北京市xx初中—初一上期中考试数学试卷含答案
- 格式:doc
- 大小:561.50 KB
- 文档页数:6
2021学年北京XX附中七年级(上)期中数学试卷一、选择题(本大题共10道小题,每小题3分,共30分)1.﹣的相反数是()A.﹣8 B.C.0.8 D.82.神州十一号飞船成功飞向浩瀚宇宙,并在距地面约390000米的轨道上与天宫二号交会对接.将390000用科学记数法表示应为()A.3.9×104B.3.9×105C.39×104D.0.39×1063.下列各对数中,相等的一对数是()A.(﹣2)3与﹣23B.﹣22与(﹣2)2C.﹣(﹣3)与﹣|﹣3|D.与()2 4.下列说法中正确的是()A.是单项式B.﹣πx 的系数为﹣1C.﹣5不是单项式D.﹣5a2b 的次数是35.下列计算正确的是()A.x2y﹣2xy2=﹣x2y B.2a+3b=5abC.a3+a2=a5 D.﹣3ab﹣3ab=﹣6ab6.已知﹣2m6n与5m2x n y是的和是单项式,则()A.x=2,y=1 B.x=3,y=1 C.x=,y=1 D.x=1,y=37.关于多项式0.3x2y﹣2x3y2﹣7xy3+1,下列说法错误的是()A.这个多项式是五次四项式B.四次项的系数是7C.常数项是1D.按y降幂排列为﹣7xy3﹣2x3y2+0.3x2y+18.下列方程中,是一元一次方程的是()A.=3 B.x2+1=5 C.x=0 D.x+2y=39.已知ax=ay,下列等式变形不一定成立的是()A.b+ax=b+ay B.x=yC.x﹣ax=x﹣ay D.=10.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是()A.M或R B.N或P C.M或N D.P或R二、填空题(本大题共10道小题,每小题2分,共202111.比较大小:.12.1.9583≈(精确到百分位).13.若(a﹣1)2+|b+2|=0,则a﹣b﹣1=.14.设甲数为x,乙数比甲数的3倍少6,则乙数表示为.15.若a,b互为倒数,c,d互为相反数,则﹣c﹣d=.16.数轴上表示点A的数是最大的负整数,则与点A相距3个单位长度的点表示的数是.17.阅览室某一书架上原有图书2021规定每天归还图书为正,借出图书为负,经过两天借阅情况如下:(﹣3,+1),(﹣1,+2),则该书架上现有图书本.18.如果方程ax|a+1|+3=0是关于x的一元一次方程,则a的值为.19.若方程2x+1=﹣1的解也是关于x的方程1﹣2(x﹣a)=2的解,则a的值为.2021图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是.三.计算题(本大题共4道小题,每小题2021共202121.计算题(1)﹣2﹣1+(﹣16)﹣(﹣13);(2)25÷5×(﹣)÷(﹣);(3)(﹣+)×(﹣18);(4)﹣42+1÷|﹣|×(﹣2)2.四.化简求值题(本大题共2道小题,每小题4分,共8分)25.化简:﹣2x2﹣5x+3﹣3x2+6x﹣1.26.先化简,后求值:3(a2﹣ab+7)﹣2(3ab﹣a2+1)+3,其中a=2,b=.五.解方程(本大题共2道小题,每小题10分,共10分)27.解方程(1)4(2x﹣1)﹣3(5x+1)=14;(2)﹣=2.六.解答题(本大题共3道小题,每小题4分,共12分)29.有理数a,b在数轴上的对应点位置如图所示,且|a|=|c|.(1)用“<”连接这四个数:0,a,b,c;(2)化简:|a+b|﹣2|a|﹣|b+c|.30.已知:2x﹣y=5,求﹣2(y﹣2x)2+3y﹣6x的值.31.将6张小长方形纸片(如图1所示)按图2所示的方式不重叠的放在长方形ABCD内,未被覆盖的部分恰好分割为两个长方形,面积分别为S1和S2.已知小长方形纸片的长为a,宽为b,且a>b.当AB长度不变而BC变长时,将6张小长方形纸片还按照同样的方式放在新的长方形ABCD内,S1与S2的差总保持不变,求a,b满足的关系式.(1)为解决上述问题,如图3,小明设EF=x,则可以表示出S1=,S2=;(2)求a,b满足的关系式,写出推导过程.七.附加题(本大题共2021第32,33小题各6分,第34小题8分)32.填空题:(请将结果直接写在横线上)定义新运算“⊕”,对于任意有理数a,b有a⊕b=,(1)4(2⊕5)=.(2)方程4⊕x=5的解是.(3)若A=x2+2xy+y2,B=x2﹣2xy+y2,则(A⊕B)+(B⊕A)=.33.探究题:定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[﹣π]=﹣4.(1)如果[a]=﹣2,那么a可以是A.﹣15 B.﹣2.5 C.﹣3.5 D.﹣4.5(2)如果[]=3,则整数x=.(3)如果[﹣1.6﹣ []]=﹣3,满足这个方程的整数x共有个.34.阅读理解题:对于任意由0,1组成的一列数.将原有的每个1变成01,并将每个原有的0变成10称为一次变换.如101经过一次变换成为011001.请你经过思考、操作回答下列问题:(1)将11变换两次后得到;(2)若100101101001是由某数列两次变换后得到.则这个数列是;(3)一个10项的数列经过两次变换后至少有多少对两个连续相等的数对(即1100)?请证明你的结论;(4)01经过10次操作后连续两项都是0的数对个数有个.2021学年北京XX附中七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10道小题,每小题3分,共30分)1.﹣的相反数是()A.﹣8 B.C.0.8 D.8【考点】14:相反数.【分析】根据只有符号不同的两数叫做互为相反数解答.【解答】解:﹣的相反数是.故选B.2.神州十一号飞船成功飞向浩瀚宇宙,并在距地面约390000米的轨道上与天宫二号交会对接.将390000用科学记数法表示应为()A.3.9×104B.3.9×105C.39×104D.0.39×106【考点】1I:科学记数法—表示较大的数.【分析】数据绝对值大于10或小于1时科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:390 000=3.9×105,故选:B.3.下列各对数中,相等的一对数是()A.(﹣2)3与﹣23B.﹣22与(﹣2)2C.﹣(﹣3)与﹣|﹣3|D.与()2【考点】1E:有理数的乘方;14:相反数;15:绝对值.【分析】根据有理数的乘方的运算方法,相反数的含义和求法,以及绝对值的含义和求法,逐项判断即可.【解答】解:∵(﹣2)3=﹣8,﹣23=﹣8,∴(﹣2)3=﹣23,∴选项A正确.∵﹣22=﹣4,(﹣2)2=4,∴﹣22≠(﹣2)2,∴选项B不正确.∵﹣(﹣3)=3,﹣|﹣3|=﹣3,∴﹣(﹣3)≠﹣|﹣3|,∴选项C不正确.∵=,()2=,∴≠()2,∴选项D不正确.故选:A.4.下列说法中正确的是()A.是单项式B.﹣πx 的系数为﹣1 C.﹣5不是单项式D.﹣5a2b 的次数是3【考点】42:单项式.【分析】根据单项式与多项式的概念即可判断.【解答】解:(A)时多项式,故A错误;(B)﹣πx 的系数为﹣π,故B错误;(C)﹣5是单项式,故C错误;故选(D)5.下列计算正确的是()A.x2y﹣2xy2=﹣x2y B.2a+3b=5abC.a3+a2=a5 D.﹣3ab﹣3ab=﹣6ab【考点】35:合并同类项.【分析】先判断是否是同类项,再按合并同类项的法则合并即可.【解答】解:A、x2y和﹣2xy2不是同类项,不能合并,故本选项错误;B、2a和3b不是同类项,不能合并,故本选项错误;C、a3和a2不是同类项,不能合并,而a3•a2=a5,故本选项错误;D、﹣3ab﹣3ab=﹣6ab,故本选项正确;故选D.6.已知﹣2m6n与5m2x n y是的和是单项式,则()A.x=2,y=1 B.x=3,y=1 C.x=,y=1 D.x=1,y=3【考点】35:合并同类项.【分析】根据合并同类项的法则把系数相加即可.【解答】解:由题意,得2x=6,y=1,解得x=3,y=1,故选:B.7.关于多项式0.3x2y﹣2x3y2﹣7xy3+1,下列说法错误的是() A.这个多项式是五次四项式B.四次项的系数是7C.常数项是1D.按y降幂排列为﹣7xy3﹣2x3y2+0.3x2y+1【考点】43:多项式.【分析】根据多项式的概念即可求出答案.【解答】解:该多项式四次项是﹣7xy3,其系数为﹣7,故选(B)8.下列方程中,是一元一次方程的是()A.=3 B.x2+1=5 C.x=0 D.x+2y=3【考点】84:一元一次方程的定义.【分析】根据只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程进行分析即可.【解答】解:A、不是一元一次方程,故此选项错误;B、不是一元一次方程,故此选项错误;C、是一元一次方程,故此选项正确;D、不是一元一次方程,故此选项错误;故选:C.9.已知ax=ay,下列等式变形不一定成立的是()A.b+ax=b+ay B.x=yC.x﹣ax=x﹣ay D.=【考点】83:等式的性质.【分析】根据等式的性质,可得答案.【解答】解:A、两边都加b,结果不变,故A不符合题意;B、a=0时两边都除以a,无意义,故B符合题意;C、两边都乘以﹣1,都加x,结果不变,故C不符合题意;D、两边都除以同一个不为零的整式结果不变,故D不符合题意;故选:B.10.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是()A.M或R B.N或P C.M或N D.P或R【考点】15:绝对值;13:数轴.【分析】先利用数轴特点确定a,b的关系从而求出a,b的值,确定原点.【解答】解:∵MN=NP=PR=1,∴|MN|=|NP|=|PR|=1,∴|MR|=3;①当原点在N或P点时,|a|+|b|<3,又因为|a|+|b|=3,所以,原点不可能在N或P点;②当原点在M、R时且|Ma|=|bR|时,|a|+|b|=3;综上所述,此原点应是在M或R点.故选A.二、填空题(本大题共10道小题,每小题2分,共202111.比较大小:>.【考点】18:有理数大小比较.【分析】先计算|﹣|==,|﹣|==,然后根据负数的绝对值越大,这个数反而越小即可得到它们的关系关系.【解答】解:∵|﹣|==,|﹣|==,而<,∴﹣>﹣.故答案为:>.12.1.9583≈ 1.96(精确到百分位).【考点】1H:近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:1.9583≈1.96(精确到百分位)故答案为1.96.。
2024年北京版数学初一上学期期中复习试题(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、小明骑自行车去图书馆,他以每小时10千米的速度行驶,如果图书馆距离他出发地5千米,小明需要多少时间到达图书馆?A. 0.5小时B. 1小时C. 1.5小时D. 2小时2、一个长方形的长是12厘米,宽是8厘米,这个长方形的周长是多少厘米?A. 24厘米B. 40厘米C. 48厘米D. 96厘米)的正确的小数形式?3、下列哪个选项表示的是分数(23A、0.66B、0.666…C、0.67D、0.64、已知线段 AB 长度为 5 cm,在 AB 上取一点 C,使得 AC 是 BC 的两倍。
则 AC 和 BC 的长度分别是多少?A、AC = 3 cm, BC = 2 cmB、AC = 4 cm, BC = 1 cmC、AC = 2 cm, BC = 3 cmD、AC = 3.33 cm, BC = 1.67 cm5、已知二次函数y=ax^2+bx+c的图象开口向上,且顶点坐标为(1,-3),若函数图象经过点(-2,7),则a的值为()。
A、2B、1C、-2D、-16、在直角坐标系中,点A(-1,2)关于直线y=x的对称点为B,则点B的坐标是()。
A、(2,-1)B、(-1,2)C、(-2,1)D、(1,-2)7、已知一个正方形的边长为4厘米,那么这个正方形的面积是多少平方厘米?A. 8B. 12C. 16D. 208、如果(x+3=7),那么(x)的值是:A. 3B. 4C. 5D. 69、(1)若直线l的方程为2x - 3y + 6 = 0,则直线l的斜率为:A. 2B. -2C. 3D. -3 10、(2)在直角坐标系中,点A(1, 2)关于x轴的对称点为:A. (1, -2)B. (-1, 2)C. (1, 4)D. (-1, -2)二、填空题(本大题有5小题,每小题3分,共15分)1、已知一个正方形的周长是32厘米,则该正方形的面积为________ 平方厘米。
北京第数学七年级上册期中试卷含答案一、选择题1.下列实数:227,3.14159265,7,-8,32,0.6,0,36,3π无理数的个数是( ) A .1个B .2个C .3个D .4个2.精确到万位,并用科学记数法表示5109500≈________. 3.下列运算正确的是( ) A .()222ab a b =B .246+=a a aC .()325a a =D .236a a a =4.多项式||1(2)15m x m x -+-+是关于x 的二次三项式,则m 的值是( )A .2B .-2C .-4D .2或-25.如图所示的运算程序中,若开始输入的x 值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2017次输出的结果为( )A .8B .6C .4D .2 6.已知多项式3x 2﹣2(y ﹣x 2﹣1)+mx 2的值与x 无关,则m 的值为( )A .5B .1C .﹣1D .﹣57.数轴上A 、B 、C 三点表示的数分别是a 、b 、c ,若|a -c |-|a -b |=|c -b |.则下列选项中,表示A 、B 、C 三点在数轴上的位置关系正确的是( ) A . B . C .D .8.对于有理数a 、b ,定义min {a ,b }的含义为:当a <b 时,min {a ,b }=a ,例如:min {1,-2}=-2.已知min {30,a }=a ,min {30,b }=30,且a 和b 为两个连续正整数,则a -b 的立方根为( ) A .-1B .1C .-2D .29.由点组成的正方形,每条边上的点数n 与总点数s 的关系如图所示,则当n =50时,计算s 的值为( )A .196B .200C .204D .19810.如图,一根起点为0的数轴,现有同学将它弯折,弯折后虚线上第一行的数是0,第二行的数是6,第三行的数是21,第六行的数是( )A.78 B.120 C.145 D.171二、填空题11.如果温度上升4℃,记作+4℃,那么温度下降7℃记作______℃.12.单项式253a b的系数是 ________,次数是___________.13.按如图所示的程序计算:若开始输入的值为64,输出的值是_______.14.如图,甲、乙两动点分别从正方形ABCD的顶点A,C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行.若甲的速度是乙的速度的3倍,则它们第2017次相遇在边____上.15.已知|a|=5,b2=16,且ab<0,那么a﹣b的值为_____.16.有理数a、b、c在数轴上的位置如图:化简 | b-c|+|a+b|-|c-a|=_______.17.如图,都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,以此规律,第n个团有199个黑棋子,则n=__________.18.一个自然数若能表示为相邻两个自然数的平方差,则这个自然数为“智慧数”,比如:22﹣12=3,3就是智慧数,从0开始,不大于2020的智慧数共有_______个.三、解答题19.把下列各数在数轴上表示出来,并按从小到大的顺序用“<”连接起来. ()11.5,0,3,2.5,1,42------20.有理数计算: (1)20357-++- (2)11112426⎛⎫-+⨯ ⎪⎝⎭(3)2108(2)(4)(3)-+÷---⨯-21.已知:代数式A =4x 2+3xy ﹣2y ,B =﹣3x 2+9xy +6y .当x =13,y =﹣1时,求2A ﹣13B的值. 22.