)0(f f = ⇒ 0)0(=f(2)又 1)(lim=→x x f x ,即 )0(10)0()(lim 0f x f x f x '==--→,∴ 1)0(='f(3)xx f x x f x f x ∆-∆+='→∆)()(lim )(0x x f x x x x x f x f x ∆-∆⋅+∆⋅+∆+=→∆)()()()(lim 220 x x x x x x f x ∆∆⋅+∆⋅+∆=→∆220)()(lim ])([lim 20x x x xx f x ∆⋅++∆∆=→∆ ]1)0(22x x f +=+'=∴ 21)(x x f +='.7.设曲线)(x f y =在原点与x y sin =相切,试求极限 )2(lim 21nf nn ∞→. 解:依题意有 1)0()0(='='f y 且0)0(=f∴ 222)0()2(lim )2(lim 2121=⋅-⋅=⋅∞→∞→n nf n f n nf n n n .8.设函数)(x f 在0=x 处可导且0)0(,0)0(='≠f f ,证明1])0()1([lim =∞→nn f n f .证:n n n n f f n f f n f ])0()0()1(1[lim ])0()1([lim -+=∞→∞→.=10)0(11)0()01(lim )0()0()1(lim ===⋅-+-∞→∞→e ee f nf n f f f n f n n n .1.计算函数baxax xb ab y )()()(= (0,0>>b a )的导数.解. a xb bx a b a x xb a b a a x b a x a b x b x b a a x x b a b a b y )(1)()()()(ln )(121⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛+='-- ⎥⎦⎤⎢⎣⎡+-=x b x a a b a x x b a b b a x ln )()()( 2.引入中间变量,1)(2x x u +=计算1111ln 411arctan 21222-+++++=x x x y 的导数dx dy .解. 引入,1)(2x x u += 得11ln 41arctan 21-++=u u u y ,于是dxdudu dy dx dy ⋅=, 又 ()()4242422111111111141121x x x u u u u du dy +-=+-=-=⎪⎭⎫ ⎝⎛--+++=,21xx dx du +=, 则()22242121121xx x x x x x dx dy ++-=+⋅⎪⎭⎫⎝⎛+-= 3.设y y x +=2,232)(x x u +=,求dudy. 解. dudxdx dy du dy ⋅= , 又()()1223,12212++=+=x x x dx du y dy dx ,得121+=y dx dy , ()x x x du dx ++=21232, 则得()()xx x y du dy +++=2121232 4.已知 2arctan )(),2323(x x f x x f y ='+-=,求=x dx dy .解:22)23(12)2323arctan()2323()2323(+⋅+-='+-⋅+-'='x x x x x x x f y π43)23(12)2323arctan(02200=+⋅+-='=∴===x x x x x x y dxdy .1. 计算下列各函数的n 阶导数. (1) 6512-+=x x y ; (2) x e y xcos =. 解 (1)⎪⎭⎫⎝⎛+--=611171x x y ,()()()()()()⎥⎦⎤⎢⎣⎡+---=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-⎪⎭⎫⎝⎛-=∴++1161117!1611171n n nn n n x x n x x y (2) ()⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡-=-='4cos 2sin 21cos 212sin cos πx e x x e x x e y x x x()⎪⎭⎫ ⎝⎛⋅+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=''42cos 24sin 4cos 22πππx ex x e y xx由此推得 ()()⎪⎭⎫ ⎝⎛⋅+=4cos 2πn x eyxnn2. 设x x y 2sin 2=, 求()50y .解 ()()()()()()()()()()"+'+=248250249150250502sin 2sin 2sin x x C x x C x x y⎪⎭⎫ ⎝⎛⋅+⋅⨯+⎪⎭⎫ ⎝⎛⋅+⋅+⎪⎭⎫ ⎝⎛⋅+=2482sin 2249502492sin 2502502sin 24950250πππx x x x xx x x x x 2sin 212252cos 2502sin 24950250⋅+⋅+-= ()[]x x x x 2cos 1002sin 212252249+-=3. 