对流给热系数测定实验
- 格式:doc
- 大小:388.00 KB
- 文档页数:7
空气-水蒸气对流给热系数测定实验报告本实验使用臭氧编码器,通过悬浮思路分析,利用不同的匀速度下不同的温度差分析空气-水蒸气的对流换热系数,帮助我们理解空气-水蒸汽对流的过程。
本文将对实验的设备、方法、结果及分析进行详细介绍。
一、实验设备1. 实验室气体混合系统2. 实验室压力传感器4. 实验室水蒸气浸润计6. 实验室数据采集器二、实验方法1. 设计实验2. 实验片段将实验室气体混合系统、压力传感器、温度传感器、水蒸气浸润计和湿度传感器等设备设置在实验室中,同时使用数据采集器对数据进行实时记录。
在实验中,我们首先设置了一个不同的温度差,然后观察它们在不同的匀速度下的换热系数。
通过计算,我们可以得到不同匀速下不同温度差的换热系数。
三、实验结果及分析通过实验结果和数据分析,我们得到不同温度差和匀速度下的换热系数。
1. 换热系数随着温度差的增加而增加我们可以看到,在温度差越大的情况下,热传导的能力也越强。
颗粒与颗粒之间的间距越小,热量间的转移就越快,因此换热系数也越高。
当温度差在一定的范围内,换热系数与温度差的平方成正比。
我们还可以看到,在匀速越大的情况下,换热系数也会越大。
当匀速越大时,颗粒间的热传导也会越快,从而使换热系数更大。
综合以上分析,我们可以得到空气-水蒸汽的对流换热系数与温度差和匀速度密切相关。
当温度差和匀速度越大时,换热系数也会越大。
同时,通过这些实验结果,我们可以更好地理解空气-水蒸汽对流的过程。
四、实验结论通过本次实验,我们可以得出以下结论:1. 空气-水蒸汽的对流换热系数与温度差成正比,当温度差越大时,换热系数也会越大。
因此,我们可以通过控制空气-水蒸汽的温度差和匀速度来控制其换热系数,从而更好地理解热传导过程。
实验三 对流给热系数的测定一、实验目的1、观察水蒸气在换热管外壁上的冷凝现象,并判断冷凝类型;2、测定空气(或水)在圆直管内强制对流给热系数i α;3、应用线性回归分析方法,确定关联式Nu=ARe m Pr 0.4中常数A 、m 的值。
4、掌握热电阻测温的方法。
二、基本原理在套管换热器中,环隙通以水蒸气,内管管内通以空气或水,水蒸气冷凝放热以加热空气或水,在传热过程达到稳定后,有如下关系式:V ρC P (t 2-t 1)=αi A i (t w -t)m (1-1)式中: V ——被加热流体体积流量,m3/s ; Ρ——被加热流体密度,kg/m3; C P ——被加热流体平均比热,J/(kg ·℃);αi ——流体对内管内壁的对流给热系数,W/(m2·℃); t 1、t 2——被加热流体进、出口温度,℃;A i ——内管的外壁、内壁的传热面积,m2;(T -T W )m ——水蒸气与外壁间的对数平均温度差,℃; 22112211ln )()()(w w w w m T T T T T T T T Tw T -----=- (1-2)(t w -t)m ——内壁与流体间的对数平均温度差,℃;22112211ln )()()(t t t t t t t t t t w w w w m w -----=- (1-3)式中:T 1、T 2——蒸汽进、出口温度,℃;T w1、T w2、t w1、t w2——外壁和内壁上进、出口温度,℃。
当内管材料导热性能很好,即λ值很大,且管壁厚度很薄时,可认为T w1=t w1,T w2=t w2,即为所测得的该点的壁温。
由式(1-3)可得:m w P i t t A t t C V )()(012--=ρα (1-4)若能测得被加热流体的V 、t 1、t 2,内管的换热面积A i ,以及水蒸气温度T ,壁温T w1、T w2,则可通过式(1-4)算得实测的流体在管内的(平均)对流给热系数αi 。
化工原理实验(四)空气-蒸汽对流给热系数测定一、实验目的1、 了解间壁式传热元件,掌握给热系数测定的实验方法。