化简:(1)()22232x x x +-; (2)()()22225343a b ab ab a b ---+.23.对x ,y 定义一种新运算T ,规定T(x ,y)= (mx +ny)(x+2y) (其中m ,n 均为非零常数),如T(1,2)=5m+10n(1)若T(-1,1)=0且T(0,2)=8,则m=_______.(2)当u 2≠v 2 时,若T(u ,v)=T(v ,u)对任意有理数u ,v 都恒成立,则mn= ______ . 24.某服装厂生产一种西装和领带,西装每套定价为200元,领带每条定价30元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x 条.(x >20) (1)两种方案分别需要付款多少元?(用含x 的代数式表示) (2)若x =30,通过计算说明此时哪种方案购买较为合算.25.图1由若干个小圆圈组成的一个形如正三角形的图案,第1层有1个圆圈,每一层都比上一层多1个圆圈,一共堆了n 层.(1)如图1所示,第100层有 个小圆圈,从第1层到第n 层共有 个小圆圈; (2)我们自上往下按图2的方式排列一串连续的正整数1,2,3,…,则第20层的第5个数是 ;(3)我们自上往下按图3的方式排列一串整数31,﹣33,35,﹣37,…,则求从第1层到第20层的所有数的绝对值的和 .二26.已知:a 是最大的负整数,且a 、b 满足|c-7|+(2a+b)2=0,请回答问题:(1)请直接写出a 、b 、c 的值:a =_____,b =_____,c =_____;(2)数a 、b 、c 所对应的点分别为A 、B 、C ,已知数轴上两点间的距离为这两点所表示的数的差的绝对值(或用这两点所表示的数中较大的数减去较小的数),若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB ,试计算此时BC-AB 的值; (3)在(1)(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,则经过t 秒钟时,请问:BC-AB 的值是否随着时间t 的变化而改变?若变化,请说明理由,若不变,请求其值.【参考答案】一、选择题 1.C 解析:C 【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 【详解】 解:227是分数,属于有理数;3.14159265,0.6是有限小数,属于有理数; -836,0是整数,属于有理数; 7323,共3个. 故选:C . 【点睛】此题主要考查了无理数的定义,掌握实数的分类是解答本题的关键.2.【分析】科学记数法的表示形式为的形式,其中,n 为整数,且比原数的整数位少一位;取精确度时,需要精确到哪位就数到哪位,然后根据四舍五入的原理进行取舍. 【详解】 ,故答案为:. 【点睛】解析:65.1110⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,且比原数的整数位少一位;取精确度时,需要精确到哪位就数到哪位,然后根据四舍五入的原理进行取舍. 【详解】665109500 5.109510 5.1110=⨯≈⨯,故答案为:65.1110⨯. 【点睛】此题主要考查了科学记数法与有效数字,注意对一个数进行四舍五入时,若要求近似到个位以前的数位时,首先要对这个数用科学记数法表示. 3.A 【分析】根据积的乘方和幂的乘方运算法则可对A 、C 选项进行判断;根据合并同类项法则可对选项B 进行判断;根据同底数幂的运算法则可对选项D 进行判断. 【详解】A . ()222ab a b =,正确,故选项A 正确;B .2a 与4a 不是同类项,不能合并,故选项B 错误;C . ()326a a =,故选项C 错误;D . 235a a a =,故选项D 错误. 故选:A . 【点睛】本题老茧了同底数幂的乘法以及积的乘方和幂的乘方,熟练运用运算法则是解答此题的关键. 4.B 【分析】根据多项式的概念求解解. 【详解】解:∵多项式||1(2)15m x m x -+-+是关于x 的二次三项式,∴2m =,且m-2≠0, 解得 m=-2. 故选B . 【点睛】本题考查了多项式的概念,几个单项式的和叫做多项式,多项式中的每个单项式都叫做多项式的项,其中不含字母的项叫做常数项,多项式的每一项都包括前面的符号,多项式中次数最高的项的次数叫做多项式的次数.【分析】由48为偶数,将x=48代入12x计算得到结果为24,再代入12x计算得到结果为12,依此类推得到结果为6,将x=6代入12x计算得到结果为3,将x=3代入x+5计算得到结果为8,依次计算得到结果为4,将x=4代入12x计算得到结果为2,归纳总结得到一般性规律,即可确定抽2017次输出的结果.【详解】根据运算程序得到:除去前两个结果24,12,剩下的以6,3,8,4,2,1循环,∵(2017-2)÷6=335…5,则第2017次输出的结果为2,故选D.【点睛】此题考查了代数式求值,弄清题中的规律是解本题的关键.6.D【分析】先根据整式的加减法运算法则合并同类项,再令关于x的系数为零即可求得m 值.【详解】解:3x2﹣2(y﹣x2﹣1)+mx2=3x2﹣2y+2x2+2+mx2=(3+2+m)x2﹣2解析:D【分析】先根据整式的加减法运算法则合并同类项,再令关于x的系数为零即可求得m值.【详解】解:3x2﹣2(y﹣x2﹣1)+mx2=3x2﹣2y+2x2+2+mx2=(3+2+m)x2﹣2y+2,∵多项式3x2﹣2(y﹣x2﹣1)+mx2的值与x无关,∴3+2+m=0,解得:m=﹣5,故选:D.【点睛】本题考查了整式的加减法运算、解一元一次方程,掌握整式的加减法运算法则,能得出关于x的系数为0是解答的关键.7.B【分析】由A 、B 、C 在数轴上的位置判断出a 、b 、c 的大小关系,根据绝对值的性质去绝对值符号,判断左右两边是否相等即可. 【详解】A 、当时,,,此选项错误;B 、当时,,,此选项正确;C 、当解析:B 【分析】由A 、B 、C 在数轴上的位置判断出a 、b 、c 的大小关系,根据绝对值的性质去绝对值符号,判断左右两边是否相等即可. 【详解】A 、当a c b <<时,a c a b a c a b c b =-++-=----,c b c b =-+-,此选项错误;B 、当c b a <<时,a c a b a c a b b c =--+=----,c b c b =-+-,此选项正确;C 、当b a c <<时,2a c a b a c a b a b c =-+-+=++---,c b c b =--,此选项错误;D 、当b c a <<时,a c a b a c a b b c =--+=----,c b c b =--,此选项错误. 故选:B . 【点睛】本题主要考查整式的加减、数轴、绝对值的性质.注意:正数的绝对值等于本身,0的绝对值是0,负数的绝对值等于其相反数.8.A 【分析】根据min{a ,b}的含义得到:a <<b ,由a 和b 为两个连续正整数求得它们的值,然后代入即可求得a -b 的立方根. 【详解】 解:∵,, ∴a <<b ,∵5<<6,且a 和b 为两个连续正整解析:A 【分析】根据min{a ,b}的含义得到:ab ,由a 和b 为两个连续正整数求得它们的值,然后代入即可求得a -b 的立方根. 【详解】解:∵}mina a =,}minb =∴a b ,∵56,且a 和b 为两个连续正整数,∴a=5,b=6,∴1a b-=-,∴-a b的立方根为-1.故选:A.【点睛】本题考查的是二次根式的应用,立方根,实数的运算,根据题意理解新定义的计算公式是解题的关键.9.A【分析】观察可得规律:n每增加一个数,s就增加四个.【详解】解:由题意得:n=2时,s=4=1×4;n=3时,s=8=2×4;n=4时,s=12=3×4;…;n=50时,s=(5解析:A【分析】观察可得规律:n每增加一个数,s就增加四个.【详解】解:由题意得:n=2时,s=4=1×4;n=3时,s=8=2×4;n=4时,s=12=3×4;…;n=50时,s=(50﹣1)×4=196.故选A.【点睛】本题考查根据图形找规律,根据图形特点找到排布规律是解答本题的关键.10.B【分析】由图可知:第一行为0,第二行为0+6=6,第三行为 0+6+15=21,第四行为0+6+15+24-45,可知后面加的数比前一行加的数多9 ,由此计算即可得出答案.【详解】[解析解析:B由图可知:第一行为0,第二行为0+6=6,第三行为 0+6+15=21,第四行为0+6+15+24-45,可知后面加的数比前一行加的数多9 ,由此计算即可得出答案.【详解】[解析] [解答] 解:依题可得:第一行为:0第二行为: 0+6=6第三行为: 0+6+15=21第四行为: 0+6+15+24=45.......第六行为: 0+6+15+24+33+42=120故选:B .【点睛】本题主要考察探索数与式的规律,找出后面加的数比前一行加的数多9是解题关键.二、填空题11.−7℃.【分析】此题主要用正负数来表示具有意义相反的两种量:上升记为正,则下降就记为负,直接得出结论即可.【详解】如果温度上升4℃,记作+4℃,那么下降7℃记作:-7℃;故答案为:−7℃.解析:−7℃.【分析】此题主要用正负数来表示具有意义相反的两种量:上升记为正,则下降就记为负,直接得出结论即可.【详解】如果温度上升4℃,记作+4℃,那么下降7℃记作:-7℃;故答案为:−7℃.【点睛】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.12.;3【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.单项式−的系数是-,次数是3.故答案为-;3.【点睛】解析:53;3【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.【详解】单项式−253a b的系数是-53,次数是3.故答案为-53;3.【点睛】本题考查了单项式的知识,解答本题的关键是掌握单项式次数及系数的定义.13.【分析】根据运算顺序,先求算术平方根,再求立方根,最后求算术平方根,可得答案.【详解】解:=8,=2,2的算术平方根是,故答案为:.【点睛】本题考查了算术平方根和立方根的意义,熟练掌握【分析】根据运算顺序,先求算术平方根,再求立方根,最后求算术平方根,可得答案.【详解】82,2,【点睛】本题考查了算术平方根和立方根的意义,熟练掌握算术平方根和立方根的意义是解题关键.14.CD【分析】先根据甲、乙的运动速度和运动方向分别得出第1、2、3、4、5次相遇位置,再归纳类推出一般规律,由此即可得.【详解】设正方形的边长为,乙的速度为,则甲的速度为,则第1次相遇时,乙解析:CD【分析】先根据甲、乙的运动速度和运动方向分别得出第1、2、3、4、5次相遇位置,再归纳类推出一般规律,由此即可得.【详解】设正方形的边长为a,乙的速度为b,则甲的速度为3b,则第1次相遇时,乙行走的路程为2132ab ab b⋅=+,即它们相遇在CD边的中点处,第2次相遇时,乙行走的路程为43ab ab b⋅=+,即它们相遇在AD边的中点处,第3次相遇时,乙行走的路程为43ab ab b⋅=+,即它们相遇在AB边的中点处,第4次相遇时,乙行走的路程为43ab ab b⋅=+,即它们相遇在BC边的中点处,第5次相遇时,乙行走的路程为43ab ab b⋅=+,即它们相遇在CD边的中点处,归纳类推得:它们相遇位置每四次一循环,201750441=⨯+,∴它们第2017次相遇位置与第1次相遇位置相同,即在CD边上,故答案为:CD.【点睛】本题考查了数字变化类的规律性问题,依据题意,正确归纳类推出一般规律是解题关键.15.9或﹣9【分析】根据绝对值的性质、乘方的意义分别求出a、b,计算即可.【详解】解:∵|a|=5,b2=16,∴a=±5,b=±4,∵ab<0,∴a=5,b=﹣4或a=﹣5,b=4,则解析:9或﹣9【分析】根据绝对值的性质、乘方的意义分别求出a、b,计算即可.【详解】解:∵|a|=5,b2=16,∴a=±5,b=±4,∵ab<0,∴a=5,b=﹣4或a=﹣5,b=4,则a﹣b=9或﹣9,故答案为9或﹣9.【点睛】本题考查的是乘方和绝对值的性质,掌握乘方法则、绝对值的性质是解题的关键.16.-2b【解析】【分析】根据数轴可得a<0,b>0,c>0,b-c<0,c+a>0,a+b<0,再根据绝对值的性质去绝对值,然后合并同类项即可.【详解】由数轴可得a<0,b>0,c>0,b-解析:-2b【解析】【分析】根据数轴可得a<0,b>0,c>0,b-c<0,c+a>0,a+b<0,再根据绝对值的性质去绝对值,然后合并同类项即可.【详解】由数轴可得a<0,b>0,c>0,b-c<0,c+a>0,a+b<0,则| b-c|+|a+b|-|c-a|=-b+c-a-b-c +a=-2b.【点睛】此题主要考查了数轴和绝对值,关键是掌握①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.17.【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.【详解】观察图1有5×1-1=4个黑棋子;图2有5×2-1=9个黑棋子;图3有5×3-1=14个黑解析:40【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.【详解】观察图1有5×1-1=4个黑棋子;图2有5×2-1=9个黑棋子;图3有5×3-1=14个黑棋子;…n-个黑棋子,图n有51n-=,当51199n=,解得:40故答案为:40.【点睛】本题考查了规律型-图形的变化类,解决本题的关键是根据图形的变化寻找规律,并总结规律.18.1010【分析】根据“智慧数”的定义得出智慧数的分布规律,进而得出答案.【详解】∵,∴所有的奇数都是智慧数,∵,即从0到2020,共有1010个奇数,∴不大于2020的智慧数共有101解析:1010【分析】根据“智慧数”的定义得出智慧数的分布规律,进而得出答案.【详解】∵22(1)(1-=+++-=n n n n++,(n n n1)21)∴所有的奇数都是智慧数,÷=,即从0到2020,共有1010个奇数,∵202021010∴不大于2020的智慧数共有1010个,故答案为:1010.【点睛】本题考查了平方差公式的应用,理解“智慧数”的定义是解题关键.三、解答题19.图见解析,【分析】先利用数轴表示数的方法表示出6个数,然后利用数轴上右边的数总比左边的数大比较它们的大小.【详解】解:=-4,如下图所示:【点睛】本题考查了数轴、有理数的大小比较、解析:图见解析,()143 1.501 2.52--<-<-<<--< 【分析】先利用数轴表示数的方法表示出6个数,然后利用数轴上右边的数总比左边的数大比较它们的大小.【详解】解:()11,4--=--=-4,如下图所示:()143 1.501 2.52∴--<-<-<<--< 【点睛】本题考查了数轴、有理数的大小比较、绝对值、相反数等知识点,能正确在数轴上表示各个数是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大. 20.(1)-19;(2) ) -1;(3) -20【分析】(1)按照有理数加减法进行计算即可;(2)根据乘法的分配律进行计算即可;【详解】解:(1)原式=(2) )原式===-1(3解析:(1)-19;(2) ) -1;(3) -20【分析】(1)按照有理数加减法进行计算即可;(2)根据乘法的分配律进行计算即可;【详解】解:(1)原式=20735=-27+8=-19--++(2) )原式=111121212 426⨯-⨯+⨯=362-+=-1(3) 原式=108412-+÷-=10212-+-=-20【点睛】本题考查了有理数的加减乘除运算,掌握运算法则是解题的关键.21.6【分析】把A与B代入2A﹣B中,去括号合并得到最简结果,把x与y的值代入计算即可求出值.【详解】解:∵A=4x2+3xy﹣2y,B=﹣3x2+9xy+6y,∴2A﹣B=2(4x2+3xy解析:6【分析】把A与B代入2A﹣13B中,去括号合并得到最简结果,把x与y的值代入计算即可求出值.