5[1].3.2命题、定理、证明导学案2
- 格式:doc
- 大小:26.50 KB
- 文档页数:2
5.3.2 命题、定理、证明【学习目标】1.了解命题、定理、证明的概念.能区分命题的题设和结论,并会判断真假.2.掌握推理证明的格式,并会证明简单命题的真假.【学习重点】理解命题的概念和区分命题的题设与结论.【学习难点】区分命题的题设和结论.,行为提示:引导学生认真阅读,积极思考,找出存在疑问的地方.,,行为提示:认真阅读课本,独立完成“自学互研”中的题目,在探究练习指导下自主完成有关练习.,,,方法指导:错误的命题也是命题,命题添加“如果”,“那么”后,命题的意义不能改变.,,方法指导:1.任何一个命题都可以写成“如果……那么……”的形式.“如果”后面的部分是题设,“那么”后接的是结论.,2.对题设和结论不明显的,将它写成“如果……那么……”的形式就可以分清它的题设和结论了.,,,,学习笔记:,\a\vs4\al(命,题)\b\lc\{(\a\vs4\al\co1(概念,结果:由题设和结论组成.,类别:\b\lc\{(\a\vs4\al\co1(真命题,假命题)))),,,,)情景导入生成问题旧知回顾:观察下列两组语句,回答下列问题.第一组:(1)在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行.(2)不等式的两边都加上或减去同一个数,不等号的方向不变.(3)对顶角相等.(4)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.第二组:(1)直线AB与CD平行吗?(2)过点A画直线l的垂线.(3)花儿为什么这样红?问题:1.上述两组语句有什么区别?2.与第二组相比,第一组的四个语句有什么共同特点?结论:第一组语句都是表示判断的陈述句,第二组语句则是疑问句或不表示判断的陈述句.自学互研生成能力【自主探究】认真阅读教材P20-21的内容,回答下面问题:1.判断一件事情的语句叫命题.每个命题都由题设和结论组成.2.如果题设成立,那么结论一定成立,这样的命题是真命题;题设成立,结论不一定成立,这样的命题是假命题.【合作探究】活动1:思考:(1)如果我们把具有第一组特征的语句叫做命题,你能给命题下个定义吗?(2)你能举出几个命题的例子吗?(3)命题的结构有什么特征?学生交流展示:表示判断性的语句叫命题,命题是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.对应练习:指出下列命题的题设和结论:(1)如果两个数互为相反数,那么这两个数的和为0;(2)两直线平行,内错角相等;(3)等式的两边同乘以一个数,结果仍是等式;(4)绝对值相等的两个数相等;(5)如果AB⊥CD,垂足O,那么∠AOC=90°.学生分小组讨论展示:(1)题设:两个数互为相反数;结论:这两个数的和为0;(2)题设:两直线平行;结论:内错角相等;(3)题设:等式两边同乘以一个数;结论:结果仍是等式;(4)题设:两个数的绝对值相等;结论:这两个数相等;(5)题设:AB⊥CD,垂足是O;结论:∠AOC=90°.活动2:思考:(1)观察下列命题,它们是否正确?①如果两个角相等,那么它们是对顶角.②如果a>b,b>c,那么a>c.③如果两个角互补,那么它们是邻补角.④任意两个直角都相等.(2)如何验证命题的真假?学生讨论、交流、形成共识.归纳结论:如果题设成立,那么结论一定成立的命题叫真命题;若命题的题设成立,结论不一定成立,这样的命题叫假命题.学习笔记:定理可作为继续推理的依据.行为提示:证明中的每一步推理都要有根据,不能“想当然”.这些根据,可以是已知条件,也可以是学过的定义、基本事实、定理等.学习笔记:一个命题的正确性需要经过证明,判断一个命题是假命题只需要举一个反例,说理过程应符合逻辑顺序,同时应注意语言规范和每一步的依据.【自主探究】完成下面问题:1.在前面,我们学过的一些图形的性质,都是真命题,其中哪些命题是基本事实?哪些命题的正确性是经过推理证实的?(学生回忆回答)2.什么是定理?答:命题的正确性是经过推理证实的,这样得到的真命题叫定理.3.在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理过程就叫证明.【合作探究】典例讲解:证明命题“在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于另一条”为例,来说明什么是证明.如图,已知直线b∥c,a⊥b.求证a⊥c.证明:∵a⊥b(已知),∴∠1=90°(垂直的定义),又b∥c(已知),∴∠1=∠2(两直线平行,同位角相等).∴∠2=∠1=90°(等量代换).∴a⊥c(垂直的定义).