2、 掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。
3、 学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途径。
二、基本原理在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交换,称为间壁式换热。
如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热所组成。
达到传热稳定时,有()()()()mm W M W p p t KA t t A T T A t t c m T T c m Q ∆=-=-=-=-=221112222111αα (4-1)Tt图4-1间壁式传热过程示意图式中:Q - 传热量,J / s ;m 1 - 热流体的质量流率,kg / s ; c p 1 - 热流体的比热,J / (kg ∙℃); T 1 - 热流体的进口温度,℃; T 2 - 热流体的出口温度,℃; m 2 - 冷流体的质量流率,kg / s ; c p 2 - 冷流体的比热,J / (kg ∙℃); t 1 - 冷流体的进口温度,℃; t 2 - 冷流体的出口温度,℃;α1 - 热流体与固体壁面的对流传热系数,W / (m 2 ∙℃);A 1 - 热流体侧的对流传热面积,m 2;()m W T T -- 热流体与固体壁面的对数平均温差,℃;α2 - 冷流体与固体壁面的对流传热系数,W / (m 2 ∙℃);A 2 - 冷流体侧的对流传热面积,m 2;()m W t t - - 固体壁面与冷流体的对数平均温差,℃;K - 以传热面积A 为基准的总给热系数,W / (m 2 ∙℃); m t ∆- 冷热流体的对数平均温差,℃;热流体与固体壁面的对数平均温差可由式(4—2)计算,()()()22112211ln W W W W m W T T T T T T T T T T -----=- (4-2)式中:T W 1 - 热流体进口处热流体侧的壁面温度,℃;T W 2 - 热流体出口处热流体侧的壁面温度,℃。
空气-水蒸气对流给热系数测定实验报告
实验目的:测定空气-水蒸气对流给热系数。
实验原理:空气-水蒸气对流给热系数是指在给定条件下,单位时间内单位面积的对流热流量。
在实际应用中,了解对流给热系数的大小对于设计和优化热传递设备非常重要。
实验装置:实验装置包括一个加热管、一个水槽以及一个温度计。
通过控制加热管的电压和水槽的温度,可以得到不同的条件下空气-水蒸气对流的热传递情况。
实验步骤:
1. 将实验装置准备好,确保加热管和温度计的位置正确。
2. 首先将加热管的电压调整到一个固定值,记录加热管上的电压和电流。
3. 启动水槽并将水温调整到一个适当的温度。
4. 将温度计放置在实验装置中,记录下来水的初始温度。
5. 开始记录时间和温度,每隔一段时间记录一次温度值。
6. 进行多组实验,每组实验可以改变加热管的电压或者水槽的温度,以得到不同的实验数据。
实验数据处理:
1. 将实验数据整理成表格。
2. 根据实验数据绘制温度-时间曲线。
3. 计算出空气-水蒸气对流的热传递系数。
4. 对不同实验条件下得到的热传递系数进行比较和分析。
实验结果:
根据实验数据计算得出的空气-水蒸气对流给热系数为X(单位)。
实验讨论:
根据实验结果可以得出结论:在给定的实验条件下,空气-水
蒸气对流给热系数为X,说明X。
实验结论:
通过本实验测定得到空气-水蒸气对流给热系数为X(单位),实验结果具有一定的参考价值,并为相关热传递设备的设计和优化提供了理论依据。
一、实验目的1. 了解对流传热的基本原理,掌握对流传热系数的测定方法。
2. 掌握牛顿冷却定律的应用,通过实验验证其对流传热系数的计算公式。
3. 分析影响对流传热系数的因素,如流体速度、温度差、流体性质等。
二、实验原理对流传热系数是指单位时间内,单位面积上流体温度差为1℃时,单位面积上传递的热量。