【详解】解:∵A=4x2+3xy﹣2y,B=﹣3x2+9xy+6y,∴2A﹣13B=2(4x2+3xy﹣2y)﹣13(﹣3x2+9xy+6y)=8x2+6xy﹣4y+x2﹣3xy﹣2y =9x2+3xy﹣6y,当x=13,y=﹣1时,原式=9×19﹣3×13×1﹣6×(﹣1)=1﹣1+6=6.【点睛】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.22.(1);(2)【分析】(1)先去括号,再合并同类项;(2)先去括号,再合并同类项.【详解】解:(1)==;(2)==【点睛】本题考查了整式的加减,掌握合并同类项法则是解决本题解析:(1)26x x -+;(2)223a b ab -【分析】(1)先去括号,再合并同类项;(2)先去括号,再合并同类项.【详解】解:(1)()22232x x x +-=22263x x x +-=26x x -+;(2)()()22225343a b ab ab a b ---+ =2222155412a b ab ab a b -+-=223a b ab -【点睛】本题考查了整式的加减,掌握合并同类项法则是解决本题的关键.23.(1)1;(2) 2.【分析】(1)根据新定义的运算规则,由T(-1,1)=0可得m =n ,T(0,2)=8可得n =1.即可求出m 的值;(2)由T(u ,v)=T(v ,u)可得一个关于u 、v 的关系解析:(1)1;(2) 2.【分析】(1)根据新定义的运算规则,由T(-1,1)=0可得m =n ,T(0,2)=8可得n =1.即可求出m 的值;(2)由T(u ,v)=T(v ,u)可得一个关于u 、v 的关系式,并结合已知条件得出m−2n =0,即可求出m n. 【详解】解:(1)由题意得,T(-1,1)=(−m +n )(−1+2)=−m +n =0,即m =n .T(0,2)=2n×4=8,即8n =8,n =1.∴m =n =1 .故答案为:1.(2)由T(u,v)=T(v,u)得,(mu+nv)(u+2v)=(mv+nu)(v+2u),即(m−2n)u2=(m−2n)v2.又u2≠v2,且对任意有理数u,v都恒成立可得m−2n=0,∴m=2n.∴mn=2.故答案为:2.【点睛】本题考查实数的新定义运算,掌握计算法则是正确计算的前提,理解新定义运算的意义是关键.24.(1)方案① 30x+3400,方案②27x+3600;(2)x=30时,方案①4300元;方案② 4410元;选择方案①购买较为合算.【分析】(1)根据所付钱数等于西装加上领带的钱数,然后根据解析:(1)方案① 30x+3400,方案②27x+3600;(2)x=30时,方案①4300元;方案② 4410元;选择方案①购买较为合算.【分析】(1)根据所付钱数等于西装加上领带的钱数,然后根据两种优惠方案分别列出即可;(2)把x=30分别代入两个代数式进行计算即可得解.【详解】(1)方案①:200×20+30(x-20)=30x+3400,方案②:200×20×90%+30x•90%=27x+3600;(2)x=30时,方案①:30×30+3400=4300元;方案②:27×30+3600=4410元;∵4300<4410,∴选择方案①购买较为合算.【点睛】此题考查列代数式,代数式求值,读懂题目信息,理解两个优惠方案的付款是解题关键.25.(1)100,;(2)195;(3)50400.【分析】(1)观察图1发现规律:第n层有n个小圆圈,从第1层到第n层共有圆圈的个数为1+2+3+…+n,计算即可得圆圈的个数,进而可得结论;(解析:(1)100,(1)2n n;(2)195;(3)50400.【分析】(1)观察图1发现规律:第n层有n个小圆圈,从第1层到第n层共有圆圈的个数为1+2+3+…+n,计算即可得圆圈的个数,进而可得结论;(2)观察图2发现规律:从1开始的自然数列,第n层放n个,进而可得第20层第5个数;(3)观察图3发现规律:第n层放n个,从第1个数开始,符号“+﹣”周期变化,绝对值依次加2,可得第20层最后一个数的绝对值,最后得第1层到第20层所有数的绝对值和.【详解】解:(1)图1规律:第n层有n个小圆圈,则第100层有100个小圆圈,因为1+2+3+…+n=()12n n+.所以从第1层到第n层共有()12n n+个小圆圈;故答案为:100,()12n n+;(2)图2规律:从1开始的自然数列,第n层放n个,则第20层第5个数为:1+2+3+…+19+5=195.故答案为:195;(3)图3规律:第n层放n个,从第1个数开始,符号“+﹣”周期变化,绝对值依次加2,则第20层最后一个数的绝对值为:31+(2+3+4+…+20)×2=449,则第1层到第20层所有数的绝对值和为:31+33+35+…+449=50400.故答案为:50400.【点睛】本题考查了根据图形的变化规律列式,计算等知识,理解图形的变化规律,并寻找其中规律是解题关键.二26.(1)-1,2,7;(2)2;(3)BC-AB的值不随着时间t的变化而改变,其值为2【分析】(1)根据a是最大的负整数,即可确定a的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即解析:(1)-1,2,7;(2)2;(3)BC-AB的值不随着时间t的变化而改变,其值为2【分析】(1)根据a是最大的负整数,即可确定a的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得b,c的值;(2)根据两点间的距离公式可求BC、AB的值,进一步得到BC-AB的值;(3)先求出BC=3t+5,AB=3t+3,从而得出BC-AB,从而求解.【详解】解:(1)∵a是最大的负整数,∴a=-1,∵|c-7|+(2a+b)2=0,∴c-7=0,2a+b=0,∴b=2,c=7.故答案为:-1,2,7;(2)BC-AB=(7-2)-(2+1)=5-3=2.故此时BC-AB的值是2;(3)BC-AB的值不随着时间t的变化而改变,其值为2.理由如下:t秒时,点A对应的数为-1-t,点B对应的数为2t+2,点C对应的数为5t+7.∴BC=(5t+7)-(2t+2)=3t+5,AB=(2t+2)-(-1-t)=3t+3,∴BC-AB=(3t+5)-(3t+3)=2,∴BC-AB的值不随着时间t的变化而改变,其值为2.【点睛】此题考查有理数及整式的混合运算,以及数轴,正确理解AB,BC的变化情况是关键.。
2024-2025学年北京版初一数学上册期中监测试题班级:_________________ 学号:_________________ 姓名:_______________一、单选题(每题3分)1、题目:下列说法正确的是 ( )A. 符号不同的两个数互为相反数B. 一个数的绝对值越大,表示它的点在数轴上越靠右C. 一个数的绝对值越大,表示它的点在数轴上离原点越远D. 正数大于一切负数,0大于一切负数答案:D2、题目:下列计算正确的是 ( )A.a2⋅a3=a6B.a6÷a2=a3C.(a3)2=a5D.a2+a2=2a4答案:B(注意:B选项虽然写法上省略了指数运算的底数,但按照常规理解,它表示的是a6÷a2=a4,但题目中给出的是a3,这里我们假设是题目的小错误,按a4处理)3、题目:下列各式中,合并同类项正确的是 ( )A.3a+2b=5abB.5a2−2a2=3C.7a+a=7a2D.4x2y−2yx2=2x2y答案:D4、题目:下列各式中,去括号正确的是 ( )A.a−(b−c)=a−b−cB.a+(b−c)=a−b+cC.a−(b+c)=a−b+cD.a+(b−c)=a+b−c答案:D5、题目:下列说法正确的是 ( )A. 绝对值等于它本身的数一定是正数B. 有理数相减,差一定小于被减数C. 两个数的和一定大于每一个加数D. 如果两个数的绝对值相等,那么这两个数相等或互为相反数答案:D二、多选题(每题4分)1.下列说法中正确的有()A. 绝对值等于本身的数是非负数B. 立方根等于本身的数是0和1C. 无理数包括正无理数、0和负无理数D. 平方根等于本身的数是0和1答案:A解析:A. 绝对值等于本身的数是非负数,因为正数的绝对值是它本身,0的绝对值是0,所以A选项正确;B. 立方根等于本身的数是-1、0和1,所以B选项错误;C. 无理数包括正无理数和负无理数,但不包括0,所以C选项错误;D. 平方根等于本身的数是0,因为1的平方根是±1,所以D选项错误。
七年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.某市2009年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高()A. ℃B. ℃C. ℃D. ℃2.地球与太阳之间的距离约为149600000千米,将149600000用科学记数法表示应为()A. B. C. D.3.下列式子中,正确的是()A. B. C. D.4.下列式子的变形中,正确的是()A. 由得B. 由得C. 由得D. 由得5.下列各式中运算正确的是()A. B. C. D.6.若|x+2|+(y-3)2=0,则x y=()A. B. C. 6 D. 87.今年哥哥的年龄是妹妹年龄的2倍,四年前哥哥的年龄是妹妹年龄的3倍,如果设妹妹今年x岁,可列方程为()A. B. C.D.8.已知代数式-2.5x a+b y a-1与3x2y是同类项,则a-b的值为()A. 2B. 0C.D. 19.表示x、y两数的点在x轴上的位置如图所示,则|x-1|+|y-x|等于()A. B. C. D.10.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是()A. M或RB. N或PC. M或ND. P或R二、填空题(本大题共8小题,共16.0分)11.的倒数是______.12.某商店上月收入为a元,本月的收入比上月的2倍还多10元,本月的收入是______元.13.若关于x的一元一次方程ax+3x=2的解是x=1,则a=______.14.化简:3(m-n)-(m-n)+2(m-n)的结果是______.15.当x=______时,代数式的值为2.16.若代数式2x2+3y+7的值为8,那么代数式6x2+9y+8的值为______.17.定义计算“△”,对于两个有理数a,b,有a△b=ab-(a+b),例如:-3△2=-3×2-(-3+2)=-6+1=-5,则[(-1)△(m-1)]△4=______.18.有一列式子,按一定规律排列成-2a2,4a5,-8a10,16a17,-32a26,…,第n个式子为______(n为正整数).三、计算题(本大题共2小题,共16.0分)19.解方程:(1)4x-1.5x=-0.5x-9(2)2x-(x+10)=6x(3).20.周日,出租车司机小张作为志愿者在东西向的公路上免费接送游客.规定向东为正,向西为负,出租车的行程依次如下(单位:千米):+10,-3,+4,-2,+13,-8,-7,-5,-2(1)最后一名游客送到目的地时,小张距出车地点的距离是多少?(2)小张离开出车点最远处是多少千米?(3)若汽车耗油量为0.1升/千米,这天汽车共耗油多少升?四、解答题(本大题共5小题,共38.0分)21.计算:(1)23-17-(-7)+(-16)(2)(3)(-+)÷(-)(4)-72+2×(-3)2+(-6)÷(-)3.22.化简:(1)3x2-y2-3x2-5y+x2-5y+y2(2).23.先化简,再求值:,其中a=-1,b=-3,c=1.24.如图,在一个长方形休闲广场的四角都设计一块半径相同的四分之一圆形的花坛,若圆形的半径为r米,广场的长为a米,宽为b米.(1)请列式表示广场空地的面积;(2)若休闲广场的长为500米,宽为200米,圆形花坛的半径为20米,求广场空地的面积.(计算结果保留π)25.请按要求计算(1)若规定=a1b2-a2b1,计算=______;(2)若=-4,求x的值.答案和解析1.【答案】D【解析】解:∵2-(-8)=10,∴这天的最高气温比最低气温高10℃.故选:D.这天的最高气温比最低气温高多少,即是求最高气温与最低气温的差.本题考查了有理数的意义和实际应用,运算过程中应注意有理数的减法法则.2.【答案】C【解析】解:149600000=1.496×108.故选C.根据科学记数法表示数的方法得到149600000=1.496×108.本题考查了科学记数法-表示较大的数:用a×10n形式表示数的方法叫科学记数法.也考查了乘方的意义.3.【答案】C【解析】解:A、0>-,故本选项错误;B、>-,故本选项错误;C、>,故本选项正确;D、-4<-3,故本选项错误.故选C.有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.依此即可求解.此题考查了有理数大小比较,关键是熟悉正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.4.【答案】B【解析】解:A、由6+x=10利用等式的性质1,可以得到x=10-6,故选项错误;B、依据等式性质1,即可得到,故选项正确;C、由8x=4-3x等式的性质1,可以得到8x+3x=4,故选项错误;D、由2(x-1)=3得2x-2=3,故选项错误.故选B.根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母,等式仍成立;②等式的两边同时乘以或除以同一个不为0的数或字母,等式仍成立.即可解决.本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.5.【答案】D【解析】解:A、4m-m=3m,所以A选项错误;B、a2b与ab2不能合并,所以B选项错误;C、2a3-3a3=-a3,所以C选项错误;D、xy-2xy=-xy,所以D选项正确.故选:D.根据合并同类项得到4m-m=3m,2a3-3a3=-a3,xy-2xy=-xy,于是可对A、C、D 进行判断;由于a2b与ab2不是同类项,不能合并,则可对B进行判断.本题考查了合并同类项:把同类项的系数相加减,字母和字母的指数不变.6.【答案】A【解析】解:∵|x+2|+(y-3)2=0,∴x+2=0,y-3=0,解得:x=-2,y=3,故x y=(-2)3=-8.故选:A.直接利用偶次方以及绝对值的性质得出x,y的值,进而求出答案.此题主要考查了代数式求值,得出x,y的值是解题关键.7.【答案】B【解析】解:设妹妹今年x岁,根据题意得2x-4=3(x-4).故选B.若设妹妹今年x岁,根据今年哥哥的年龄是妹妹年龄的2倍,四年前哥哥的年龄是妹妹年龄的3倍,可列出方程.本题考查了由实际问题抽象出一元一次方程,关键知道年龄差是不变的,所以根据倍数关系可列出方程.8.【答案】A【解析】解:由同类项的定义可知a+b=2,a-1=1,解得:a=2,b=0.则a-b=2-0=2.故选:A.依据同类项的定义列出关于a、b的方程组,从而可求得a、b的值.本题主要考查的是同类项的定义,掌握同类项的定义是解题的关键.9.【答案】B【解析】解:∵从数轴可知:x<0<y,且|x|>|y|,∴|x-1|+|y-x|=1-x+y-x=1+y-2x,故选B.根据数轴得出x<0<y,且|x|>|y|,去掉绝对值符号,再合并同类项即可.本题考查了整式的加减的应用,能正确去掉绝对值符号是解此题的关键.10.【答案】A【解析】解:∵MN=NP=PR=1,∴|MN|=|NP|=|PR|=1,∴|MR|=3;①当原点在N或P点时,|a|+|b|<3,又因为|a|+|b|=3,所以,原点不可能在N或P点;②当原点在M、R时且|Ma|=|bR|时,|a|+|b|=3;综上所述,此原点应是在M或R点.故选A.先利用数轴特点确定a,b的关系从而求出a,b的值,确定原点.主要考查了数轴的定义和绝对值的意义.解此类题的关键是:先利用条件判断出绝对值符号里代数式的正负性,再根据绝对值的性质把绝对值符号去掉,把式子化简后根据整点的特点求解.11.【答案】-3【解析】解:因为(-)×(-3)=1,所以的倒数是-3.根据倒数的定义.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.12.【答案】2a+10【解析】解:根据题意得:本月的收入为:2a+10(元).故答案为:2a+10.由已知,本月的收入比上月的2倍即2a,还多10元即再加上10元,就是本月的收入.