交流展示生成新知【交流预展】1.将阅读教材时“生成的新问题”和通过“自主探究、合作探究”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.【展示提升】知识模块一命题的概念及组成、分类知识模块二定理与证明检测反馈达成目标【当堂检测】1.下列语句不是命题的是( C )A.两点之间,线段最短B.不平行的两条直线有一个交点C.x与y的和等于0吗D.对顶角不相等2.下列真命题中定理是( B )A.若a是整数,则a是有理数B.对顶角相等C.直线上两点之间的部分叫线段D.锐角小于直角3.下列命题:①两点之间,线段最短;②两直线平行,同旁内角相等;③两个锐角的和是锐角;④同角或等角的补角相等.其中假命题的个数是( B )A.1个B.2个C.3个D.4个4.命题“邻补角的平分线互相垂直”的题设是如果两个角是邻补角,结论是这两个角的平分线互相垂直.5.在下面的括号内,填上推理的依据.如图,∠A+∠B=180°,求证∠C+∠D=180°.证明:∵∠A+∠B=180°,∴AD∥BC(同旁内角互补,两直线平行).∴∠C+∠D=180°(两直线平行,同旁内角互补).【课后检测】见学生用书课后反思查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________。
5.3.2命题、定理、证明主备人:肖曦1.了解命题的概念,会把一个命题写成“如果……,那么……〞的形式,会区分命题的题设和结论.2.了解真命题和假命题的概念,会对一个真命题进行证明,会通过举反例推断一个命题是假命题.3.在学习过程中,体会证明的必要性,开展初步的演绎推理能力.1.在以下语句中,哪些是命题为什么(1)你参加运动会吗(2)两条平行线被第三条直线所截,同位角相等.(3)连接A,B两点.(4)相等的两个角是对顶角.(2)(4),它们都是推断一件事情的语句.2.将上面的命题改写成“如果……,那么……〞的形式,再找出命题的题设和结论.(2)如果两条平行线被第三条直线所截,那么同位角相等.题设:两条平行线被第三条直线所截.结论:同位角相等.(4)如果两个角相等,那么这两个角是对顶角.题设:两个角相等.结论:两个角是对顶角.3.在上面的命题中,哪些是真命题哪些是假命题(2)是真命题,(4)是假命题.【归纳总结】1.推断一件事情的语句,叫作命题.命题由题设和结论两局部组成,题设是已知事项,结论是由已知事项推出的事项.2.对于一个命题,如果题设成立,那么结论肯定成立,这样的命题叫作真命题;如果题设成立时,不能保证结论肯定成立,这样的命题叫作假命题.【预习自测】见教材“练习〞第1题.解:(1)题设:AB⊥CD,垂足为O;结论:∠AOC=90°.(2)题设:∠1=∠2,∠2=∠3;结论:∠1=∠3.1.什么样的命题是定理请举例说明.经过推理证实的真命题叫做定理,如对顶角相等;内错角相等,两直线平行.2.说说什么是证明在证明时需要注意哪些问题一个命题的正确性需要经过推理,才能作出推断,这个推理的过程叫做证明.在证明时,每一步推理都要有依据.3.说说什么是反例要判定“同位角相等〞是假命题,你能举出哪些反例符合命题的题设,但不满足结论的例子是反例.如图,∠1和∠2是同位角,但∠1≠∠2.【归纳总结】通过证明可判定一个命题是真命题,通过举反例可判定一个命题是假命题.【商量】命题肯定是定理吗定理肯定是命题吗如果是,是什么命题命题不肯定是定理,定理肯定是命题,而且是真命题.互动探究1:以下语句不是命题的是(C)A.两点之间,线段最短B.同角的余角不肯定相等C.作线段AB的垂线D.对顶角相等吗【方法归纳交流】一般情况下作图言语、疑问句都不是命题.互动探究2:把以下命题改写成“如果……那么……〞的形式,并找出每个命题的题设和结论.(1)等角的补角相等;(2)直角都相等;(3)不相等的角不是对顶角.解:(1)如果两个角是相等的两个角的补角,那么这两个角的补角相等.题设:两个角是相等的角的补角,结论:这两个角相等.(2)如果几个角都是直角,那么这几个角相等.题设:几个是直角,结论:这几个角相等.(3)如果两个角不相等,那么这两个角不是对顶角.题设:两个角不相等,结论:这两个角不是对顶角.互动探究3:推断以下两个命题的真假,假设是假命题,请举出一个反例加以说明.(1)如果a>1,那么a>1;a,那么a>1.(2)如果a>1a解:(1)是真命题;(2)是假命题,答案不唯—,如:当a=-0.1时,1=-10,-0.1>-10,亦成立,此时a并不大于1.a互动探究4:见教材“习题5.3〞第13题(1).解:∠C,两直线平行,内错角相等;两直线平行,同旁内角互补.x变式训练]如图,给出以下五个命题:①∠1=∠5,②∠1=∠6,③∠4+∠5=180°,④∠3+∠4=180°,⑤∠2+∠7=180°.现在任取两个作为题设,以a∥b∥c作为结论,试写出一个真命题,并说明理由.解:答案不唯—,如用①∠1=∠5,③∠4+∠5=180°作题设.理由:∵∠1=∠5,∴a∥c.∵∠4+∠5=180°,∴b∥c,∴a∥b∥c.作业安排:全效学习课后反思:。