牛顿冷却定律描述了对流传热过程,即:Q = h A (T1 - T2)式中:Q ——传热量(W)h ——对流传热系数(W/(m²·K))A ——传热面积(m²)T1 ——高温流体温度(℃)T2 ——低温流体温度(℃)根据牛顿冷却定律,可以通过实验测量传热量、传热面积、流体温度差,从而计算出对流传热系数。
三、实验仪器与材料1. 套管换热器2. 温度计3. 流量计4. 计时器5. 计算器6. 水和空气四、实验步骤1. 准备实验仪器,连接套管换热器、温度计、流量计等。
2. 在套管换热器内注入水,打开冷却水阀门,调节流量至预定值。
3. 在套管换热器外通入空气,调节风速至预定值。
4. 同时打开加热器和冷却水阀门,使水加热至预定温度,空气冷却至预定温度。
5. 记录开始加热和冷却的时间,观察温度变化。
6. 当温度变化稳定后,记录温度计的读数,计算温度差。
7. 关闭加热器和冷却水阀门,停止实验。
五、实验数据与处理1. 记录实验数据,包括水温度、空气温度、流量、时间等。
2. 根据牛顿冷却定律计算传热量Q:Q = m c ΔT其中,m为水的质量流量(kg/s),c为水的比热容(J/(kg·K)),ΔT为温度差(K)。
3. 计算对流传热系数h:h = Q / (A ΔT)六、实验结果与分析1. 根据实验数据,计算对流传热系数h,并与理论值进行比较。
2. 分析实验结果,探讨影响对流传热系数的因素。
3. 分析实验误差,总结实验经验。
七、结论通过对对流传热系数的测定实验,掌握了对流传热的基本原理和牛顿冷却定律的应用。
实验三空气-水对流给热系数测定一、实验目的1. 测定套管换热器中空气—水系统的传热系数;2. 测定不同的热空气流量时,Nu与Re之间的关系,并得到准数方程式;二、基本原理1. 测定传热系数K根据传热速率方程式(1)(2)实验时,若能测定或确定Q、t m和A,则可测定K。
(1)传热速率在不考虑热损失的条件下(3)式中:—空气的质量流量,kg/s,,为空气的容积流量,m3/s,ρ为空气的密度,kg/m3;—空气的定压比热,J/(kg·K);—空气的进、出口温度,℃。
(2)传热推动力t m(4)式中:,—冷却水出口温度,℃,—冷却水进口温度,℃(3)传热面积(5)式中:L—传热管长度,m ;d—传热管内径,m 。
2. 求Nu与Re的定量关系式由因次分析法可知,空气在圆形直管中强制湍流时的传热膜系数符合下列准数关联式:或(6)式中:A,n—待定系数及指数;—定性温度下空气的导热系数,W/(m·K);—空气的流速,m/s, ;μ—空气的粘度,kg/(m·s);—管壁对空气的传热膜系数,W/(m2·K)。
在水—空气换热系统中,若忽略管壁与污垢的热阻,则总传热系数K与传热膜系数的关系为:式中:—管壁对水的传热膜系数,W/(m2·K)—管壁对空气的传热系数,W/(m2·K)本实验中保持水在套管环隙间的高速流动,且由于水的比热较大,因此水的进、出口温度变化很小,管壁对水的传热系数较管壁对空气的传热系数大得多,即,这样总传热系数近似等于管壁对空气的传热系数:实验中通过调节空气的流量,测得对应的传热系数,然后将实验数据整理为Re及Nu,再将所得的一系列Nu-Re数据,通过用双对数坐标纸作图或回归分析法求得待定系数A和指数n,进而得到准数方程式。
三、实验装置如图1所示,实验装置由加热器1、夹套换热器14、15、风机7和流量计2、10等组成。
换热器的内管14为φ30×2mm的铜管,有效长度为2000mm。
实验7. 空气-蒸汽对流给热系数的测定一、实验目的1.熟悉传热过程及间壁式换热器的结构,掌握热电阻的测温方法;2.观察蒸汽在水平冷凝管外壁上的冷凝现象,测定对流给热系数h ;3.测定努塞尔数Nu 与雷诺数e R 之间的关系,并确定它们的关联式;4.了解强化传热的途径,分析热交换过程的影响因素。
二、基本原理工业生产中冷流体和热流体常通过固体壁面进行热量交换,此种换热方式称为间壁式传热。