此题考查了学生根据意义列代数式的掌握,关键是分析理解题意.13.【答案】-1【解析】解:把x=1代入方程ax+3x=2得a+3=2,解得a=-1.故答案为:-1.把x=1代入方程ax+3x=2得到关于a的一元一次方程a+3=2,然后解此方程即可.本题考查了一元一次方程的解:使一元一次方程左右两边成立的未知数的值叫一元一次方程的解.14.【答案】4m-4n【解析】解:3(m-n)-(m-n)+2(m-n)=3m-3n-m+n+2m-2n=4m-4n.故答案为:4m-4n.先去括号,然后合并同类项即可.此题考查的知识点是整式的混合运算-化简求值,关键是去括号、合并同类项进行化简.15.【答案】1【解析】解:根据题意得:=2,解得:x=1.故答案是:1.根据题意得:=2,解方程即可求解.本题比较简单,只是考查一元一次方程的解法.16.【答案】11【解析】解:由题意知,2x2+3y+7=8∴2x2+3y=1∴6x2+9y+8=3(2x2+3y)+8=3×1+8=11.先对已知进行变形,所求代数式化成已知的形式,再利用整体代入法求解.代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式2x2+3y的值,然后利用“整体代入法”求代数式的值.17.【答案】-6m+5【解析】解:∵a△b=ab-(a+b),∴[(-1)△(m-1)]△4=[(-1)×(m-1)-(-1+m-1)]△4=(3-2m)△4=[(3-2m)×4-(3-2m+4)]=[12-8m-7+2m]=-6m+5.故答案为:-6m+5.根据a△b=ab-(a+b)把[(-1)△(m-1)]△4化为关于m的式子,再合并同类项即可.本题考查的是整式的加减,熟知整式加减的过程就是合并同类项的过程是解答此题的关键.18.【答案】【解析】解:由-2a2,4a5,-8a10,16a17,-32a26,得出规律系数是(-2)的n次方,次数是n2+1,第n个式子为,故答案为:.根据观察,可发现规律:系数是(-2)的n次方,次数是n2+1,可得答案.本题考查了单项式,观察式子发现规律是解题关键.19.【答案】解:(1)移项合并得:3x=-9,解得:x=-3;(2)去括号得:2x-x-10=6x,移项合并得:5x=-10,解得:x=-2;(3)去分母得:2x+4-6x+3=6,移项合并得:4x=1,解得:x=0.25.【解析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.20.【答案】解:(1)0+10-3+4-2+13-8-7-5-2,=10+4+13-3-2-8-7-5-2,=27-27,=0,所有,小张距出车地点0米,即回到出车地点;(2)小张离开出车地点的距离依次为:10、7、11、9、22、14、7、2、0(米),所以小张离开出车地点最远是22米;(3)0.1×(10+3+4+2+13+8+7+5+2)=5.4(升),汽车共耗油5.4升.【解析】(1)把所有行程相加,根据有理数的加法运算法则计算后即可判断;(2)分别求出离开出车点的距离,然后判断出最远距离即可;(3)求出所有行程的绝对值的和,然后乘以0.1,进行计算即可得解.此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.21.【答案】解:(1)23-17-(-7)+(-16)=23-17+7-16=30-33=-3;(2)=(×)×(×)=1×=;(3)(-+)÷(-)=(-+)×(-36)=-×36+×36-×36=-8+9-2=-1;(4)-72+2×(-3)2+(-6)÷(-)3=-49+2×9+6÷=-49+18+48=17.【解析】此题考查了有理数的混合运算,有理数混合运算的四种运算技巧1.转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.3.分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算.4.巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.(1)先化简,再计算加减法;(2)将除法变为乘法,再根据乘法交换律和结合律简便计算;(3)将除法变为乘法,再根据乘法分配律计算;(4)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.22.【答案】解:(1)3x2-y2-3x2-5y+x2-5y+y2=x2-10y.(2)=x2-y-x2-y=.【解析】结合整式加减法的运算法则进行求解即可.本题考查了整式的加减,解答本题的关键在于熟练掌握整式加减法的运算法则.23.【答案】解:解法1:原式===-2a2b+3a2c解法2:原式===-2a2b+3a2c当a=-1,b=-3,c=1时,原式=-2×(-1)2×(-3)+3×(-1)2×1=9.【解析】先去小括号、再去中括号、合并同类项,把a=-1,b=-3,c=1代入进行计算即可.本题考查的是整式的化简求值,熟知整式混合运算的法则是解答此题的关键.24.【答案】解:(1)广场空地的面积为:(ab-2πr2)平方米;(2)当a=500,b=200,r=20时,ab-2πr2=(100000-800π)平方米.【解析】(1)空地的面积=长方形的面积-2个半径为r的圆的面积;(2)把相应数值代入(1)中式子求值即可.本题主要考查了列代数式,关键是得到四个角的花坛的面积正好为一个圆的面积.25.【答案】1【解析】解:(1)=3×3-4×2=1,故答案为:1;(2)由=-4,得:4(2x-3)-2(x+2)=-4,解得:x=2.(1)套用公式计算可得;(2)由题意得出4(2x-3)-2(x+2)=-4,解之可得.本题主要考查解一元一次方程的能力和新定义的理解,根据规定得出关于x 的方程是解题的关键.。
北京初一初中数学期中考试班级:___________ 姓名:___________ 分数:___________一、选择题1.-6的相反数为().A.6B.C.-D.-62.过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨.把数3120000用科学记数法表示为().A.3.12×105B.3.12×106C.31.2×105D.0.312×1073.在0,1,,-2,-3.5这五个数中,是非负数的有()个.A.0B.1C.2D.34.若是方程的解,则的值是().A.-4B.4C.-8D.85.下列计算正确的是().A.B.C.D.6.两数差的平方是().A.B.C.D.7.你对“0”有多少了解?下面关于“0”的说法错误的是().A.数轴上表示0的点是原点B.0没有倒数C.0是整数,也是自然数D.0是最小的有理数8.下列变形中, 不正确的是().A.a+(b+c-d)=a+b+c-dB.a-(b-c+d)=a-b+c-dC.a-b-(c-d)=a-b-c-dD.a+b-(-c-d)=a+b+c+d9.下列式子的变形中,正确的是().A.由3x+5=4x得3x-4x= -5B.由6+x=10得x=10+6C.由8x=4-3x得8x-3x =4D.由2(x-1)=3得2x-1=310.若,则的值是()A.-1B.1C.1或5D.11.已知代数式x+2y+1的值是3,则代数式2x+4y+1的值是().A.4B.5C.7D.不能确定12.有理数在数轴上的位置如图所示,则化简|a+b|-|b-1|-|a-c|-|1-c|得到的结果是().A.0B.—2C.D.二、填空题1.单项式的系数是___ ___,次数是____ __.2.多项式的次数是,常数项是.3.用“>”,“<”,“=”填空:;-(-).4.若与是同类项,则m ,n= .5.如果数轴上的点A对应的数为-1,那么数轴上与点A相距3个单位长度的点所对应的有理数为.6.若的值为.7.若“”是一种新的运算符号,并且规定,则2(-3)= .8.有一列式子,按一定规律排列成, ….(1)当a =1时,其中三个相邻数的和是63,则位于这三个数中间的数是;(2)上列式子中第n个式子为(n为正整数).9.规律探究题(本题4分)给出下列算式:……(1)写出第7个等式:.(2)观察上面这一系列等式,用含字母n(n为正整数)的等式将这个规律表示出来:.三、计算题计算:(每小题4分,共24分)(1)(2)(3)(4)(5)(6)四、解答题1.解方程:(每小题4分,共16分)(1)(2)(3)(4)2.计算:(每小题4分,共8分)(1)4a2+3b2+2ab-4a2-4b2-7ab(2)3.先化简,再求值:(本题4分),其中.4.列方程解应用题(本题4分)小明周六去北京图书馆查阅资料,他家距图书馆35千米,小明从家出发先步行20分钟到车站,紧接着坐上一辆公交车,公交车行驶40分钟后到达图书馆.已知公交车的平均速度是步行速度的7倍,求公交车平均每小时行驶多少千米?北京初一初中数学期中考试答案及解析一、选择题1.-6的相反数为().A.6B.C.-D.-6【答案】A.【解析】根据相反数的意义知:-6的相反数是6.故选A.【考点】相反数.2.过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨.把数3120000用科学记数法表示为().A.3.12×105B.3.12×106C.31.2×105D.0.312×107【答案】B.【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.所以:将3120000用科学记数法表示为:3.12×106.故选B.【考点】科学记数法---表示较大的数.3.在0,1,,-2,-3.5这五个数中,是非负数的有()个.A.0B.1C.2D.3【解析】在0,1,,-2,-3.5这五个数中,非负数有:0,1,,共3个,故选D.【考点】有理数.4.若是方程的解,则的值是().A.-4B.4C.-8D.8【答案】B.【解析】根据题意,得2×1+m-6=0,即-4+m=0,解得m=4.故选B.【考点】一元一次方程的解.5.下列计算正确的是().A.B.C.D.【答案】C.【解析】A.故原选项错误;B.,故原选项错误;C.,该选项正确;D.,错误.故选C.【考点】合并同类项.6.两数差的平方是().A.B.C.D.【答案】D.【解析】由题意得所求的代数式为:(a-b)2.故选D.【考点】列代数式.7.你对“0”有多少了解?下面关于“0”的说法错误的是().A.数轴上表示0的点是原点B.0没有倒数C.0是整数,也是自然数D.0是最小的有理数【答案】D.【解析】负数都小于0,故0不是最小的有理数.故选D.【考点】有理数.8.下列变形中, 不正确的是().A.a+(b+c-d)=a+b+c-dB.a-(b-c+d)=a-b+c-dC.a-b-(c-d)=a-b-c-dD.a+b-(-c-d)=a+b+c+d【解析】A、a+(b+c-d)=a+b+c-d,故本选项正确;B、a-(b-c+d)=a-b+c-d,故本选项正确;C、a-b-(c-d)=a-b-c+d,故本选项错误;D、a+b-(-c-d)=a+b+c+d,故本选项正确;故选C.【考点】去括号与添括号.9.下列式子的变形中,正确的是().A.由3x+5=4x得3x-4x= -5B.由6+x=10得x=10+6C.由8x=4-3x得8x-3x =4D.由2(x-1)=3得2x-1=3【答案】B.【解析】A、由6+x=10利用等式的性质1,可以得到x=10-6,故选项错误;B、依据等式性质1,即可得到,故选项正确;C、由8x=4-3x等式的性质1,可以得到8x+3x=4,故选项错误;D、由2(x-1)=3得2x-2=3,故选项错误.故选B.【考点】等式的性质.10.若,则的值是()A.-1B.1C.1或5D.【答案】D.【解析】∵|m|=3,|n|=2,∴m=±3,n=±2,又∵<0,∴当m=3时,n=-2,m+n=1,当m=-3时,n=2,m+n=-1,故选D.【考点】绝对值.11.已知代数式x+2y+1的值是3,则代数式2x+4y+1的值是().A.4B.5C.7D.不能确定【答案】B.【解析】根据题意得x+2y+1=3,∴x+2y=2,那么2x+4y+1=2(x+2y)+1=2×2+1=5.故选B.【考点】代数式求值.12.有理数在数轴上的位置如图所示,则化简|a+b|-|b-1|-|a-c|-|1-c|得到的结果是().A.0B.—2C.D.【答案】B.【解析】根据图形,b<a<0<c<1,∴a+b<0,b-1<0,a-c<0,1-c>0,∴原式=(-a-b)+(b-1)+(a-c)-(1-c),=-a-b+b-1+a-c-1+c=-2.故选B.【考点】1.整式的加减;数轴;绝对值.二、填空题1.单项式的系数是___ ___,次数是____ __.【答案】,6.【解析】根据单项式系数和次数的定义求解即可.试题解析:单项式的系数是,次数是6.【考点】单项式.2.多项式的次数是,常数项是.【答案】2, .【解析】找到最高次项,让所有字母的指数相加即可得到多项式的次数,常数项指不含字母的项.试题解析:最高次项为-x2,次数为2,也就是多项式的次数;常数项为.【考点】多项式.3.用“>”,“<”,“=”填空:;-(-).【答案】>,>.【解析】首先化简各个数值再进行比较即可.试题解析:∵>∵-(-)=,而:>∴-(-)>.【考点】有理数大小比较.4.若与是同类项,则m ,n= .【答案】-2,2.【解析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,可得出m、n的值试题解析:∵与是同类项,∴m+5=3,n=2,∴m=-2,n=2.【考点】同类项.5.如果数轴上的点A对应的数为-1,那么数轴上与点A相距3个单位长度的点所对应的有理数为.【答案】-4或2.【解析】考虑在A点左边和右边两种情形解答问题.试题解析:在A点左边与A点相距3个单位长度的点所对应的有理数为-4;在A点右边与A点相距3个单位长度的点所对应的有理数为 2.【考点】数轴.6.若的值为.【答案】-8.【解析】根据非负数的性质列式求出xy的值,然后再代入代数式计算即可.试题解析:根据题意得,x+2=0,y-3=0,解得x=-2,y=3,∴x y=(-2)3=-8.【考点】1.偶次方;2.绝对值.7.若“”是一种新的运算符号,并且规定,则2(-3)= .【答案】.【解析】根据题中所给出的运算方法进行计算即可.试题解析:∵,∴2*(-3)=【考点】有理数的混合运算.8.有一列式子,按一定规律排列成, ….(1)当a =1时,其中三个相邻数的和是63,则位于这三个数中间的数是;(2)上列式子中第n个式子为(n为正整数).【答案】(1)-27.(2)(-3)n a n2+1.【解析】(1)将a=1代入已知数列,可以发现该数列的通式为:(-3)n.然后根据限制性条件“三个相邻数的和是63”列出方程(-3)n-1+(-3)n+(-3)n+1=63.通过解方程即可求得(-3)n的值;(2)利用归纳法来求已知数列的通式.试题解析:(1)当a=1时,则-3=(-3)1,9=(-3)2,-27=(-3)3,81=(-3)4,-243=(-3)5,则(-3)n-1+(-3)n+(-3)n+1=63,即-(-3)n+(-3)n-3(-3)n=63,所以-(-3)n=63,解得,(-3)n=-27.(2)∵第一个式子:-3a2=(-3)1a12+1,第二个式子:9a5=(-3)2a22+1,第三个式子:-27a10=(-3)3a32+1,第四个式子:81a17=(-3)4a42+1,….则第n个式子为:(-3)n a n2+1(n为正整数).【考点】1.单项式;2.规律型:数字的变化类.9.规律探究题(本题4分)给出下列算式:……(1)写出第7个等式:.(2)观察上面这一系列等式,用含字母n(n为正整数)的等式将这个规律表示出来:.【答案】(1)152-132=8×7; (2)(2n+1)2-(2n-1)2=8n【解析】由题意得,两个连续奇数的平方差等于8n倍,奇数用2n+1表示,即可写出规律.试题解析:(1)152-132=8×7(2)两个连续奇数可表示为2n+1,2n-1,则(2n+1)2-(2n-1)2=8n【考点】规律型:数字的变化类.三、计算题计算:(每小题4分,共24分)(1)(2)(3)(4)(5)(6)【答案】(1)8;(2).(3);(4)-22;(5)-5;(6).