试从y dy dx '=1, 0≠'y , 其中y 三阶可导, 导出()322y y dy x d '''-=, ()()52333y y y y dy x d '''''-''= 解 y dy dx '=1 ,()()322211y y y y y dy dx y dx d dyx d '''-='⋅'-''=⋅⎪⎪⎭⎫ ⎝⎛'=∴ ()()()()()()52623333313y y y y y y y y y y y dy dx y y dx d dy x d '''''-''='⋅'''⋅'⋅''+''''-=⋅⎪⎪⎭⎫ ⎝⎛'''-=∴ 4. 设()x f 满足()()0 312≠=⎪⎭⎫⎝⎛+x xx f x f , 求()()()()x f x f x f n ,,'.解 以x 1代x ,原方程为()x x f x f 321==⎪⎭⎫ ⎝⎛,由()()⎪⎪⎩⎪⎪⎨⎧=+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+x x f x f x x f x f 321 312,消去⎪⎭⎫⎝⎛x f 1,求得()x x x f 12-=,且得()212xx f +=',()()()()2!111≥-=++n x n x f n n n . 5.设()arcsin f x x =,试证明()f x 满足 (1)2(1)()()0x f x xf x '''--= (2) ,1,0,0)()()12()()1()(2)1()2(2==-+--++n x f n x xf n x f x n n n(3)求()(0)n f解 (1)()211x x f -=',()()()22221112211xx xx x x x f --=-⋅--='', ()()()012='-''-∴x f x x f x ,(2)上式两边对x 求n 阶导数得()()[]()()[]()()()()()()()()()()()()()()()[]x f n x xf x f n n x f x n x f x x f x x f x n n n n n nn⋅⋅+-⋅-⋅---+-='-''-=+++1221211021222即 ()()()()()()()()01212122=-+--++x f nx xf n x f xn n n 。
高等数学习题库淮南联合大学基础部2008年10月第一章 映射,极限,连续习题一 集合与实数集基本能力层次:1: 已知:A ={x|1≤x ≤2}∪{x|5≤x ≤6}∪{3},B={y|2≤y ≤3} 求:在直角坐标系内画出 A ×B解:如图所示A ×B ={(x,y )| ,x A y B ∈∈ }.2:证明:∵ P 为正整数,∴p =2n 或p =2n+1,当p =2n+1时,p 2=4n 2+4n+1,不能被2整除,故p =2n 。
即结论成立。
基本理论层次:习题二 函数、数列与函数极限基本能力层次1:解:2:证明:由得cxy ay ax b -=+即 ay bx cy a+=-,所以 ()x f y = 所以命题成立3:(1)22x y -= (2)lg(sin )y x = (3 []y x = (4)0,01,0x y x ≥⎧⎫=⎨⎬<⎩⎭解:4:用极限定义证明: 1lim1n n n →∞-=(不作要求)证明:因为 ω∀ 有11|1|n n n ω--=<成立,只要1n ω>取N =[1ω],则当n>N 时,就有11|1|n n nω--=<有定义变知1lim 1n n n →∞-=成立5:求下列数列的极限(1)lim 3n n n →∞ (2)222312limn n n →∞+++(3)(4)n 解:(1) 233nn n n <,又2lim 03nn x →∞=,所以 0lim 03n n n →∞≤≤ , 故:lim 3n n n →∞=0(2)由于2223312(1)(21)111(1)(2)6n n n n n n n n n+++++==++又因为:1111lim (1)(2)63n n n n →∞++=,所以:2223121lim3n n n →∞+++ (3)因为:所以:(4) 因为:111n n≤≤+,并且1lim(1)1n n →∞+=, 故由夹逼原理得1n =6:解:由于7:解:8:9:习题三无穷小与无穷大、极限运算法则及两个重要极限基本理论层次1:解:同理:(3),(4)习题四无穷小的比较、函数的连续及性质基本理论层次1:(1)(2)2:第二章一元微分学及应用习题一导数及求导法则、反函数及复合函数的导数.基本理论层次21,1,,,,1()(1)(1)lim lim 1x a b x bx x f x f bx x ⎧+≥⎪⎨-+<⎪⎩-+-==-2222-ax 1.设f(x)=试求常数使f(x)在x=1处可导。
