履带车辆转向动力学仿真
- 格式:pdf
- 大小:186.09 KB
- 文档页数:5
履带车辆转向动力学仿真知识履带车辆转向动力学仿真是指通过计算机模拟履带车辆转向过程中的动力学特性。
这项仿真技术可以帮助工程师更好地理解和研究履带车辆在不同转向条件下的行为,并优化车辆设计和控制系统。
在履带车辆转向动力学仿真中,需要考虑的关键因素包括车辆的质量、转向系统的特性、轮胎与地面的摩擦系数等。
通过对这些因素进行建模和仿真,可以模拟出车辆在不同道路状况下的转向性能,包括转弯半径、侧滑角度、抓地力等。
在履带车辆转向动力学仿真中,常用的模型包括单轨模型和双轨模型。
单轨模型认为车辆仅在一个垂直于轨道的平面上运动,忽略车辆的纵向运动。
双轨模型则包括车辆的纵向运动,并考虑左右两侧履带之间的转弯差速。
履带车辆转向动力学仿真中,常用的仿真软件包括CarSim、ADAMS等。
这些软件提供了丰富的车辆模型和分析工具,可以模拟车辆在各种道路条件下的转向动力学,如直线行驶、转弯、制动等。
通过履带车辆转向动力学仿真,工程师可以评估不同转向系统设计的性能,并进行优化。
例如,可以通过仿真研究不同转向系统的刚度、行程、空转角度等参数对车辆的转向性能的影响。
此外,还可以研究不同摩擦系数下车辆的侧滑情况,并通过调整控制策略提高车辆的稳定性和灵活性。
总之,履带车辆转向动力学仿真是一项重要的技术,可以帮助工程师更好地理解和研究履带车辆的转向特性。
通过仿真研究,可以优化车辆的设计和控制系统,提高车辆的性能和可靠性。
履带车辆转向动力学仿真是一项复杂而关键的技术,对于履带车辆的设计、性能分析和控制优化具有重要意义。
本文将继续介绍履带车辆转向动力学仿真的相关内容,包括仿真模型、评估参数以及仿真结果的分析等。
一、仿真模型在履带车辆转向动力学仿真中,最基本的模型分为单轨模型和双轨模型。
单轨模型是将履带车辆简化为一个刚性运动体,并在一个垂直于车辆运动平面内进行建模,该模型忽略了车辆的纵向运动。
而双轨模型则考虑了车辆的纵向运动,并通过差速控制来模拟履带车辆的转向情况。
《履带式特种车辆精细化动力学建模与仿真》篇一一、引言随着科技的进步和军事需求的不断增长,履带式特种车辆在各种复杂环境下的应用越来越广泛。
为了更好地理解其运动性能、优化设计以及提高仿真精度,精细化动力学建模与仿真成为了研究的热点。
本文旨在探讨履带式特种车辆精细化动力学建模与仿真的关键技术,并分析其在实际应用中的价值。
二、履带式特种车辆动力学建模1. 模型概述履带式特种车辆动力学模型主要包括车辆运动学模型、履带系统模型、发动机模型等。
其中,车辆运动学模型描述了车辆的移动、转向等基本运动;履带系统模型则详细描述了履带与地面的相互作用;发动机模型则反映了发动机的输出功率与车辆运动的关系。
2. 关键技术(1)多体动力学建模:采用多体动力学理论,将车辆各部分(如车体、履带、发动机等)视为刚体或柔体,建立相互作用的力学模型。
(2)地面力学建模:根据地面与履带的相互作用关系,建立地面力学模型,描述地面对车辆的摩擦力、支撑力等。
(3)参数辨识与优化:通过实验数据对模型参数进行辨识,并对模型进行优化,以提高仿真精度。
三、仿真分析1. 仿真环境搭建为了更好地模拟履带式特种车辆在实际环境中的运动,需要搭建相应的仿真环境。
这包括地形模型、气象模型、传感器模型等。
通过仿真环境,可以模拟出各种复杂环境下的车辆运动。
2. 仿真结果分析通过对仿真结果的分析,可以了解车辆在不同环境下的运动性能、稳定性、能耗等。
同时,还可以对车辆的发动机性能、履带系统性能等进行评估。
四、应用价值1. 优化设计:通过动力学建模与仿真,可以了解车辆在不同环境下的运动性能,从而为车辆的优化设计提供依据。
2. 仿真训练:利用仿真环境,可以对驾驶员进行仿真训练,提高其应对各种复杂环境的能力。
3. 故障诊断与维修:通过对仿真结果的分析,可以预测车辆可能出现的故障,并提前进行维修,从而提高车辆的可靠性。
五、结论本文对履带式特种车辆精细化动力学建模与仿真的关键技术进行了探讨。
履带车辆的转向理论一、双履带车辆的转向理论对于双履带式车辆各种转向机构就基本原理来说是相同的,都是依靠改变两侧驱动轮上的驱动力,使其达到不同时速来实现转向的。
(一)双履带式车辆转向运动学履带车辆不带负荷,在水平地段上绕转向轴线O 作稳定转向的简图,如图7—12所示.从转向轴线O 到车辆纵向对称平面的距离R ,称为履带式车辆的转向半径.以T O 代表轴线O 在车辆纵向对称平面上的投影,T O 的运动速度v '代表车辆转向时的平均速度。