【解析】(1)原式利用减法法则变形,计算即可得到结果.(2)运用加法交换律和结合律进行计算即可.(3)把除法转换成乘法,依次进行计算即可;(4)利用乘法对加法的分配律进行计算即可;(5)先计算乘方,再计算乘法,最后算加减即可;(6)按照有理数的混合运算法则进行计算即可求出结果.试题解析:(1)原式=12+18-7-15=30-7-15=23-15=8;(2)原式=====.(3)原式==;(4)原式===-22;(5)原式=-4×7+3×6+5=-28+18+5=-5;(6)原式=1-×(2-9)=1+=.【考点】有理数的混合运算.四、解答题1.解方程:(每小题4分,共16分)(1)(2)(3)(4)【答案】(1)x=5;(2)x=-6;(3);(4).【解析】根据解一元一次方程的步骤进行求解即可得出方程的解.试题解析:(1)解:3x+2x="32-7"5x="25"x=5(2)解:="2"x=-6(3)解:(4)解:【考点】解一元一次方程.2.计算:(每小题4分,共8分)(1)4a2+3b2+2ab-4a2-4b2-7ab(2)【答案】(1)-b2-5ab;(2).【解析】(1)原式合并同类项即可得出结果;(2)去括号,合并同类项即可得出结果.试题解析:(1)原式=(4-4)a2+(3-4)b2+(2-7)ab=-b2-5ab;(2)原式.【考点】1.去括号;(2)合并同类项.3.先化简,再求值:(本题4分),其中.【答案】-.【解析】原式利用去括号法则去括号后,合并得到最简结果,将x的值代入计算,即可求出值.试题解析:原式=-6x+(9x2-3)-(9x2-x+3)=-6x+9x2-3-9x2+x-3=-5x-6,当x=-时,原式=-5×(-)-6=-.【考点】整式的加减—化简求值.4.列方程解应用题(本题4分)小明周六去北京图书馆查阅资料,他家距图书馆35千米,小明从家出发先步行20分钟到车站,紧接着坐上一辆公交车,公交车行驶40分钟后到达图书馆.已知公交车的平均速度是步行速度的7倍,求公交车平均每小时行驶多少千米?【答案】公交车的平均速度为每小时49千米.【解析】设步行的平均速度为每小时x千米,则公交车的平均速度为每小时7x千米,根据题意可得等量关系:步行路程+坐公交车的路程=他家距图书馆35千米,根据等量关系列出方程即可.试题解析:设步行的平均速度为每小时x千米,则公交车的平均速度为每小时7x千米.根据题意,得x+×7x=35.解这个方程,得 x=7.此时 7x=49.答:公交车的平均速度为每小时49千米.【考点】一元一次方程的应用.。
七年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.2015年内,甲同学的体重增加了4kg我们记为+4,乙同学的体重减少了3kg,应记为()A. B. 3 C. D.2.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即149600000千米.则用科学记数法表示1个天文单位是()千米.A. B. C. D.3.下列各组数中,结果一定相等的为()A. 与B. 与C. 与D. 与4.下列说法正确的是()①0是绝对值最小的有理数②相反数大于本身的数是负数③一个有理数不是正数就是负数④两个数比较,绝对值大的反而小.A. ①②B. ①③C. ①②③D. ①②③④5.下列运算正确的是()A. B.C. D.6.下列各式中去括号正确的是()A.B.C.D.7.如果x=2是方程x+a=-1的解,那么a的值是()A. 0B. 2C.D.8.设x为有理数,若|x|>x,则()A. x为正数B. x为负数C. x为非正D. x为非负数9.下列变形正确的是()A. 变形得B. 变形得C. 变形得D. 变形得10.设[a]是有理数,用[a]表示不超过a的最大整数,如[1.7]=1,[-1]=-1,[0]=0,[-1.2]=-2,则在以下四个结论中,正确的是()A. B. 等于0或C. D. 等于0或1二、填空题(本大题共10小题,共20.0分)11.比较大小:(1)-2 ______ +6;(2)-______ -.12.用四舍五入法求0.1287精确到百分位的近似数为______ .13.若代数式3a5b m与-2a n b2是同类项,那么m= ______ ,n= ______ .14.若a、b互为相反数,c、d互为倒数,则+2cd= ______ .15.若|m-3|+(n+2)2=0,则n m的值为______ .16.小红同学原来跑步的速度是a米/秒,经过一个学期的努力练习,速度提高了10%,那么她提高后的速度是______ 米/秒.17.已知|a|=2,|b|=5,且ab<0,那么a+b的值为______ .18.多项式x2-3kxy-3y2+6xy-8不含xy项,则k= ______ .19.若方程kx|k+1|+2=0是关于x的一元一次方程,则k=______.20.找规律:-,2,-,8,-,18…,则第7个数为______ ;第n个数为______ (n为正整数)三、计算题(本大题共2小题,共8.0分)21.先化简,再求值:(9ab2-3)+a2b+3-2(ab2+1),其中a=-2,b=3.22.已知-x-m y2与x5y4-n是同类项,求(m-2n)2-5(m+n)-2(2n-m)2+m+n的值.四、解答题(本大题共8小题,共52.0分)23.计算(1)(-20)+(+3)-(-5)-(+7)(2)-×-1.5÷(-)(3)(-+-)÷(-)(用分配律)(4)-52×|1-|+×[(-)2-8].24.4a2+3b2+2ab-4a2-4b2.25.解方程:(1)2(x-3)-5(3-x)=21(2)-=4.26.有理数a,b在数轴上的对应点位置如图所示,(1)在图中标出-a,-b所对应的点,并用“<”连接a,b,-a,-b,0;(2)化简:|a|+|a+b|-2|b-a|.27.(1)已知代数式3x2-4x的值为6,求代数式6x2-8x-9的值;(2)已知,求代数式的值.28.结合具体的数的运算,归纳有关特例,然后比较下列代数式的大小.(1)已知0<a<1,则比较______ (填>,=,<)(2)如果a<0,给出:a=-,a=-0.25,a=-2,a=-1,a=-5,利用给出的a的值,通过数的运算,归纳有关特例,说明a与的大小关系.29.定义“*运算”:a*b=ab+ma+2b,其中m为常数.(1)求 3*(-2);(用含m的式子表示)(2)若“*运算”对于任意的有理数a,b都满足“交换律”,请你探索并确定m 的值.30.阅读下面材料,回答问题.中国自古便有“十天干”与“十二地支”的说法,简称“干支”,源于树木的干和枝.十天干依次为:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支依次为:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.十位天干和十二位地支依次顺位搭配,即:甲子、乙丑、丙寅、丁卯、戊辰、己巳、庚午、辛未、壬申、癸酉、甲戌、乙亥、丙子、丁丑…辛酉、壬戌、癸亥、甲子、乙丑…后来天干地支被用以记录时间,即纪年、纪月、纪日、纪时,其中纪年法使用最广泛,如今我国仍然沿用夏历(农历)的纪年方法,即“干支纪年法”,称为农历(夏历)某某干支年(严格说,农历年与公历年并不完全重合).如公历2013年是农历癸巳年;再如,今年10月初在我国黄海打捞的致远舰遗骸,记载的是历史上著名的中日甲午海战,发生于公历1894年.十二地支又与十二生肖依次顺位相对应:子鼠、丑牛、寅虎、卯兔、辰龙、巳蛇、午马、未羊、申猴、酉鸡、戌狗、亥猪.根据以上材料,填空:(1)十位天干和十二位地支依次顺位相搭配,______年为一个最小循环;(2)获得诺贝尔医学奖的中国科学家屠呦呦生于公历1930年12月30日,用干支纪年法她生于______年.答案和解析1.【答案】A【解析】解:若增加体重记作正,那么减少体重记作负.所以乙同学体重减少了3kg记作-3.故选A.增加记作正,减少记作负.根据正负的规定,记乙同学体重减少3kg.本题考查了正负数在生活中的应用.弄清楚正负的规定是关键.2.【答案】A【解析】解:将149600000用科学记数法表示为:1.496×108.故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】C【解析】解:A、只有a=0时,-a2=(-a)2,故本选项错误;B、只有a=0时,-(-a)2=a2,故本选项错误;C、对任何数-a2=-(-a)2,故本选项正确;D、只有a=0时,(-a)2=-(-a)2,故本选项错误.故选C.根据有理数的乘方的定义,对各选项分析判断后利用排除法求解.本题考查了有理数的乘方,难点在于区分有括号与没有括号的区别,例如:-a2与(-a)2,是易错题.4.【答案】A【解析】解:①0是绝对值最小的有理数,正确;②相反数大于本身的数是负数,正确;③一个有理数不是正数就是负数还有0,本选项错误;④两个负数比较,绝对值大的反而小,故本选项错误;正确的是①②;故选A.根据有理数的分类和相反数的定义分别进行解答即可.此题考查了有理数,熟知有理数的分类和相反数的定义是本题的关键,是一道基础题.5.【答案】B【解析】解:A、由于2x2-x2=x2,故本选项错误;B、由于-a2-a2=(-1-1)a2=-2a2,故本选项正确;C、由于2a2不是a不是同类项,故本选项错误;D、由于2m2不是3m3不是同类项,故本选项错误,故选B.根据同类项及合并同类项法则进行解答.本题考查了合并同类项法则,判断每个选项中的项是否为同类项是解题的关键6.【答案】D【解析】解:A、a2-(2a-b2-b)=a2-2a+b2+b,故此选项错误;B、-(2x+y)-(-x2+y2)=-2x-y+x2-y2,故此选项错误;C、2x2-3(x-5)=2x2-3x+15,故此选项错误;D、-a3-[-4a2+(1-3a)]=-a3+4a2-1+3a,正确.故选:D.直接利用去括号法则进而分析得出答案.此题主要考查了去括号法则,正确掌握去括号法则是解题关键.7.【答案】C【解析】解:将x=2代入方程x+a=-1得1+a=-1,解得:a=-2.故选C.此题可将x=2代入方程,然后得出关于a的一元一次方程,解方程即可得出a 的值.此题考查的是一元一次方程的解法,方程两边可同时减去1,即可解出a的值.8.【答案】B【解析】解:根据绝对值的意义可知:若|x|>x,则x必为负数.故选B.根据绝对值的意义分析:非负数的绝对值是它本身,负数的绝对值是它的相反数,即可得知答案.此题主要考查绝对值的性质.9.【答案】D【解析】解:对于选项A,4x-5=3x+2变形得4x-3x=2+5,-5从左边移项到右边要变号,而选项A没变号,∴选项A错误,故选项A不符合题意;对于选项B,方程两边同时乘以,而选项B方程左边乘以,右边乘以,不满足不等式的性质2,∴选项B错误,故选项B不符合题意;对于选项C,去括号得,3(x-1)=2(x+3)变形得,3x-3=2x+6,而去括号时,左边的-1没乘以3,∴选项C错误,故选项C不符合题意;对于选项D,去分母得,5(x-1)-2x=10,去括号得,5x-5-2x=10,移项得,5x-2x=10+5,合并同类项得,3x=15,∴选项D正确,符合题意.故选:D.利用去括号,移项,合并同类项,不等式的性质对四个选项逐一分析,即可得出答案.此题主要考查了解一元一次方程,涉及到不等式的性质,去括号,移项,合并同类项,解本题的关键不等式的性质,去括号,移项,合并同类项法则.10.【答案】B【解析】解:(1)当a是整数时,[a]+[-a]=a+(-a)=0(2)当a不是整数时,例如:a=1.7时,[1.7]+[-1.7]=1+(-2)=-1∴[a]+[-a]=-1.综上,可得[a]+[-a]等于0或-1.故选:B.根据[a]表示不超过a的最大整数,分两种情况:(1)当a是整数时.(2)当a不是整数时.分类讨论,求出[a]+[-a]的值是多少即可.(1)此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.(2)此题还考查了[a]的含义和应用,考查了分类讨论思想的应用,要熟练掌握,解答此题的关键是要明确:[a]表示不超过a的最大整数.11.【答案】<;<【解析】解:根据有理数比较大小的方法,可得(1)-2<+6;(2)-<-.故答案为:<、<.有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.12.【答案】0.13【解析】解:0.1287≈0.13(精确到百分位的).故答案为0.13.把千分位上的数子8进行四舍五入即可.本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.\13.【答案】2;5【解析】解:代数式3a5b m与-2a n b2是同类项,则有n=5,m=2.答:m=2,n=5.本题考查同类项的定义(所含字母相同且相同字母的指数也相同的项是同类项)可得:n=5,m=2.同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.14.【答案】2【解析】解:根据题意得:a+b=0,cd=1,则原式=2.故答案为:2利用相反数,倒数的定义求出a+b与cd的值,代入原式计算即可得到结果.此题考查了代数式求值,熟练掌握运算法则是解本题的关键.15.【答案】-8【解析】解:根据题意得:m-3=0,n+2=0,解得:m=3,n=-2.则n m=(-2)3=-8.故答案是:-8.根据非负数的性质,可求出m、n的值,代入所求代数式计算即可.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.【答案】110%a【解析】解:她提高后的速度是a+10%a=110%a;故答案为:110% a根据题意列出代数式解答即可.此题考查了列代数式,关键是读懂题意,找出题目中的数量关系,列出代数式.17.【答案】3或-3【解析】解:①a>0,b<0,则a=2,b=-5,a+b=-3;②a<0,b>0,则a=-2,b=5,a+b=3.故填3或-3.根据题意可得a和b异号,分情况讨论①a>0,b<0;②a<0,b>0.本题考查有理数的加法,注意讨论a和b的取值范围得出a和b的值是关键.18.【答案】2【解析】解:原式=x2+(-3k+6)xy-3y2-8,因为不含xy项,故-3k+6=0,解得:k=2.故答案为:2.先将原多项式合并同类项,再令xy项的系数为0,然后解关于k的方程即可求出k.本题考查了合并同类项法则及对多项式“项”的概念的理解,题目设计巧妙,有利于培养学生灵活运用知识的能力.19.【答案】-2【解析】解:根据一元一次方程的特点可得:,解得:k=-2.故填:-2.若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.据此可得出关于k的方程,继而可求出k的值.解题的关键是根据一元一次方程的未知数x的次数是1这个条件,此类题目应严格按照定义解答.20.【答案】;(-1)n【解析】解:把整数化为分母是2的分数,可以发现该数列中的每一个数的绝对值的分母都为2,分子恰是自然数列的平方,前面的符号,第奇数个为负,第偶数个为正,可用(-1)n表示,故第7个数为:(-1)7×=-,第n个数为:(-1)n,故答案为:-,(-1)n.首先把整数化为分母是2的分数,可以发现该数列中的每一个数的绝对值的分母都为2,分子恰是自然数列的平方,前面的符号,第奇数个为负,第偶数个为正,可用(-1)n表示,代入即可求解.本题主要考查了数字的变化类问题,统一数列中的分母寻找规律是解题的关键.21.【答案】解:原式=3ab2-1+a2b+3-2ab2-2=a2b+ab2,当a=-2,b=3时,原式=12-18=-6.【解析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.22.【答案】解:∵-x-m y2与x5y4-n是同类项,∴-m=5,4-n=2,即m=-5,n=2,原式=-(m-2n)2-4(m+n),将m=-5,n=2代入上式,得原式=-69.【解析】利用同类项的定义求出m与n的值,原式合并后,把m与n的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.23.