《命题、定理与证明》教案第一章:命题的概念与分类1.1 命题的定义引入命题的概念,让学生理解命题是由题设和结论组成的陈述句。
举例说明命题的正确性和错误性。
1.2 命题的分类分类介绍简单命题和复合命题,包括并列命题、蕴含命题和条件命题。
引导学生理解命题的逻辑关系,如且、或、非等。
第二章:定理与证明2.1 定理的定义与特点解释定理的概念,强调定理是经过证明的命题。
引导学生了解定理的重要性和应用价值。
2.2 证明的方法与要求介绍直接证明、反证法、归纳法等常见的证明方法。
强调证明的逻辑严密性和步骤完整性。
第三章:几何定理与证明3.1 几何定理的分类分类介绍几何定理,如三角形的性质定理、四边形的性质定理等。
强调几何定理在几何学中的基础性作用。
3.2 几何证明的基本步骤与技巧引导学生掌握几何证明的基本步骤,包括命题的引入、证明的假设、证明的逻辑推理和结论的得出。
介绍几何证明中常用的技巧,如相似三角形的性质、平行线的性质等。
第四章:代数定理与证明4.1 代数定理的分类分类介绍代数定理,如多项式的性质定理、方程的解的定理等。
强调代数定理在代数学中的基础性作用。
4.2 代数证明的基本步骤与技巧引导学生掌握代数证明的基本步骤,包括命题的引入、证明的假设、证明的逻辑推理和结论的得出。
介绍代数证明中常用的技巧,如因式分解、恒等式的性质等。
第五章:命题、定理与证明的应用5.1 命题、定理与证明在数学中的应用通过实际问题引入命题、定理与证明的应用,让学生理解其在数学问题解决中的重要性。
引导学生运用命题、定理与证明的方法解决实际问题。
5.2 命题、定理与证明在其他学科中的应用引导学生思考命题、定理与证明在其他学科中的应用,如物理学、化学等。
鼓励学生探索命题、定理与证明在生活中的应用。
第六章:逻辑推理与命题、定理6.1 逻辑推理的基本概念引入逻辑推理的概念,让学生理解逻辑推理是推理的一种,是思维的基本形式。
解释演绎推理、归纳推理和类比推理等逻辑推理的基本类型。
3.2 均值不等式(一)一、学习目标:1.掌握均值定理的推导2.培养学生应用均值定理分析问题、解决问题的能力.二、重点难点:重点:均值定理的推导极其应用难点:均值定理在实际问题中的应用三、学习过程:(一)自学教材,填空1.正数a 、b 的算术平均数为 ;几何平均数为 .2.均值不等式是 。
其中前者是 ,后者是 .如何给出几何解释?3.在均值不等式中a 、b 既可以表示数,又可以表示代数式,但都必须保证 ;另外等号成立的条件是 .4.试根据均值不等式写出下列变形形式,并注明所需条件(1)a 2+b 2 ( )(2)2b a ( ) (3)a b +ba ( )(4)ab≤ ( ) (5)x +x 1 (x>0)(6)x +x1 (x<0) 5.在用均值不等式求最大值和最小值时,必须注意a+b 或ab 是否为 值,并且还需要注意等号是否成立.(二)典型例题例1.已知a 、b 、c ∈(0,+∞),且a+b+c=1,求证a 1 +b 1+c1≥9.例2.(1)一个矩形的面积为100m 2。
问这个矩形的长、宽各为多少时,矩形的周长最短?最短周长是多少?(2)已知矩形的周长为36m 。
问这个矩形的长、宽各为多少时,它的面积最大?最大面积是多少?(三)课堂训练1.已知a 、b ∈(0,1)且a≠b ,下列各式中最大的是( )A .a 2+b 2B .2abC .2a bD .a +b2.判断下列不等式的证明过程中的正误,并指出错因。
(1)若a 、b ∈R ,则a b +ba ≥2b a a b ∙=2( ) (2)若x 、y ∈R +,则lgx +lgy≥2y x lg lg ∙( )(3)x ∈R -,则x +x4≥-2x x 4∙=-4( ) (4)若x ∈R ,则x 2+x -2≥2x x -∙22=2( )3.x ∈R ,下列不等式恒成立的是( )A .x 2+1≥xB .112+x <1 C .lg(x 2+1)≥lg(2x) D .x 2+4>4x 4.设x>0,则函数y=2-x 4-x 的最大值为 ;此时x 的值是 。