则车辆的转向角速度Z ω为:图7-12 履带式车辆转向运动简图R v Z '=ω (7-37)转向时,机体上任一点都绕转向轴线O 作回转,其速度为该点到轴线O 的距离和角速度Z ω的乘积.所以慢、快速侧履带的速度1v '和2v '分别为:Z Z Z Z B v B R v B v B R v ωωωω5.0)5.0(5.0)5.0(21+'=+='-'=-=' (7-38)式中:B —履带车辆的轨距。
根据相对运动原理,可以将机体上任一点的运动分解成两种运动的合成:(1)牵连运动,;(2)相对运动.由上可得:B R B R v v 5.05.021+-=''(二)双履带式车辆转向动力学 1、牵引平衡和力矩平衡图7-13给出了带有牵引负荷的履带式车辆,在水平地段上以转向半径R 作低速稳定转向时的受力情况(离心力可略去不计)。
转向行驶时的牵引平衡可作两点假设:(1) 在相同地面条件下,转向行驶阻力等于直线行驶阻 力,且两侧履带行驶阻力相等,即:ff f F F F 5.021='='(2)在相同的地面条件和负荷情况下,γcos x F 相当于直 线行驶的有效牵引力KP F ,即:图7-13 转向时作用在履带车辆上的外力γcos x KP F F =所以回转行驶的牵引平衡关系为:K KP f K Kx f f K KF F F F F F F F F F =+='+'+'+'='+'212121cos γ (7-39)设履带车辆回转行驶时,地面对车辆作用的阻力矩为μM ,在负荷xF 作用下总的转向阻力矩为:γμsin x T C F a M M += (7—40)式中:T a —牵引点到轴线21O O 的水平距离。
第24卷第2期2003年5月 兵工学报ACTA ARMAMEN TARIIVol.24No.2May 2003履带车辆动力学仿真技术的发展与展望韩宝坤 李晓雷 孙逢春(北京理工大学车辆与交通工程学院,北京,100081)摘要 履带车辆在军事领域中发挥重要作用。
由于履带车辆自身及使用环境的复杂性,传统的研究模式导致研制费用高、周期长。
运用建模仿真技术研究履带车辆已成为趋势,对其发展起了巨大的推动作用。
本文对仿真技术在履带车辆动力学仿真研究中的阶段性成果,按照平稳性模型、压力分布与通过性模型、转向性模型进行了回顾和总结,对履带车辆动力学仿真中常用的大型软件做了介绍,并展望了履带车辆动力学仿真技术今后的发展方向。
关键词 计算机应用;履带车辆;建模;仿真;发展中图分类号 T J81+0.1 履带车辆依其良好的通过性能在现代军事、农业、建筑业等领域发挥着十分重要的作用。
特别是在军事方面,现代战争对履带车辆的要求不断提高,履带车辆的机动性能成为重要课题。
履带车辆出现于200多年前,但真正的发展是在第二次世界大战之后。
这是由于履带车辆本身是一个非常复杂的机械系统,而且其使用环境十分复杂多变。
由于缺乏对路面特性的认识和车辆对路谱响应的研究,人们很难对履带车辆的机动性能有深刻全面的认识。
所以从履带车辆出现后的很长一段时间里,对履带车辆的研究一直处于“经验+试验”的基础上,设计—试制—试验—改进一直是履带车辆研究的传统模式。
这种模式的弊端是很明显的,它是建立在经验公式和大量试验基础之上的,需要大量的人力物力,研制周期长。
二次世界大战后,随着对履带车辆的需求量增加和相关基础理论的发展和完善,人们对履带车辆的认识更加深刻了,并将其研究推进到新的水平。
首先是地面力学(Terramechanics)的发展和完善,使车辆—地面间的作用力关系不再神秘,特别是Bekker的压力—沉陷关系,使对履带车辆在某些路面上的力学性能的预估成为可能。
基于ADAMS 的履带式挖掘机越障动力学建模与分析秦仙蓉1 冯亚磊1 沈健花2 张 氢1 孙远韬11同济大学机械与能源工程学院 上海 201804 2惠普信息技术研发有限公司 上海 200131摘 要:履带式挖掘机作业时需跨越各类障碍物,在履带式挖掘机跨越障碍物时会受到来自地面的冲击载荷而产生疲劳破环,故研究履带式挖掘机的整机越障动力学特性十分必要。
基于动力学仿真软件ADAMS,研究了履带式挖掘机的整机越障动力学特性。
以某中型履带式挖掘机为例,在Pro/E 中完成履带式挖掘机的三维建模,在ADAMS 中建立其简化虚拟样机,完成该履带式挖掘机越障的动力学仿真。
结果表明:越障过程中,挖掘机车体垂向最大位移与障碍物设置高度一致,整个越障过程较为平稳。
此外,车体的转动角速度在车体越过障碍边缘到引导轮触地时刻存在较明显的变化过程。