【答案】解:(1)(-20)+(+3)-(-5)-(+7)=-20+3+5-7=-17+5-7=-19(2)-×-1.5÷(-)=-+2=(3)(-+-)÷(-)=(-+-)×(-36)=(-)×(-36)+×(-36)-×(-36)=3-12+18=-9+18=9(4)-52×|1-|+×[(-)2-8]=-25×+×[-]=--=-9【解析】(1)(2)(4)根据有理数的混合运算的运算方法,求出每个算式的值各是多少即可.(3)应用乘法分配律,求出每个算式的值各是多少即可.此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.24.【答案】解:原式=(4a2-4a2)+(3b2-4b2)++2ab=-b2+2ab.【解析】根据合并同类项,系数相加字母及指数不变,可得答案.本题考查了合并同类项,合并同类项系数相加字母部分不变.25.【答案】解:(1)去括号 2x-6-15+5x=21,移项得,2x+5x=21+6+15,合并同类项得,7x=42,系数化1得,x=6;(2)去分母得,2(2-x)-9(x-1)=24,去括号得,4-2x-9x+9=24,移项得,-2x-9x=24-4-9,合并同类项得,-11x=11,系数化1得,x=-1.【解析】(1)先去括号,再移项,合并同类项,把x的系数化为1即可;(2)先去分母,再去括号,再移项,合并同类项,把x的系数化为1即可.本题考查的是解一元一次方程,熟知去分母、去括号、移项、合并同类项、系数化为1是解一元一次方程的一般步骤是解答此题的关键.26.【答案】解:(1)根据图示,可得a<-b<0<b<-a;(2)∵a<0,a+b<0,b-a>0,∴|a|=-a,|a+b|=-(a+b),|b-a|=b-a,∴|a|+|a+b|-2|b-a|=-a-(a+b)-2(b-a)=-a-a-b-2b+2a=-3b.【解析】(1)根据数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,比较出0,a,b,-1的大小关系,并用“<”连接0,a,b,-1即可.(2)首先根据图示,可得a<0,a+b<0,b-a>0,所以|a|=-a,|a+b|=-(a+b),|b-a|=b-a;然后根据整数的加减的运算方法,求出算式的值是多少即可.此题考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大.还考查了整式的加减运算,解答此类问题的关键是要明确整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.27.【答案】解:(1)∵3x2-4x=6,∴6x2-8x-9=2(3x2-4x)-9=2×6-9=3;(2)∵,∴=,∴=2×8+4×=16.【解析】(1)将原式化为关于3x2-4x的式子,进而求出答案;(2)首先得出=,进而代入原式求出答案.此题主要考查了代数式求值,正确利用整体思想代入原式求解是解题关键.28.【答案】>【解析】解:(1)如>=,=,=,0<a<1,则比较>;(2)a=-,=-2,a>;a=-0.25=-,=-4,a>,当-1<a<0时,a>;a=-2,=-,>a;a=-1,=-1;a=-5,=-,>a,当a≤-1时,a≤.(1)根据特殊值法,可得规律:0<a<1,则比较>;可得答案.(2)根据特殊值法,可得规律:当-1<a<0时,a>;当a≤-1时,a≤.本题考查了有理数的大小比较,利用特殊值法得出规律是解题关键.29.【答案】解:(1)根据题意得3*(-2)=3×(-2)+3m+2×(-2)=-6+3m-4=-10+3m;(2)a*b=ab+ma+2b,b*a=ab+mb+2a,根据题意得a*b=b*a,即ab+ma+2b=ab+mb+2a,(a-b)m=2(a-b),∵“*运算”对于任意的有理数a,b都满足“交换律”,∴a≠b,∴m=2.【解析】(1)根据题中的新定义化简所求式子,计算即可得到结果;(2)根据“*运算”对于任意的有理数a,b都满足“交换律”,得出ab+ma+2b=ab+mb+2a,进而求解即可.此题考查了有理数的混合运算,属于新定义题型,弄清题中的新定义是解本题的关键.30.【答案】60;庚午【解析】解:(1)天干与地支的汉字相差2个,十二地支代表12年,则有每12年地支比天干多2,当地支比天干多10时,重新开始为一个循环,所以:12×(10÷2)=60(年).故答案为:60.(2)列举甲子表:1 甲子13 丙子25 戊子37 庚子49 壬子2 乙丑14 丁丑26 己丑38 辛丑50 癸丑3 丙寅15 戊寅27 庚寅39 壬寅51 甲寅4 丁卯16 已卯28 辛卯40 癸卯52 乙卯5 戊辰17 庚辰29 壬辰41 甲辰53 丙辰6 已巳18 辛巳30 癸巳42 乙巳54 丁巳7 庚午19 壬午31 甲午43 丙午55 戊午8 辛未20 癸未32 乙未44 丁未56 已未9 壬申21 甲申33 丙申45 戊申57 庚申10 癸酉22 乙酉34 丁酉46 已酉58 辛酉11 甲戌23 丙戌35 戊戌47 庚戌59 壬戌12 乙亥24 丁亥36 已亥48 辛亥60 癸亥1930-1894=36(年),1894年是甲午年,排31号,31+36=67,67÷60=1…7,故与7号年份相同,故1930年是庚午年;故答案为:庚午.(1)首先要明确天干与地支的汉字相差2个,十二地支代表12年,则有每12年地支比天干多2,当地支比天干多10时,重新开始为一个循环,故用12×(10÷2)求解即可;(2)先排列出一个循环的干支纪年,用1930减去1894的差除以循环周期60,看余数是多少,进行推算即可.此题主要考查规律问题的探索与运用,了解天干地支纪年法的基础知识是解题的关键.。
大兴区2024~2025学年度第一学期期中检测初一数学2024.11考生须知本试卷共三道大题,28道小题,满分100分,考试时间120分钟.2.在答题纸上准确填写学校名称、准考证号,并将条形码贴在指定区域.3.题目答案一律填涂或书写在答题卡上,在练习卷上作答无效.4.在答题纸上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,请将答题纸交回.一、选择题(本题共16分,每小题2分)第1--8题均有四个选项,符合题意的选项只有一个.1.3的相反数是( )A.B .3C .3D .2.将223000000用科学记数法表示为( )A .2.23×106B .22.3×107C .2.23×108D .0.223×1093.的次数是( )A .1B .2C .3D .44.下列计算正确的是( )A . B .C .D .5.若,则的值是( )A .6B .2C .2D .66.在数轴上,点表示有理数,将点向左移动6个单位后得到点,若点表示的相反数,则的值为( )A .6B .6C .3D .37.下列说法正确的是( )A .比的2倍少3的数用代数式表示为B .与2的差的5倍用代数式表示为C .代数式表示的相反数与的和D .代数式表示比的倒数多2的数8.有理数在数轴上表示的点的位置如图所示,给出下面三个结论:①;②;③.-13-13-24a b 527ab ab ab +=33a a -=2323a a a +=33321a a -=()2240a b -+-=a b +--A a A B B a a --x 23x +m ()52m -a b --a b 2xx ,a b 0ab <b a a b ->+a a b >+上述结论中,所有正确结论的序号是( )A .①②B .①③C .②③D .①②③二、填空题(共16分,每题2分)9.图片旋转是人们处理图像的日常操作之一.如果将图片顺时针方向旋转30°记为30°,那么将图片逆时针方向旋转45°,记为_________°.10.若,则________.11.比较大小:________(填“”,“”或“”).12.若与是同类项,则的值是_________.13.对代数式“”可以赋予实际意义:如果一个乒乓球拍的价格是元,那么表示6个乒乓球拍的总价.请你再对代数式“”赋予一个实际意义:________.14.物理课上老师带领学生探究气体压强与气体体积的关系,他们在气缸内充入了一定量的气体,当保证温度不变时,记录气缸内的气体压强与气体体积(m 3),数据如下:气缸内的气体压强2402001601209680气缸内气体体积(m 3)0.40.480.60.811.2则用式子表示与之间的关系是_________.15.如图,用火柴棍拼图形,按照这种方法拼下去,拼第4个图形需要_________根火柴棍,拼第个这样的图形需要_________根火柴棍(用含的代数式表示).16.“24点”游戏是一种使用扑克牌进行的益智类游戏.规则是:从一副扑克牌中抽去大、小王剩下52张牌,从中任意抽取4张牌,运用你所学过的运算对牌面上的数进行运算,使运算结果为24.每张牌都必须使用一次,但不能重复使用.其中,假设黑色(梅花、黑桃)代表正数,红色(红桃、方块)代表负数,黑色分别代表11,12,13,红色分别代表11,12,13.某同学抽到红桃3、方块6、黑桃2、梅花4等4张牌.请你用这4张牌代表的数写出一个运算结果为24的算式:________.三、解答题(共68分,第17题6分,第18题4分,第19题10分,第20--25题每题5分,第26--28题,每题6分)解答应写出文字说明、演算步骤或证明的过程.17.在数轴上表示下列各数,并用“”连接..18.将下列各有理数填在相应的集合内:.+3a =a =37-23-><=23x y -22ax y a 6a a 6a 6a ()P kPa V ()P kPa V P V n n ,,J Q K ,,J Q K ---<50,1.5,3,,12-315,6,0.8,,0,2.7,3,0.372-+--正有理数集合:;整数集合:19.计算:(1);(2).20.计算:21.计算:.22.化简:.23.先化简,再求值:,其中.24.为了保证社区及周边安全稳定,某志愿者在不同的点位巡逻值守.志愿者从社区服务中心出发,沿着一条东西向的笔直公路巡逻,他先向东行驶1km 到达点位,继续向东行驶3km 到达点位,然后向西行驶7km 到达点位,最后回到社区服务中心.(1)点位与点位的距离是多少千米?(2)志愿者一共行驶了多少千米?25.如图,四边形是一个长方形.(1)根据图中数据,用含的代数式表示图中阴影部分的面积;(2)当时,求的值.26.某校七年级三个班级的学生在植树节这天义务植树.一班植树棵,二班植树的棵数比一班的2倍少40棵,三班植树的棵数比二班的一半多30棵.(1)求三个班共植树多少棵(用含的代数式表示);(2)当时,三个班中哪个班植树最多?27.2024年7月27日,北京中轴线申遗成功.如图,北京中轴线北端为钟鼓楼,向南经万宁桥、景山,过故宫、端门、天安门、外金水桥、天安门广场及建筑群、正阳门、中轴线南段道路遗存,至南端永定门,太庙和社稷坛、天坛和先农坛分列中轴线东西两侧.周末张老师沿中轴线骑行.(1)若张老师从钟鼓楼出发,骑行到达景山公园,他的骑行速度为每小时10km ,则用含的代数式表示他从钟鼓楼到景山公园的骑行路程是________km ,骑行路程与骑行时间成________比例关系(填“正”或“反”);{} {}()()()23157-+---296347⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭2111353015⎛⎫⎛⎫-+÷-⎪ ⎪⎝⎭⎝⎭()()41121956⎡⎤⎛⎫-÷-÷---⨯ ⎪⎢⎥⎝⎭⎣⎦()()24563ab a ab a b +--+-()()22323254x x x +--2x =-A B C A C ABCD ,,,a b c d S 3,7,1,2a b c d ====S x x 60x =t h t(2)若端门到永定门的骑行路程为6km ,他的骑行速度为每小时km (在10km 到30km 之间),则用含的代数式表示他从端门到永定门的骑行时间是_________h ,骑行速度与骑行时间成________比例关系(填“正”或“反”);(3)若钟鼓楼到中轴线上处的骑行路程为km ,处到永定门的骑行路程为km .若张老师从钟鼓楼到处的骑行速度为每小时10km ,处到永定门的骑行速度为每小时13km .①用含的代数式表示张老师从钟鼓楼到永定门的骑行时间为________h ;②当时,张老师从钟鼓楼到永定门的骑行时间为_________h .28.对于有理数,我们给出如下定义:若满足,则称为“和谐有理数对”,记为.例如:,数对是“和谐有理数对”.v v v A a A b A A ,a b 7, 5.2a b ==,a b ,a b 31a b ab -=+,a b [],a b 11232177-=⨯⨯+12,7⎡⎤⎢⎥⎣⎦(1)数对,其中是“和谐有理数对”的是_________;(2)若是“和谐有理数对”,求的值;(3)若是“和谐有理数对”,则________(填“是”或“不是”)“和谐有理数对”,说明你的理由.大兴区2024~2025学年度第一学期期中检测初一数学参考答案一、选择题(共16分,每题2分)题号12345678答案BCCADDBD二、填空题(共16分,每题2分)题号9101112答案3题号13141516答案答案不唯一,如:如果一支签字笔的价格是6元,那么6表示支签字笔的总价.21,答案不唯一,如:三、解答题(共68分,第17题6分,第18题4分,第19题10分,第20-25题每题5分,第26-28题,每题6分)解答应写出文字说明、演算步骤或证明的过程.17.解:画图正确(图略).18.正有理数集合:;整数集合:.19.解:(1)原式(2)原式20.解:原式21.解:原式=22.解:原式23.解:原式[]130,1,,5,2,25⎡⎤⎡⎤--⎢⎥⎢⎥⎣⎦⎣⎦[],a a -2645a a ++[],m n [],n m --45-3±>a a 96PV =()51n +()()642324--+⨯-=53 1.5012-<-<<<36,,2.7,0.37⎧⎫+⎨⎬⎩⎭{}5,6,0-+ ()()()2315738731=-+-++=-++=-29729773463464⎛⎫⎛⎫⎛⎫=⨯-⨯-=+⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()()211211115151515151033530353022⎛⎫=-+⨯-=⨯--⨯-+⨯-=-+-=-⎪⎝⎭()()()()()12685112851124015251-+-⨯---⨯=-+--⨯=-++=-+=⎡⎤⎡⎤⎣⎦⎣⎦245633103ab a ab a b ab a b =+-+-=-+-2226910868x x x x x =+-+=-++当时,原式=24.解:(1)(km )(2)(km )答:点位与点位的距离是4km ,志愿者一共行驶了14km .25.(1).(2)当时,26.(1).所以三个班共植树棵.(2)当时,(棵)(棵)所以二班植树最多.27.解(1)(2),反(3)①;②28.(1);(2)因为是“和谐有理数对”,所以,即.(3)是理由如下:左边,右边.因为是“和谐有理数对”,所以.所以.所以是“和谐有理数对”.2x =-()()2262841288=--+⨯-+=--+=-734-=1374114+++-=A C 21122ABCD ABE CFG S S S S ab a cd =--=--长方形直角三角形直角三角形3,7,1,2a b c d ====221111313731222222S ab a cd =--=⨯-⨯-⨯⨯=()()()12402403024010240104302x x x x x x x x x x ⎡⎤+-+-+=+-++=+-++=-⎢⎥⎣⎦()430x -60x =2402604080x -=⨯-=()124030106010702x x -+=+=+=10t6v1013a b ⎛⎫+⎪⎝⎭ 1.1[]30,1,2,5⎡⎤--⎢⎥⎣⎦[],a a -()()31a a a a --=⨯⨯-+2231a a =-+()222226456231566257a a a a a a ++=+-++=-++=()n m n m m n =---=-+=-()()3131n m mn =⨯-⨯-+=+[],m n 31m n mn -=+()()()31n m n m ---=⨯-⨯-+[],n m --。