学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________5.3.2命题、定理与证明导学案一、学习目标:1.理解命题、定理及证明的概念,会区分命题的题设和结论;2.会判断真假命题,知道证明的意义及必要性,了解反例的作用.重点:理解命题、定理及证明的概念,会区分命题的题设和结论.难点:会区分命题的条件和结论,会判断命题的真假.二、学习过程:问题引入我们日常讲话中,有些话是对某件事情作出判断的,有些话只是对事物进行描述的,如:(1)中华人民共和国的首都是北京.……()(2)我们班的同学多么聪明!……………()(3)浪费是可耻的.………………………()(4)春天到了,花儿开了.………………()在数学学习中,同样有判断和描述这两类语言,如:(1)画线段AB=3厘米.……………………()(2)两条直线相交,只有一个交点.……()自学导航观察下列语句,它们有什么共同点?(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)两条平行线被第三条直线所截,同旁内角互补;(3)对顶角相等;学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________(4)等式两边加同一个数,结果仍是等式.【归纳】像上面这样,判断一件事情的语句,叫做________.命题的组成一般地,命题由______和_______两部分组成.题设:是___________;结论:是_______________.数学中的命题常可以写成“如果……,那么……”的形式,这时“如果”后接的部分是_____,“那么”后接的部分是_____.例如,命题(1)中,“两条直线都与第三条直线平行”是_____,“这两条直线也互相平行”是_____.(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;有些命题的题设和结论不明显,要经过分析才能找出题设和结论,从而将它写成“如果……,那么……”的形式.例如,命题(3)“对顶角相等”可以写成“如果两个角是对顶角,那么这两个角相等”.(2)两条平行线被第三条直线所截,同旁内角互补;___________________________________________________________________(4)等式两边加同一个数,结果仍是等式.___________________________________________________________________考点解析考点1:命题的定义和结构例1.判断下列语句是不是命题,如果是,改写成“如果……那么……”的形式,并指出它们的题设和结论.(1)画线段AB=2cm;学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________(2)你喜欢画画吗?(3)分数一定是有理数;(4)同角的补角相等;(5)两个锐角余.【迁移应用】1.下列语句中,不是命题的是()A.两点之间,线段最短B.内错角都相等C.连接A,B 两点D.平行于同一直线的两直线平行2.下列语句中,是命题的有()①两直线平行,同旁内角相等;②π不是有理数;③若a≠b,则a ≠b ;④明天会下雨吗?⑤在直线AB 上取一点P.A.2个B.3个C.4个D.5个3.把“在同一平面内,垂直于同一条直线的两条直线互相平行”改写成“如果……那么……”的形式是_______________________________________.4.指出下列命题的题设和结论:(1)如果∠1与∠2是内错角,那么∠1=∠2;(2)对顶角相等;(3)两个负数的和是负数._______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________自学导航真假命题真命题:如果题设______,那么结论________,这样的命题叫做真命题;假命题:命题中题设______时,______保证结论一定成立,这样的命题叫做假命题.(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)两条平行线被第三条直线所截,同旁内角互补;(3)对顶角相等;(4)等式两边加同一个数,结果仍是等式.【归纳】判断一个命题是假命题,只要举出一个例子(_____),它符合命题的题设,但不满足结论就可以了.考点解析考点2:真命题和假命题例2.判断下列命题是真命题还是假命题,如果是假命题举出一个反例.(1)钝角大于它的补角;(2)互补的两个角一个是钝角,一个是锐角;(3)在同一平面内,过直线外一点有且只有一条直线与已知直线垂直;(4)若|�|=|�|,则a=b;(5)若a+b=0,则|�|=|�|._______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________【迁移应用】1.