第一章 函数极限与连续一、填空题1、已知x x f cos 1)2(sin +=,则=)(cos x f 。
2、=-+→∞)1()34(lim22x x x x 。
3、0→x 时,x x sin tan -是x 的阶无穷小.4、01sin lim 0=→xx kx 成立的k 为。
5、=-∞→x e xx arctan lim .6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。
7、=+→xx x 6)13ln(lim 0。
8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。
9、函数)2ln(1++=x y 的反函数为_________。
10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。
11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。
12、函数xxx f +=13arcsin )(的定义域是__________. 13、lim ____________x →+∞=。
14、设8)2(lim =-+∞→xx ax a x ,则=a ________.15、)2)(1(lim n n n n n -++++∞→=____________。
二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则中所给的函数必为奇函数。
(A))()(x g x f +;(B))()(x h x f +;(C))]()()[(x h x g x f +;(D ))()()(x h x g x f 。
2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有。
(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。
第二章-导数与微分习题第二章 导数与微分【内容提要】1.导数的概念设函数y =f (x )在x 0的某邻域(x 0-δ,x 0 + δ)(δ>0)内有定义,当自变量x 在点x 0处有改变量Δx 时,相应地,函数有改变量00()()y f x x f x ∆=+∆-.若0→∆x 时,极限xyx ∆∆→∆0lim 存在,则称函数y =f (x )在x =x 0处可导,称此极限值为f(x)在点x 0 处的导数,记为)(0x f '或)(0x y '或|x x y ='或0|d d x x xy=或0|d d x x xf=+→∆0x 时,改变量比值的极限xyx ∆∆+→∆0lim 称f(x)在x 0处的右导数,记为)(0x f +'。
-→∆0x 时,改变量比值的极限xy x ∆∆-→∆0lim 称f(x)在x 0处的左导数,记为)(0x f -'。
2.导数的意义导数的几何意义:)(0x f '是曲线y =f (x )在点(x 0,y 0)处切线的斜率,导数的几何意义给我们提供了直观的几何背景,是微分学的几何应用的基础。
导数的物理意义:路程对时间的导数)(0t s '是瞬时速度v (t 0) 。
以此类推,速度对时间的导数)(0t v '是瞬时加速度a (t 0)。
3.可导与连续的关系定理 若函数)(x f y =在点x 0处可导,则函数在点x 0处一定连续。
此定理的逆命题不成立,即连续未必可导。
4.导数的运算定理1(代数和求导法则)若u (x )和v (x )都在点x 处可导,则v u v u '±'='±)(定理2(积的求导法则)若u (x )和v (x )都在点x 处可导,则v u v u uv '+'=')(定理3(商的求导法则)若u (x )和v (x )都在点x 处可导,且v (x )≠0,则2v v u v u v u '-'='⎪⎭⎫ ⎝⎛定理4 若函数)(x g u =在点x 处可导,且)(u f y =在其相应点u 处可导,则复合函数)]([x g f y =在x 处可导,且xu x u y y '⋅'=' 或d d d d d d y y u x u x=⋅5.基本初等函数求导公式本节中我们已求出了所有基本初等函数的导数,整理所下:)(='C1)(-='μμμx xaa a x x ln )(=' xx e )e (='ax x a ln 1)(log =' xx 1)(ln ='xx cos )(sin =' xx sin )(cos -=' xx 2sec )(tan =' xx 2csc )(cot -=' xx x tan sec )(sec =' xx x cot csc )(csc -= 211)(arcsin x x -='211)(arccos x x --='211)(arctan xx +=' 211)cot arc (x+-='这些基本导数公式必须熟记,与各种求导法则、求导方法配合,可求初等函数的导数。