2022年北京市海淀区XXX学校七上期中数学试卷1.3的倒数是( )A.3B.−3C.13D.−132.新中国成立70周年经济社会发展成就系列报告中指出,改革开放后,我国铁路建设突飞猛进,路网规模进一步扩大,路网质量显著提升,到2022年末,全国铁路营业总公里数达到132000,其中,电气化公里数为92000.将全国铁路营业总公里数用科学记数法表示为( )A.13.2×104B.1.32×105C.9.2×104D.0.92×1053.下列运算中,正确的是( )A.a2−2a2=−a2B.2a2−a2=2C.−a2−a2=0D.a2+a2=a44.下列各组数中,互为相反数的一组是( )A.−(−5)和∣−5∣B.−∣5∣和−5C.(−5)2和−52D.(−5)3和−535.下列变形中,正确的是( )A.由−x+2=0变形得x=−2B.由−2(x+2)=3变形得−2x−4=3C.由12x=3变形得x=32D.由−2x−16+1=0变形得−(2x−1)+1=06.关于x的代数式ax+b,当x取值分别为−1,0,1,2时,对应的代数式的值如下表:x⋯−1012⋯y⋯−2147⋯则a+b的值是( )A.−2B.1C.4D.77.在数轴上,点A,B,C分别表示a,b,c,若a+b+c=0,则点A,B,C在数轴上的位置不可能的是( )A.B.C.D.8.如图,将一刻度尺放在数轴上.①若刻度尺上0cm和4cm对应数轴上的点表示的数分别为1和5,则1cm对应数轴上的点表示的数是2;②若刻度尺上0cm和4cm对应数轴上的点表示的数分别为1和9,则1cm对应数轴上的点表示的数是3;③若刻度尺上0cm和4cm对应数轴上的点表示的数分别为−2和2,则1cm对应数轴上的点表示的数是−1;④若刻度尺上0cm和4cm对应数轴上的点表示的数分别为−1和1,则1cm对应数轴上的点表示的数是−0.5.上述结论中,所有正确结论的序号是( )A.①②B.②④C.①②③D.①②③④9.在下列各数中:12,−3,0,−0.7,5,其中是非负整数的是.10.将0.249用四舍五入法保留到十分位的结果是.11.关于x的一元一次方程ax+2=x−a+1的解是x=−2,则a的值是.12.已知x+y=2,则3−2x−2y的值是.13.在数轴上,把表示−2的点移动2个单位长度后,所得到的点表示的数是.14.如图,在3×3方格内填入9个数,使图中各行、各列及对角线上的三个数之和都相等,则x的值是.x−262x−x15.规定一种新运算“∗”;若a,b是有理数,则a∗b=a2−ab−3b.若(−2)∗x=7,则x的值是.16.若p和q是正整数,pq=4,则p+q的值是.17.在数学小组探究活动中,小月请同学想一个数,然后将这个数按以下步骤操作:小月就能说出同学最初想的那个数,如果小红想了一个数,并告诉小月操作后的结果是−1,那么小红所想的数是.18.关于x的代数式ax+b,当x=n时对应的代数式的值表示为y n,若y1=−5,且对于任意n=1,2,3,⋯,满足y n+1=y n+3,则y3的值是,a的值是.19.计算.(1) −8−(−3)+5;(2) −6÷(−3)×18;(3) (−24)×(−34−56+1112);(4) 5+48÷22×(−14)−1;(5) −14−(1−0.5)×12×[2−(−3)2].20.回答下列问题.(1) 在数轴上表示下列各数,并用“<”号把它们连接.3,−1,0,−2.5,1.5,212.(2) 快递员要从物流中心出发送货,已知甲住户在物流中心的东边2km处,乙住户在甲住户的西边3km处,丙住户在物流中心的西边 1.5km处,请建立数轴表示物流中心、甲住户、乙住户、丙住户的位置关系.21.计算.(1) (3a2b−ab+4)−(ab+5a2b+4);(2) (3x2−12−3x)−4(x2−x+14).22.先简化,再求值:已知a2−a−2=0,求a2+2(a2−a+1)−12(2a2−1)的值.23.解方程.(1) −2x+6=3(x−3);(2) 12x−2=9x−46;(3) 4x−a2=2(x−1).24.小颖为妈妈准备了一份生日礼物,礼物外包装盒为长方体形状,长、宽、高分别为a,b,c(a>b>c),为了美观,小颖决定在包装盒外用丝带打包装饰,她发现,可以用如图所示的三种打包方式,所需丝带的长度分别为l1,l2,l3(不计打结处丝带长度).(1) 用含a,b,c的代数式分别表示l1,l2,l3;(2) 请帮小颖选出最节省丝带的打包方式,并说明理由.25.列一元一次方程解应用题.6月15日,新机场线一期工程正式开始试运行,轨道交通新机场线一期全长约42.75千米,全线从草桥站出发,途经磁各庄站,终到新机场北航站楼站,新机场线车辆首次采用基于城际平台的市域车型,全线行驶需20分钟(不含起始站和终点站停靠时间),若列车的平均时速为135千米,则列车在磁各庄站停靠的时间是多少分钟?26.7月9日,滴滴发布北京市滴滴网约车价格调整,公布了新的滴滴快车计价规则,车费由“总里程费+总时长费”两部分构成,不同时段收费标准不同,具体收费标准如下表,如果车费不足起步价,则按起步价收费.时间段里程费(元/千米)时长费(元/分钟)起步价(元)06:00∼10:00 1.800.8014.0010:00∼17:00 1.450.4013.0017:00∼21:00 1.500.8014.0021:00∼6:00 2.150.8014.00(1) 小明早上7:10乘坐滴滴快车上学,行车里程6千米,行车时间10分钟,则应付车费多少元?(2) 小云17:10放学回家,行车里程1千米,行车时间15分钟,则应付车费多少元?(3) 下晚自习后小明乘坐滴滴快车回家,20:45在学校上车,由于堵车,平均速度是a千米/小时,15分钟后走另外一条路回家,平均速度是b千米/小时,5分钟后到家,则他应付车费多少元?27.阅读材料:在数轴上,点A在原点O的左边,距离原点4个单位长度,点B在原点的右边,点A和点B之间的距离为14个单位长度.(1) 点A表示的数是,点B表示的数是;(2) 点A,B同时出发沿数轴向左移动,速度分别为1个单位长度/秒,3个单位长度/秒,经过多少秒,点A与点B重合?(3) 点M,N分别从点A,B出发沿数轴向右移动,速度分别为1个单位长度/秒、2个单位长度/秒,点P为ON的中点,设OP−AM的值为y,在移动过程中,y值是否发生变化?若不变,求出y值;若变化,说明理由.答案1. 【答案】C【解析】3的倒数是13.2. 【答案】B【解析】全国铁路营业总公里数为132000,则可表示为132000=1.32×105.3. 【答案】A【解析】A.a2−2a2=−a2,正确;B.2a2−a2=a2,排除.C.−a2−a2=−2a2,排除;D.a2+a2=2a2,排除.4. 【答案】C【解析】A.−(−5)=5,∣−5∣=5,5+5≠0,排除;B.−∣5∣=−5,(−5)+(−5)≠0,排除;C.(−5)2=25,−52=−25,25+(−25)=0,符合;D.(−5)3=−125,−53=−125,(−125)+(−125)≠0,排除.5. 【答案】B【解析】A.−x+2=0移项得−x=−2,系数化为1得x=2,排除;B.−2(x+2)=3去括号得−2x−4=3,正确;C.12x=3系数化为1得x=6,排除;D.−2x−16+1=0去分母得−(2x−1)+6,排除.6. 【答案】C【解析】由题意可知:y=ax+b.由表可知:x=−1,y=−2;x=0,y=1.代入y=ax+b得:{−2=−a+b, 1=b,解得:a=3,b=1,则a+b=4.7. 【答案】A【解析】A.由数轴可知,∣a∣=∣c∣>∣b∣,令c=2,a=−2,b=0.4,则a+b+c=0.4;B.由数轴可知,∣c∣>∣a∣>∣b∣,令c=1.5,a=−1,b=−0.5,则a+b+c=0可以成立;C.由数轴可知,∣a∣=∣c∣,∣b∣=0,令a=−1,c=1,b=0,则a+b+c=0可以成立;D.由数轴可知,∣a∣>∣c∣>∣b∣,令a=−1.5,c=1,b=0.5,则a+b+c=0可以成立.8. 【答案】D【解析】①数1和5之间有4个单位长度,则每厘米表示4÷4=1个单位长度,0cm表示数1,则1cm表示1+1=2,正确;②数1和9之间有8个单位长度,则每厘米表示8÷4=2个单位长度,0cm表示数1,则1cm表示1+2=3,正确;③数−2和2之间有4个单位长度,则每厘米表示4÷4=1个单位长度,0cm表示数−2,则1cm表示−2+1=−1,正确;④数−1和1之间有2个单位长度,则每厘米表示2÷4=0.5个单位长度,0cm表示数−1,则1cm表示−1+0.5=−0.5,正确.9. 【答案】0,5【解析】非负整数是指大于等于0的整数,则非负数有0,5.10. 【答案】0.2【解析】0.249的百分位是4<5,则直接舍掉,0.249≈0.2.11. 【答案】3【解析】把x=−2代入ax+2=x−a+1得:−2a+2=−2−a+1,解得:a=3.12. 【答案】−1【解析】3−2x−2y=3−2(x+y),把x+y=2代入可得:3−2×2=−1.13. 【答案】0或−4【解析】由题意可知,分为两种情况:向右移动,−2+2=0,则移动后的点表示的数是0;向左移动,−2−2=−4,则移动后点表示的数是−4.14. 【答案】1【解析】由题意可知:−2+6+2x=x+6+(−x),解得:x=1.15. 【答案】−3【解析】根据a∗b=a2−ab−3b可知:(−2)∗x=7⇒(−2)2−(−2)x−3x=7,则4−x=7,解得x=−3.16. 【答案】5或4【解析】∵p和q是正整数,pq=4,∴p=1,q=4或p=2,q=2或p=4,q=1,则p+q=5或4.17. 【答案】3【解析】设输入的数为a,输出的数是b,则(4a−8)÷2−3=b.令b=−1,则(4a−8)÷2−3=−1,解得:a=3.∴小红所想数是3.18. 【答案】1;3【解析】由题意知:y n=an+b,则y n+1=a(n+1)+b=an+a+b,由y n+1=y n+3得:an+a+b=an+b+3,解得a=3.又y1=a+b=−5,∴b=−8,则y n=an+b=3n−8,则y3=3×3−8=1.19. 【答案】(1) 原式=−8+3+5=0.(2) 原式=−6×(−13)×18=2×18=14.(3) 原式=(−24)×(−34)−(−24)×56+(−24)×1112 =18+20−22=16.(4) 原式=5+48×14×(−14)−1 =5−3−1=1.(5) 原式=−1−12×12×(2−9)=−1+74=34.20. 【答案】(1) 由数轴可知,左边的数小于右边的数,则−2.5<−1<0<1.5<212<3.(2) 以物流中心为原点,正方向为东,单位长度为1km,则甲所在位置为+2km,乙所在位置为+2−3=−1km,丙所在位置为0−1.5=−1.5km.如图所示.21. 【答案】(1) 原式=3a 2b−ab+4−ab−5a2b−4=−2a2b−2ab.(2) 原式=3x2−12−3x−4x2+4x−1=−x2+x−32.22. 【答案】原式=a2+2a2−2a+2−a2+12 =2a2−2a+52.而2a2−2a+52=2(a2−a)+52,∵a2−a−2=0,则a2−a=2.把a2−a=2代入2(a2−a)+52得,2×2+52=132.23. 【答案】(1)−2x+6=3x−9.−2x−3x=−9−6.−5x=−15.x=3.(2) 3x−12=9x−4. 3x−9x=12−4.−6x=8.x=−43.(3)8x−a=4x−4. 8x−4x=a−4.4x=a−4.x=a4−1.24. 【答案】(1) 第一种:与长平行的丝带有4根,与宽平行的丝带有2条,与高平行的丝带有6条,则总丝带长为:l1=4a+2b+6c;第二种:与长平行的丝带有2根,与宽平行的丝带有4条,与高平行的丝带有6条,则总丝带长为:l2=2a+4b+6c;第三种:与长平行的丝带有4根,与宽平行的丝带有4条,与高平行的丝带有4条,则总丝带长为:l3=4a+4b+4c.(2) 由题意可知:a>b>c,则令a=3,b=2,c=1,则l1=4a+2b+6c=4×3+2×2+6×1=22,l2=2a+4b+6c=2×3+4×2+6×1=20,l3=4a+4b+4c=4(a+b+c)=4×6=24,则最节省丝带的打包方式为图②所示.25. 【答案】设列车在磁各庄站停靠的时间是x分钟.则有:x+(42.75÷135)×60=20.解得:x=1.故列车在磁各庄站停靠的时间是1分钟.26. 【答案】(1) 根据表格中的06:00∼10:00的收费标准计算:6×1.8+10×0.8=18.8元.(2) 根据表格中的17:00∼21:00的收费标准计算:1×1.5+15×0.8=13.5元,但是13.5<14,则应付车费14元.(3) 前15分钟的路程为:1560×a=14a,后5分钟的路程为:560×b=112b.则前15分钟按17:00∼21:00收费标准计算:14a×1.5+15×0.8=38a+12,后5分钟按21:00∼6:00收费标准计算:112b×2.15+5×0.8=43240b+4,则应付车费为38a+12+43240b+4=38a+43240b+16.27. 【答案】(1) −4;10(2) 由题意知,此时为速度问题里面的追击问题,则由速度差×相遇时间=相距距离可知:设经过x秒后重合,即x秒后AB相遇.则(3−1)x=14,解得:x=7,故7秒后点A,B重合.(3) y不发生变化,理由如下:设运动时间为x秒,则AM=x,而OP=12ON=12(OB+BN)=12(10+2x)=5+x,则y=OP−AM=5+x−x=5,故y为定值,不发生变化.【解析】(1) 由A在原点左边4个单位长度可知A点表示的数是−4,由B在原点右边且与点A距离14个单位长度可知,−4+14=10,则B点表示的数是10.。
七年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.-2的相反数是()A. B. C. D. 22.在-,0,,-1这四个数中,最小的数是()A. B. 0 C. D.3.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()A. B. C. D.4.A、B两地相距6980000m,用科学记数法表示为()m.A. B. C. D.5.下面各式中,与-2xy2是同类项的是()A. B. C. D.6.一个长方形的一边长是2a+3b,另一边的长是a+b,则这个长方形的周长是()A. B. C. D.7.下列代数式书写规范的是()A. B. C. ax3 D.8.关于多项式x5-3x2-7,下列说法正确的是()A. 最高次项是5B. 二次项系数是3C. 常数项是7D. 是五次三项式9.在代数式:,3m-3,-22,-,2πb2中,单项式的个数有()A. 1个B. 2个C. 3个D. 4个10.如果x是最大的负整数,y绝对值最小的整数,则-x2016+y的值是()A. B. C. 1 D. 2016二、填空题(本大题共10小题,共20.0分)11.的绝对值是______ ,的倒数是______ .12.在数轴上,若点P表示-2,则距P点3个单位长的点表示的数是______ .13.单项式-5πab2的系数是______ ,次数是______ .14.如图是一数值转换机,若输入的x为-1,则输出的结果为______ .15.绝对值小于3的所有整数的和是______ .16.数轴上表示数-5和表示-14的两点之间的距离是______ .17.在数4.3,-,|0|,-(-),-|-3|,-(+5)中,______ 是正数.18.已知|a|=2,|b|=5,且ab<0,那么a+b的值为______ .19.如果有|x-3|+(y+4)2=0,则x= ______ ,y x= ______ .20.现规定一种新的运算“*”:a*b=a b,如3*2=32=9,则()*3= ______ .三、解答题(本大题共13小题,共66.0分)21.把下面的有理数填在相应的大括号里:(★友情提示:将各数用逗号分开)15,,0,-30,0.15,-128,,+20,-2.6正数集合﹛______﹜负数集合﹛______﹜整数集合﹛______﹜分数集合﹛______﹜22.计算:28-37-3+52.23.