间壁式传热过程是由热流体对固体壁面的对流传热、固体壁面的热传导和固体壁面对冷流体的对流传热过程组成,间壁式传热过程如图2—10所示。
当传热过程达到稳定时,它们有如下关系: 图2—10 间壁式传热过程示意图()()()()112122121122m p m p W W m M mq c t t q c T T h A t t h A T T KA t Φ=-=-=-=-=∆ (2—45) 式中:Φ—传热速率,W ;q m1、q m2 —冷、热流体的质量流量,1kg s -⋅; c p1、c p2 —冷、热流体的比热容,11kJ kg K --⋅⋅;T 1 、T 2—热流体的进出口温度,K ; t 1、t 2 —冷流体的进出口的度,K ;A 1、A 2—冷、热流体侧的对流传热面积,m 2;12,h h —冷、热流体与固体壁面的对流给热系数,21W m K --⋅⋅; ()W m t t -、()W m T T -—冷、热流体与固体壁面的对数平均温度差,K ;K —总传热系数,21W m K --⋅⋅; A —传热面积,m 2;m t ∆—对数平均温度差,K ;热流体与固体壁面的对数平均温差可由下式计算()()()22112211ln W W W W m W T T T T T T T T T T -----=- (2-46)式中:12,W W T T —热流体进出口处热流体侧壁面的温度,K 。
固体壁面与冷流体的对数平均温差可由下式求得()()()22112211ln t t t t t t t t t t W W W W m W -----=- (2-47)式中:12,W W t t —冷流体进出口处冷流体侧壁面的温度,K ; 冷热流体间的对数平均温度差可由下式计算()()12211221ln m T t T t t T t T t ---∆=-- (2—48)在套管式换热器中,由于水蒸气通过套管的环隙,冷空气或水通过内管间,测定对流给热系数时,由式(2—45)可得内管内壁面与冷空气或水的对流给热系数()()112111p W mm c t t h A t t -=- (2—49)实验中,要测定内管的壁温t w1和t w2,冷空气或水的进出口温度t 1和t 2;实验用套管的长度l ,内径d 1,换热面积11A d l π=,冷流体的质量流量及比热容,即可求得对流给热系数h 1。
对流传热系数测定实验.doc实验目的:1.测定水在圆管内的对流传热系数。
2.熟悉实验过程和方法,掌握实验技能。
实验原理:对流传热是指在流体内部,由于温度差而发生的热量传递过程。
负责传热的机构是流体内的对流,它能有效地加快热量的传递。
圆管内加热相当于给液体部分加热,液体受热变得稀薄,流动影响整个管道,使得流体相对速度增加,对流热传导增强,同时散热增大。
对流传热系数,以水作为样品,可得公式如下:V=λ(ρ 2-ρ1)gL^3/μQ其中:V 水流速λ 对流传热系数ρ1 密度ρ2 受热稀薄液体的密度g 重力加速度L 热交换区段的长度μ 动力粘度系数Q 加热量测量方法:以恒流供热方式加热,用热电偶及温度计测量流体进入和流出处的温度,并通过流量表测量流体流量。
最后,利用以上数据及传热计算公式计算对流传热系数。
实验过程:1.组装好实验装置。
2.调节水流量,打开恒温水浴,调节温度至稳定后,进一步调节流量,直到流量稳定。
3.测量流体进入和流出处的温度,测量流体流量,并记录数据。
实验记录:表一流体进出口温度及温度差(数据保留两位小数)进口温度45.20°C 流量计温度差 6.95°C表二流量及所用时间流量(L/min)时间(s)0.50 55.110.60 48.781.10 23.61采用已有数据计算出对流传热系数的值如下:ρ1 998kg/m³μ 1.004×10^{-3}N/s·m²Q 0.293WL 0.15mλ 195.44W/(m²·K)实验结果:本次实验得到了水在圆管内的对流传热系数λ=195.44W/(m²·K)。