下列选项中,可以用来说明命题“若a 2>4,则a>2”是假命题的反例是()A.a=-3B.a=-2C.a=2D.a=32.“两直线被第三条直线所截,同位角相等”是____命题(填“真”或“假”)3.下列命题:①同旁内角互补;②垂线段最短;③同一平面内,不重合的两条直线相交,则它们只有一个交点;④若一个角的两边与另一个角的两边分别平行,则这两个角相等.其中是真命题的是________(填序号)自学导航定理、证明如何证实一个命题是真命题呢?我们学过的一些图形的性质,都是真命题.其中有些命题是________(_____),如“两点确定一条直线”“经过直线外一点有且只有一条直线与这条直线平行”等.还有一些命题,如“对顶角相等”“内错角相等,两直线平行”等,它们的学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________正确性是经过__________的,这样得到的真命题叫做_______.定理也可以作为继续推理的_____.在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理过程叫做_______.考点解析考点3:定理与证明例3.如图,AB//CD,∠1=∠2,求证:AF//CG.【迁移应用】1.填空完成推理过程:如图,∠1=∠2,求证:∠B=∠BCD.证明:∵∠1=_______,∠1=∠2,∴∠2=_______.∴AB //CD (_______________________).∴∠B=∠BCD(_______________________).2.如图,已知∠A=∠ADE,∠C=∠E.求证:BE//CD.学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________考点4:填写推理过程和依据例4.完成下面的证明:如图,BC//DE,BE,DF 分别是∠ABC,∠ADE 的平分线.求证:∠1=∠2.证明:∵BC//DE,∴∠ABC=∠ADE (________________________).∵BE,DF 分别是∠ABC,∠ADE 的平分线,∴∠3=12∠ABC,∠4=12∠ADE.∴∠3=∠4∴_____∥______(________________________).∴∠1=∠2(________________________).【迁移应用】1.完成下面的证明:如图,AB⊥BC,BC⊥CD,且∠1=∠2.求证:BE//CF 证明:∵AB⊥BC,BC⊥CD,∴________=________=90°(___________)∵∠1=∠2,学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________∴∠ABC-∠1=∠DCB-∠2,即________=_________.∴BE//CF(_________________________).2.请补全证明过程及推理依据如图,D,E,F 分别是三角形ABC 的边AB,AC,BC 上的点,若AB//EF,∠DEF=∠B.求证:∠AED=∠C.证明:∵AB//EF,∴_______=∠EFC(________________________).∴∠DEF=∠B,∴∠DEF=∠EFC(__________),∴DE//BC(______________________),∴∠AED=∠C.考点5:填写推理过程和依据例5.如图,∠ACD 是∠ACB 的邻补角,请从下面三个语句中,选出两个作为条件,另一个作为结论,构造一个真命题.①CE//AB;学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________②∠A=∠B;③CE 平分∠ACD.(1)由上述条件可构造出哪几个真命题?按“⊕⊕⇒⊕”的形式写出来;(2)选择(1)中的一个真命题进行证明.【迁移应用】如图,现有以下三个条件:①AB//CD;②∠B=∠D;③∠E=∠F.请以其中两个为条件,第三个为结论构造新的命题;(1)请写出所有的命题:(写成“如果……那么……”的形式)(2)请选择其中的一个真命题进行证明.。