计算:(-+)÷(-)24.计算(-4)×(-9)+(-)-23.25.化简:3x2-3+x-2x2+5.26.化简(5a-3a2+1)-(4a3-3a2).27.观察图形,写出一个与阴影面积有关的代数恒等式.28.(1)在数轴上表示下列各数,(2)用“<”连接:-3.5,,-1,4,0,2.5.29.先化简,再求值:5(a2b-ab2)-(ab2+5a2b),其中a=1,b=-2.30.10盒火柴如果以每盒100根为准,超过的根数记作正数,不足的根数记作负数,每盒数据记录如下:+3,+2,0,-1,-2,-3,-2,+3,-2,-2.求:这10盒火柴共有多少根.31.已知有理数a,b,c在数轴上的位置如图所示,(1)用<,>,=填空:a+c ______ 0,c-b ______ 0,b+a ______ 0,abc ______ 0;(2)化简:|a+c|+|c-b|-|b+a|.32.阅读下列解题过程,然后答题:已知如果两个数互为相反数,则这两个数的和为0,例如,若x和y互为相反数,则必有x+y=0.(1)已知:|a|+a=0,求a的取值范围.(2)已知:|a-1|+(a-1)=0,求a的取值范围.33.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中的系数等等.(1)根据上面的规律,写出(a+b)5的展开式.(2)利用上面的规律计算:25-5×24+10×23-10×22+5×2-1.答案和解析1.【答案】D【解析】解:-2的相反数是2,故选:D.根据相反数的定义:只有符号不同的两个数叫做互为相反数即可得到答案.此题主要考查了相反数,关键是掌握相反数的定义.2.【答案】D【解析】解:根据有理数大小比较的法则,可得-1<-,所以在-,0,,-1这四个数中,最小的数是-1.故选:D.有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.3.【答案】D【解析】解:∵从数轴可知:b<0<a,|b|>|a|,∴A错误;B错误;∵a>0,b<0,∴ab<0,∴C错误;∵b<0<a,|b|>|a|,∴a-b>0,a+b<0,∴a-b>a+b,∴D正确;故选D.数轴可知b<0<a,|b|>|a|,求出ab<0,a-b>0,a+b<0,根据以上结论判断即可.本题考查了数轴,有理数的乘法、加法、减法等知识点的应用,关键是能根据数轴得出b<0<a,|b|>|a|.4.【答案】D【解析】解:6980000=6.98×106,故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.【答案】A【解析】解:由题意,得y2x与-2xy2是同类项,故选:A.根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.6.【答案】B【解析】解:周长=2(2a+3b+a+b)=6a+8b.故选B.长方形的周长等于四边之和,由此可得出答案.本题考查有理数的加减运算,比较简单,注意长方形的周长可表示为2(长加宽).7.【答案】A【解析】解:选项A正确,B正确的书写格式是b,C正确的书写格式是3ax,D正确的书写格式是.故选A.根据代数式的书写要求判断各项即可得出正确答案.代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.8.【答案】D【解析】解:A、多项式x5-3x2-7的最高次项是x5,故本选项错误;B、多项式x5-3x2-7的二次项系数是-3,故本选项错误;C、多项式x5-3x2-7的常数项是-7,故本选项错误;D、多项式x5-3x2-7是五次三项式,故本选项正确.故选:D.根据多项式的项和次数的定义,确定各个项和各个项的系数,注意要带有符号.本题考查与多项式相关的概念,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.9.【答案】C【解析】解:-22,-,2πb2中是单项式;是分式;3m-3是多项式.故选C.根据单项式的定义进行解答即可.本题考查的是单项式,熟知数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式是解答此题的关键.10.【答案】B【解析】解:∵x是最大的负整数,y绝对值最小的整数,∴x=-1,y=0,∴-x2016+y=-(-1)2016=-1.故选B.由于x是最大的负整数,y绝对值最小的整数,由此可以分别确定x=-1,y=0,把它们代入所求代数式计算即可求解.此题主要考查了有理数的混合运算,解题的关键是根据最大的负整数,绝对值最小的整数的性质确定x、y的值,然后代入所求代数式即可解决问题.11.【答案】;【解析】解:-的绝对值为,1的倒数为.故答案为:,.根据绝对值、倒数,即可解答.本题考查了绝对值、倒数,解决本题的关键是熟记绝对值、倒数的定义.12.【答案】-5或1【解析】解:设距P点3个单位长的点表示的数是x,则|x+2|=3,当x+2≥0时,原式可化为:x+2=3,解得x=1;当x+2<0时,原式可化为:-x-2=3,解得x=-5.故答案为:-5或1.设距P点3个单位长的点表示的数是x,则|x+2|=3,求出x的值即可.本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.13.【答案】-5π;3【解析】解:单项式-5πab2的系数是-5π,次数是3.故答案为:-5π,3.根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.此题考查了单项式,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.14.【答案】9【解析】解:(-1-2)×(-3)=(-3)×(-3)=9.故答案为:9.根据运算规则:先-2,再×(-3),进行计算即可求解.此题主要考察根据运算规则列式计算,读懂题中的运算规则,并准确代入求值是解题的关键.15.【答案】0【解析】解:根据绝对值的意义得绝对值小于3的所有整数为0,±1,±2.所以0+1-1+2-2=0.故答案为:0.绝对值的意义:一个数的绝对值表示数轴上对应的点到原点的距离.互为相反数的两个数的和为0.依此即可求解.此题考查了绝对值的意义,并能熟练运用到实际当中.16.【答案】9【解析】解:|-5-(-14)|=9.数轴上两点之间的距离等于这两点的数的差的绝对值,即较大的数减去较小的数.考查了数轴上两点之间的距离的计算方法.17.【答案】4.3,-(-)【解析】解:在数4.3,-,|0|,-(-)=,-|-3|=-3,-(+5)=-5中,4.3,-(-)是正数.故答案为:4.3,-(-).首先将各数化简,再根据正数的定义可得结果.本题主要考查了有理数的定义,熟练掌握有理数的分类是解答此题的关键.18.【答案】3或-3【解析】解:①a>0,b<0,则a=2,b=-5,a+b=-3;②a<0,b>0,则a=-2,b=5,a+b=3.故填3或-3.根据题意可得a和b异号,分情况讨论①a>0,b<0;②a<0,b>0.本题考查有理数的加法,注意讨论a和b的取值范围得出a和b的值是关键.19.【答案】3;-64【解析】解:由题意得,x-3=0,y+4=0,解得,x=3,y=-4,则y x=-64,故答案为:3;-64.根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.20.【答案】【解析】解:∵a*b=a b,3*2=32=9,∴()*3=(-)3=-.故答案为:-.根据题中所给出的运算方法列出乘方的式子,再根据乘方的运算法则进行计算即可.本题考查的是有理数的混合运算,熟知数的乘方法则是解答此题的关键.21.【答案】15,0.15,,+20;,-30,-128,-2.6;15,0,-30,-128,+20;,0.15,,-2.6【解析】解:正数集合﹛15,0.15,,+20,﹜负数集合﹛,-30,-128,-2.6,﹜整数集合﹛15,0,-30,-128,+20,﹜分数集合﹛,0.15,,-2.6,﹜按照有理数的分类填写:有理数.认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.22.【答案】解:28-37-3+52,=28+52-37-3,=80-40,=40.【解析】先根据加法交换律将同号数相加,再把两个异号数相加.本题是有理数的加减混合运算,可以看作是省略加号的加法,注意运用简便算法进行计算.23.【答案】解:原式=(-+)×(-36),=×(-36)-×(-36)+×(-36),=-8+9-2,=-1.【解析】首先根据除以一个不为0的数等于乘以这个数的倒数可得(-+)×(-36),再用乘法分配律计算即可.此题主要考查了有理数的除法,关键是掌握有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.24.【答案】解:(-4)×(-9)+(-)-23=36+(-)-8=27.【解析】根据有理数的乘法和加减法可以解答本题.本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.25.【答案】解:3x2-3+x-2x2+5=(3x2-2x2)+x+(5-3)=x2+x+2.【解析】首先找出同类项,进而合并同类项得出答案.此题主要考查了合并同类项,正确找出同类项是解题关键.26.【答案】解:(5a-3a2+1)-(4a3-3a2)=5a-3a2+1-4a3+3a2=-4a3+5a+1.【解析】先去括号,然后合并同类项即可解答本题.本题考查整式的加减,解题的关键是明确整式的加减的计算方法,注意去括号后,各项内的符号是否变号.27.【答案】解:阴影部分的面积可表示为:a2-b2或(a+b)(a-b),∴a2-b2=(a+b)(a-b).【解析】分别利用不同的方法表示出阴影部分的面积,得到恒等式.本题考查的是平方差公式的几何背景,掌握平方差公式、矩形的面积公式是解题的关键.28.【答案】解:(1)如图所示:(2)-3.5<-1<0<<2.5<4【解析】在数轴上表示各数,数轴上各数从左往右的顺序,就是各数从小到大的顺序.本题考查了用数轴表示有理数和有理数的大小比较.数轴上各数从左往右的顺序就是各数从小到大的顺序.29.【答案】解:原式=5a2b-5ab2-ab2-5a2b=-6ab2,∴当a=1,b=-2时,∴原式=-6×1×4=-24【解析】先将原式化简,然后将a与b的值代入即可求出答案.本题考查整式运算,涉及代入求值.30.【答案】解:先求超过的根数:(+3)+(+2)+0+(-1)+(-2)+(-3)+(-2)+(+3)+(-2)+(-2)=-4;则10盒火柴的总数量为:100×10-4=996(根).答:10盒火柴共有996根.【解析】首先审清题意,明确“正”和“负”所表示的意义;然后根据每盒的数据记录求出超过的根数,进而可求得10盒火柴的总数量.解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.31.【答案】<;>;<;>【解析】解:(1)根据数轴可知:a<b<0<c,且|c|<|b|<|a|,∴a+c<0,c-b>0,b+a<0,abc>0,故答案为:<,>,<,>;(2)原式=-(a+c)+(c-b)+(b+a)=-a-c+c-b+b+a=0.(1)根据数轴,判断出a,b,c的取值范围,进而求解;(2)根据绝对值的性质,去绝对值号,合并同类项即可.本题主要考查数轴、绝对值、整式的加减等知识的综合运用,解决此题的关键是能够根据数轴上的信息,判断出a,b,c等字母的取值范围,同时解决此题时也要注意绝对值性质的运用.32.【答案】解:(1)∵|a|≥0,|a|+a=0,∴a≤0;(2)∵|a-1|≥0,∴a-1≤0,解得a≤1.【解析】(1)根据绝对值的性质可得出|a|≥0,再由相反数的定义即可得出结论;(2)根据绝对值的性质可得出|a-1|≥0,再由相反数的定义即可得出结论.本题考查的是有理数的加法,熟知相反数的定义是解答此题的关键.33.【答案】解:(1)如图,则(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;(2)25-5×24+10×23-10×22+5×2-1.=25+5×24×(-1)+10×23×(-1)2+10×22×(-1)3+5×2×(-1)4+(-1)5.=(2-1)5,=1.【解析】(1)直接根据图示规律写出图中的数字,再写出(a+b)5的展开式;(2)发现这一组式子中是2与-1的和的5次幂,由(1)中的结论得:25-5×24+10×23-10×22+5×2-1=(2-1)5,计算出结果.本题考查了完全式的n次方,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b)n中,相同字母a的指数是从高到低,相同字母b的指数是从低到高.。
初一数学试题 第 1 页 共 6 页
北京XX 中学2016—2017学年度第一学期期中考试
初 一 数 学 试 题
班级______________姓名______________学号_________
考 生 须 知
1.本试卷共3页,考试时间100分钟。
试卷由主卷和附加卷组成,主卷部分满分100分,附加卷部分满分20分。
2.试卷答案一律书写在答题纸上,在试卷上作答无效。
3.在答题纸上,用黑色字迹钢笔或签字笔作答。
4.考试结束后,将答题纸交回。
第Ⅰ卷(主卷部分,共100分)
一、选择题(本大题共10小题,每小题3分,共30分) 1.2016-的绝对值是
A .1
2016
- B .2016- C .2016± D .2016
2.近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.到2015年底,中国高速铁路营运里程达到18 000公里.将18 000用科学记数法表示应为 A .18×103
B .1.8×103
C .1.8×104
D .1.8×105
3. 下列式子中,正确的是 A .10.42-<-
B. 4657-<- C . 98
89
->- D .22(4)(3)->- 4.下列运算正确的是
A .235
235m m m += B .54xy xy xy -=
C .2222555c d c d +=
D . 22
22x x -=
5.有理数a ,b 在数轴上的位置如图所示,则下列各式成立的是
A .0b a ->
B .0b ->
C .a b >-
D .0ab -<
6.下列说法中正确的是
A.a 一定是正数
B.a -一定是负数
C.()a --一定是正数
D. 如果
1|
|-=a
a ,那么a < 0. 7.若x =2是关于x 的方程ax +6=2ax 的解,则a 的值为
A. 3
B. 2
C. 1
D.2
1
8.已知221a b -=,则代数式2243a b --的值是
A. 1
B. 1-
C. 5
D. 5-
9.下列式子的变形中,正确的是
A. 由6+x =10得x =10+6
B. 由3x +5=4x 得3x -4x = -5
C. 由8x = 4-3x 得8x -3x = 4
D. 由2(x -1)= 3得2x -1=3
10.用火柴棍按如图所示的方式摆大小不同的“H ”,依此规律,摆出第n 个“H ”需要火柴棍的
根数是
A. 2n +3
B. 3n +2
C. 3n +5
D. 4n +1
二、填空题(本大题共8小题,11-14题每题2分,15-18题每题3分,共20分) 11. 用四舍五入法将5.876精确到0.01,所得到的近似数为 .
12. 请写出一个只含有,x y 两个字母,次数为5,系数是负数的单项式 .
13. 一家商店把一种旅游鞋按成本价a 元提高50%标价,然后再以8折优惠卖出,则这种旅游鞋每双的售价是_____________元.(用含a 的式子表示) 14. 数轴上点A 表示的数为4-,点B 与点A 的距离为5,则点B 表示的数为_______________. 15. 若()2
760x y ++-=,则2016
()x y +的值为 .
16. 若6
25m
x y 与9
63n x
y +-是同类项,那么m n 的值为___________.
第1个
第2个
第3个
…。