物理化学实验报告
实验名称:对流给热系数测定实验学院:化学工程学院
专业:化学工程与工艺
班级:
姓名:学号
指导教师:
日期:
一、实验目的
1、掌握传热膜系数的测定方法;
2、通过实验,掌握确定传热膜系数准数关联式中的系数A和指数m的方法;
3、通过实验提高对传热膜系数准数关联式的理解,并分析影响传热膜系数的因素,了解工程上强化传热的措施。
二、实验原理
对流传热的核心问题是求算传热膜系数,当流体无相变时对流传热准数关联式的一般形式为:
Nu=A×Re m×Pr n×Gr p (4-1)
对于强制湍流而言,Gr准数可以忽略,故
Nu=A×Re m×Pr n(4-2) 本实验中,可用图解法和最小二乘法计算上述准数关联式中的指数m、n和系数A。
用图解法对多变量方程进行关联时,要对不同变量Re和Pr分别回归。
本实验可简化上式,即取n=0.4(流体被加热)。
这样,上式即变为单变量方程,在两边取对数,即得到直线方程:
lg(Nu/Pr0.4)=lgA + mlgRe (4-3)
在双对数坐标纸上作图,找出直线斜率,即为方程的指数m。
在直线上任取一点的函数值代入方程中,则可得到系数A,即:
A=Nu/(Pr0.4×Re m) (4-4) 用图解法,根据实验点确定直线位置有一定的人为性。
而用最小二乘法回归,可以得到最佳关联结果。
应用微机,对多变量方程进行一次回归,就能同时得到A、m、n。
对于方程的关联,首先要有Nu、Re、Pr的数据组。
其准数定义式分别为:
Nu=αd/λ,Re=duρ/μ,Pr=Cpμ/λ
实验中改变空气的流量以改变Re准数的值。
根据定性温度(空气进、出口温度的算术平均值)计算对应的Pr准数值。
同时,由牛顿冷却定律,求出不同流速下的传热膜系数α值进而算得Nu准数值。
牛顿冷却定律:
Q=α×A×△t m (4-5)
(tw-t1)-(tw-t2)
△t m =
ln(tw-t1)/(tw-t2)
式中:α—传热膜系数,[W/(m2×℃)];
Q—传热量,[W];
A—总传热面积,[m2];
△t m—管壁温度与管内流体温度的对数平均温差,[℃];
tw—蒸汽平均温差,[℃]。
传热量可由下式求得:
Q=W×Cp(t2-t1)=ρ×V×Cp(t2-t1) (4-6) 式中:W—质量流量,[kg/s];
Cp—流体定压比热,[J/(k g×℃)];
t1、t2—流体进、出口温度,[℃];
ρ—定性温度下流体密度,[kg/m3];
V—流体体积流量,[m3/s]。
三、实验装置说明与操作
1、装置说明
该装置为套管换热器(见图1),空气走管内,蒸汽走环隙,外管11/2玻璃管,内管为φ25×2mm紫铜管,有效长度为1.2m。
空气进出口温度和壁温分别由铂电阻测量,测壁温的两支铂电阻用导热绝缘胶固定在管外壁,孔板流量计的压差通过压力传感器转换为电信号由表头显示,其单位为kPa。
孔板流量计的孔板d0=20mm。
蒸汽发生器的加热功率为1500W (额定电压220V)。
图1、实验装置图
2、操作要点
①实验开始前,先熟悉配电箱各按钮与设备的对应关系,以便正确开启按钮;
②检查蒸汽发生器中水位,使液位保持在2/3左右;
③打开总电源开关及仪表开关;
④实验开始时,关闭蒸汽发生器补水阀,接通蒸汽发生器的加热电源,打开排放不凝气阀门(有一点微小开度即可);
⑤待蒸汽压力正常后,开启风机(风机阀门不要长时间关闭),将空气流量控制在某一定值。
待进出口温度、壁温稳定后,记录进出口温度、壁温和压差读数。
改变空气流量(8—10次),重复实验,记录数据;
⑥强化传热,在上述实验完成后,将强化元件插入铜管中,再改变空气流量(4—5次)并记录数据;
⑦实验结束后,先停蒸汽发生器电源,再停风机,清理现场。
四、注意事项
1、蒸汽发生器液位一定不要太低,以免烧损加热器;
2、风机不要在出口阀关闭下长时间运行;
3、不凝气排放阀在实验过程中应始终微开;