关键词:履带式挖掘机;越障;动力学仿真;虚拟样机中图分类号:U446 文献标识码:A 文章编号:1001-0785(2023)05-0018-05Abstract: In view of the fact that crawler excavators need to cross all kinds of obstacles during operation, and are easily subjected to impact load from the ground, resulting in fatigue damage, it is necessary to study the dynamic characteristics of the whole crawler excavator crossing obstacles. In this study, based on the dynamic simulation software Adams, the dynamic characteristics of the whole crawler excavator are studied. Taking a medium-sized crawler excavator as an example, the three-dimensional modeling of the crawler excavator is completed in ProE, and its simplified virtual prototype is established in Adams, and the dynamic simulation of the crawler excavator crossing obstacles is completed. The results show that the vertical maximum displacement of the excavator body is consistent with the height of the obstacle during the obstacle crossing, and the body is relatively stable during the whole obstacle crossing. In addition, the rotation angular velocity of the excavator changes obviously, which occurs during the period when the excavator travels to the edge of obstacle crossing and the guide wheel touches the ground.Keywords: crawler excavator; obstacle crossing; dynamic simulation; virtual prototype0 引言挖掘机被广泛用在各类土石方开挖工程现场,据不完全统计,土石方施工过程中约60%的土石方开挖都是靠挖掘机来完成的。
《履带式特种车辆精细化动力学建模与仿真》篇一摘要:本文旨在探讨履带式特种车辆精细化动力学建模与仿真方法。
首先,通过文献综述介绍国内外相关研究现状及发展趋势;其次,详细阐述建模过程中的关键步骤和仿真方法;最后,通过实际案例分析验证模型的准确性和可靠性,并探讨仿真结果在实际应用中的价值。
一、引言随着科技的不断发展,履带式特种车辆在军事、救援、工程等领域的应用越来越广泛。
为了更好地研究其运动性能、动力学特性和优化设计,精细化动力学建模与仿真成为重要的研究方向。
本文将重点探讨履带式特种车辆的动力学建模与仿真方法,为相关领域的研究提供参考。
二、文献综述履带式特种车辆的动力学建模与仿真研究,国内外均有大量学者进行了深入探讨。
国内研究主要关注于模型的建立和算法的优化,以及在特定环境下的应用。
国外研究则更注重于模型的精确性和仿真结果的可靠性。
随着计算机技术的不断发展,越来越多的研究者开始采用先进的仿真技术来研究履带式特种车辆的动力学特性。
三、动力学建模履带式特种车辆的动力学建模主要包括以下几个步骤:1. 确定研究对象和目标:明确建模的目的和需求,如研究车辆的通过性能、越野性能等。
2. 建立数学模型:根据履带式车辆的物理特性,建立相应的数学模型,包括车辆的几何参数、运动学参数、动力学参数等。
3. 参数确定与校准:通过实验数据对模型参数进行确定和校准,以保证模型的准确性和可靠性。