5.3.2命题、定理、证明(教案)(共五篇)第一篇:5.3.2 命题、定理、证明(教案)5.3.2 命题、定理、证明【知识与技能】1.知道什么叫做命题,什么叫真命题,什么叫做假命题,什么叫定理.2.理解命题由题设和结论两部分组成,能将命题写成“如果……那么……”的形式或“若……则……”的形式.【过程与方法】通过对若干个命题的分析,了解什么叫命题以及命题的组成,知道什么叫做真命题,什么做假命题,什么叫做定理.【情感态度】通过本节的学习使同学们明白命题在数学上的重要作用,不仅如此,命题在其它许多学科都有重要作用.【教学重点】命题的定义,命题的组成.【教学难点】命题的判断,真假命题的判断,命题的题设和结论的区分.一、情境导入,初步认识问题1 分析下列判断事情的语句,指出它们的题设和结论.(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行.(2)两条平行线被第三条直线所截,同旁内角互补.(3)对顶角相等.(4)等式两边加同一个数,结果仍是等式.问题2 判断下列语句,是不是命题,如果是命题,是真命题,还是假命题.(1)画线段AB=5cm.(2)两条直线相交,有几个交点?(3)如果直线a∥b,b∥c,那么a∥c.(4)直角都相等.(5)相等的角是对顶角.【教学说明】全班同学合作交流,即先分组完成上面的两个问题,然后交流成果,最后得出正确的答案.二、思考探究,获取新知思考1.真命题与定理有什么样的关系.2.对题设和结论不明显的命题,怎样找出它们的题设和结论.【归纳结论】1.命题:判断一件事情的语句,叫做命题.2.命题由题设和结论两部分组成3.真命题与假命题:正确的命题叫真命题,错误的命题叫假命题.4.定理是经过推理证实的真命题,是在今后推理中经常作为依据的一种真命题.但不是所有经过推理证实的真命题都把它当作定理.对于题设和结论不明显的命题,应先将它改写成“如果……那么……”的形式或“若……则……”的形式.一般来说,如果前面的部分是题设,那么后面的部分是结论.将这种命题改写成“如果……那么……”的形式时,那么后面的部分一定要简单明了.三、运用新知,深化理解判断下列命题是真命题还是假命题,如果是假命题.举出一个反例.(1)若a>b,则a2>b2.(2)两个锐角的和是钝角.(3)同位角相等.(4)两点之间,线段最短.【教学说明】本环节让同学们分组讨论,在合作交流中深刻理解命题的组成和真假命题的判断.【答案】略.四、师生互动,课堂小结请几名学生口答,然后由教师归纳,可用电脑课件放映到屏幕上.1.布置作业:从教材“习题5.3”中选取.2.完成练习册中本课时的练习.本节课的学习任务是让学生了解命题的概念,能区分命题的题设和结论,并初步认识真假命题.这节课一开始由教师提出问题,学生自学课本,让学生体验先学后教的理念,同时培养了学生的自学能力.第二篇:命题定理证明教案5、3命题定理证明教案学习目标:(1)了解命题的概念以及命题的构成(如果……那么……的形式).(2)知道什么是真命题和假命题.(3)理解什么是定理和证明.(4)知道如何判断一个命题的真假.学习重点:对命题结构的认识.理解证明要步步有据一、自学基础:(看书20页---22页)1、对一件事情___________________的语句,叫做命题。
英民中学七年级数学导学案班级:姓名:小组:编号:课题 5.3.2命题、定理、证明课型新授课课时第9课时学习目标1、了解命题、定理和证明的概念,会区分命题的假设和结论。
2、能判断命题的真假,并会对一个命题的正确性进行证明。
学习重难点:区分命题的题设和结论;证明一个命题的真假。
学习内容学法指导知识链接一、命题、定理、证明的定义1、判断一件事情的语句叫做________.命题由_______和________两部分组成,题设是__________,结论是____________。
2、_______________________________这样的命题叫做真命题。
________________________________这样的命题叫做假命题。
3.经过推理证实的真命题叫做________,定理可以作为继续推理的依据。
4.在很多情况下,______________________,______________ ______,这个推理的过程叫做证明。
二、例3:判断下面这句话:“两条直线被第三条直线所截,同位角相等。
”是不是命题?如果是命题,把它改写成“如果……那么……”的形式,并写出命题的假设与结论,判断命题的真假并证明。
解:这是一个_______.如果____________________,那么______________.这个命题的题设是____________________,结论是_________.这个命题是一个_____命题.证明:命题常可以写成“如果……那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论。
命题包括两种:真命题和假命题自学课本21页例2,并根据例2合作证明出导学案的例3,写出证明过程。
“对顶角相等”这个命题可以改写成“如果两个角是对顶角,那么这两个角相等”真命题的证明:要证明一个命题是真命题,就是证明凡符合题设的所有情况都能得出其结论。
假命题的证明:要证明一个命题是假命题,只需举出一个反例,它符合命题的题设,但不满足结论就可以了。