4、调节空气流量时,要做到心中有数,为保证湍流状态,孔板流量计压差可在30—300mmH2O 之间调节;
5、切记:每改变一个流量后,必须等到数据稳定后才能测取数据。
五、实验数据的记录与处理
①实验数据的记录:
注:S=πdL=3.14×20×10-3×1000×10-3=0.0628m2
②实验数据的处理:
⑴实验数据计算举例:
以第三组数据为例:
定性温度t=(25.8+67.4)/2=46.6℃
查化工原理得Ⅰ得:40℃空气密度ρ=1.128Kg/ m3、比热容Cp=1.005 KJ/(Kg·C)、导热系数λ=2.756×10-2 W/(m·℃)、黏度μ=1.91×10-5 Pa·s;50℃空气密度ρ=1.093Kg/ m3、比热容Cp=1.005 KJ/(Kg·C)、导热系数λ=2.826×10-2 W/(m·℃)、黏度μ=1.96×10-5 Pa·s。
由内插法得:46.6℃的空气密度ρ=1.105Kg/ m3、比热容Cp=1.005 KJ/(Kg·C)、导热系数λ=2.802×10-2 W/(m·℃)、黏度μ=1.94×10-5 Pa·s。
t w=101.1+92.7=97.6℃
V=15 m3/h=15/3600 m3/s=4.17×10-3 m3/s
Q=ρ×V×Cp(t2-t1)=1.105×4.17×10-3×1.005×1000×(67.4-25.8)=192.64w
A=S=0.0628m2
(t w-t1)- (tw-t2)
△t m = =(71.8-30.2)/ln(71.8/30.2)=48.03
ln(t w-t1)/(tw-t2)
α=Q/(A·△t m)= 192.64/0.0628/48.03 = 63.87w/(m2·℃)
u=V/S=4.17×10-3/(1/4×3.14×0.022) =13.28m/s
Nu=αd/λ=63.87×20×10-3/2.802×102 =45.59
Re=duρ/μ=20×10-3×13.28×1.105/1.94×105 = 1.51×104
Pr=0.698
⑵计算所得数据的记录表:
表5、α计算的数据表
表6、准数及相关数据
图2、lg(Nu/Pr0.4)~lgRe关系图由图2可得:m=0.97
lgA=-2.34
∴A=4.57×10-3
六、实验结果
由实验和处理数据得:m=0.97、A=4.57×10-3
七、实验分析
这次实验在操作上还是蛮简单的。
在实验中只需要调节一个阀门和记录电脑上显示的数据,通过本次实验成功的得到一组数据。
从实验结果上来看,lg(Nu/Pr0.4)~lgRe图基本呈一条直线,但是第一、第二点偏离直线较远,造成误差的原因主要有以下几点:1、刚开始没等阀门上显示的压强稳定就开始设定流量、读数。
2、每次当空气流量达到设定值时,没等五分钟,即系统稳定后再读数。
3、水蒸气的热量除了给空气传热外,由于与外界不可能完全绝缘,所以一部分的热量损失了。
4、管道不可能完全不漏气5、仪器本身就有一定的测量误差。
6、计算者对数据进行处理的时候产生的误差。
八、思考题
1、实验中冷流体和蒸汽的流向,对传热效果有何影响?
答:冷流体和蒸汽是并流时,传热温度差小于逆流时传热温度差,在相同进出口温度下,逆流传热效果大于并流传热效果。
2、蒸汽冷凝过程中,若存在不冷凝气体,对传热有何影响,应采取什么措施?
答:不凝性气体会减少制冷剂的循环量,使制冷量降低。
并且不凝性气体会滞留在冷凝器的上部管路内,致使实际冷凝面积减小,冷凝负荷增大,冷凝压力升高,从而制冷量会降低。
而且由于冷凝压力的升高致使排气压力升高,还会减少压缩机的使用寿命。
应把握好空气的进入,和空气的质量。
3、实验过程中,冷凝水不及时排走,会产生什么影响,如何及时排走冷凝水?
答:冷凝水不及时排走,附着在管外壁上,增加了热阻,降低传热速率。
在外管最低处设置排水口,及时排走冷凝水。
4、实验中,所测得的壁温是靠近蒸气侧还是冷流体侧温度?为什么?
答:靠近蒸气温度;因为蒸气冷凝传热膜系数远大于空气膜系数。