4. 模型验证:通过与实际车辆的测试数据进行对比,验证模型的准确性和可靠性。
四、仿真方法履带式特种车辆的仿真方法主要包括以下几种:1. 多体动力学仿真:通过建立车辆的多体模型,模拟车辆在不同环境下的运动状态。
2. 有限元仿真:通过有限元分析软件对车辆结构进行仿真分析,研究其应力分布和变形情况。
3. 虚拟样机技术:通过建立虚拟样机,对车辆进行虚拟测试和评估,以优化设计。
五、案例分析以某型履带式特种车辆为例,采用上述动力学建模与仿真方法进行案例分析。
《履带式特种车辆精细化动力学建模与仿真》篇一摘要:本文着重于对履带式特种车辆进行精细化动力学建模与仿真。
文章首先介绍研究背景及意义,随后对现有研究进行了概述。
在理论模型建立过程中,我们通过合理的假设和科学的推导,提出了符合履带式特种车辆实际运动特性的动力学模型。
并通过先进的仿真技术,验证了模型的准确性。
本文的研究为提升特种车辆的行驶性能和安全性能提供了有力的理论依据和支撑。
一、引言随着科技的不断进步,特种车辆在军事、救援、工程等领域的应用越来越广泛。
履带式特种车辆因其良好的越野性能和适应复杂环境的能力,在各种极端环境中都能表现出良好的机动性。
然而,为了进一步提高其行驶性能和安全性能,深入研究其动力学特性及建立精细化动力学模型变得尤为重要。
本文将通过精细化动力学建模与仿真,探究履带式特种车辆的动态特性及行为规律。
二、研究背景与现状目前,国内外学者对履带式特种车辆的动力学研究主要集中在模型建立、仿真分析和实验验证等方面。
然而,由于履带式特种车辆的结构复杂,其动力学模型往往难以准确描述其实际运动特性。
因此,建立精细化动力学模型,对于提高特种车辆的行驶性能和安全性能具有十分重要的意义。
三、精细化动力学模型的建立3.1 模型假设与参数设定为了简化建模过程并准确反映履带式特种车辆的动态特性,我们进行了以下假设和参数设定:假设车辆行驶在平坦路面上,不考虑侧倾和俯仰等非线性因素;设定了包括履带张紧力、地面摩擦系数等在内的关键参数。
3.2 模型推导与建立基于动力学理论,我们推导出了符合履带式特种车辆实际运动特性的动力学模型。
该模型包括了车辆的驱动系统、转向系统、制动系统等关键部分的动力学方程。
通过这些方程,我们可以精确描述车辆在各种行驶条件下的动态特性。
四、仿真验证4.1 仿真环境搭建我们采用了先进的仿真软件,搭建了履带式特种车辆的仿真环境。
通过设定不同的路面条件、气象条件以及车辆载荷等参数,我们可以模拟出各种实际行驶场景。
《履带式特种车辆精细化动力学建模与仿真》篇一一、引言随着科技的进步和军事需求的不断增长,履带式特种车辆因其卓越的越野能力和稳定性,在军事、救援和工程领域中扮演着重要角色。
对履带式特种车辆进行精细化动力学建模与仿真,不仅能够提升其设计效率和性能,还有助于对实际使用过程中的问题进行有效预测和解决。
本文旨在深入探讨履带式特种车辆的精细化动力学建模与仿真技术,以期为相关领域的研究提供一定的参考。
二、动力学建模(一)模型构建动力学建模是履带式特种车辆设计与仿真的基础。
针对履带式特种车辆的特性,采用多刚体动力学模型进行建模。
该模型考虑了车辆底盘、履带、负重轮等多个部分,并考虑了各部分之间的相互作用。
此外,还需考虑各种外界因素,如地面摩擦、地形坡度等。
(二)模型参数动力学模型中涉及的参数较多,主要包括各部分的质量、转动惯量、阻尼等。
这些参数需要通过实验或理论计算获得。
此外,还需考虑模型中的约束条件,如履带与地面的接触力、摩擦力等。
这些参数的准确获取对于保证模型的精度至关重要。
三、仿真分析(一)仿真环境仿真环境是仿真分析的基础。
本文采用专业的动力学仿真软件进行仿真分析,该软件可模拟各种地形和气候条件下的履带式特种车辆运动。
在仿真过程中,需根据实际需求设置仿真参数,如仿真时间、步长等。
(二)仿真结果通过仿真分析,可得到履带式特种车辆在不同地形和工况下的运动学参数和动力学参数。
这些参数包括速度、加速度、受力情况等。
通过对这些参数的分析,可了解车辆在不同条件下的性能表现,为车辆的优化设计提供依据。
四、精细化建模与仿真技术(一)精细化建模技术精细化建模技术是提高履带式特种车辆动力学模型精度的关键。
在建模过程中,需充分考虑车辆的几何形状、材料特性、外部干扰等因素对模型的影响。
此外,还需对模型进行验证和优化,以保证模型的精度和可靠性。
(二)仿真技术仿真技术是履带式特种车辆动力学仿真的核心。
在仿真过程中,需采用先进的算法和计算方法,以提高仿真的精度和效率。