化工原理实验(四)空气-蒸汽对流给热系数测定
- 格式:doc
- 大小:123.50 KB
- 文档页数:9
北京化工大学化工原理实验报告实验名称:对流给热系数测定实验班级:姓名:学号:序号:同组人:设备型号:对流给热系数测定实验设备-第X套实验日期:一、摘要选用牛顿冷却定律作为对流传热实验的测试原理,通过建立水蒸汽—空气传热系统,分别对普通管换热器和强化管换热器进行了对流传热实验研究。
确定了在相应条件下冷流体对流传热膜系数的关联式。
此实验方法可测出蒸汽冷凝膜系数和管内对流传热系数。
本实验采用由风机、孔板流量计、蒸汽发生器等装置,空气走内管、蒸汽走环隙,用计算机在线采集与控制系统测量了孔板压降、进出口温度和两个壁温,计算传热膜系数α,并通过作图确定了传热膜系数准数关系式中的系数A 和指数m (n 取0.4),得到了半经验关联式。
实验还通过在内管中加入混合器的办法强化了传热,并重新测定了α、A 和m 。
二、实验目的1、掌握传热膜系数α及传热系数K 的测定方法;2、通过实验掌握确定传热膜系数准数关系式中的系数A 和指数m 、n 的方法;3、通过实验提高对准数关系式的理解,并分析影响α的因素,了解工程上强化传热的措施。
三、实验原理热量的传递方式有传导、对流、辐射三种。
流体流经固体表面的传热包含壁面薄层的热传导和主体的热对流,总称为对流给热。
计算对流给热过程的热量Q 和热流密度q 等,通常需先确定给热系数α。
本实验以间壁式换热器中最简单的套管换热器为研究对象,令壳程走热水蒸汽,管程强制逆流走冷空气,跟据牛顿冷却定律可以测得圆管内空气一侧的给热系数α1。
进一步可以将无因次准数Nu ,Re ,Pr 等按经验形式联系起来,并回归其中的参数A,a 。
根据已知A,a 的通用关联式确定给热系数,也可达到一定的精度要求,是当前工程上确定α的重要方法。
牛顿冷却定律: m t A Q∆⋅⋅=α式中:α——内表面给热系数,[W/(m ²·℃)]; Q ——传热量,[W]; A ——总传热面积[m2²];Δtm ——管壁温度与管内流体温度的对数平均温差,[℃];1t ——进口温度,[℃];2t ——出口温度,[℃];,1w t ——壁温,[℃];,2t w ——壁温,[℃]。
化工原理实验思考题以及答案1.什么是判断流体流动类型的依据,它的计算式是什么?其在什么范围内为湍流,在什么范围内为层流?答:判断流体流动类型的依据是雷诺数,它的计算式是Re 当Re4000时,形成湍流,当Re≤20XX年时为层流。
2.在雷诺演示实验中,为什么要将顶上水槽内的液面维持恒定?答:为了保持水压稳定从而使流速稳定。
对于一定温度的流体,在特定的圆管内du , 流体在直圆管内流动时,流动,雷诺准数只与流速有关。
本实验是改变水在管内的速度,观察不同雷诺准数下流体流型的变化。
要想观察不同雷诺数下的流体类型,那么在某一雷诺准数下的流速要维持恒定。
假如顶上水槽的液面不断变化,那么管中流体的流速也会不断改变,无法达到实验要求。
所以,顶上水槽内的液面要维持恒定。
3.液液萃取实验的原理是什么?实验中塔高的计算方法是什么?答:液液萃取实验的原理是利用混合物中各个组分在外加溶剂中的溶解度的差异而实现组分分离的单元操作。
萃取塔的有效接触高度H HOR NOR NOR xF xRxm4.测定全回流和部分回流总板效率与单板效率时各需测几个参数?取样位置在何处?答:测定全回流总板效率要测定塔顶浓度和塔底浓度,分别在塔顶回流液处、塔底处取样;同时还应已知相平衡关系,全塔实际板数。
测定全回流单板效率要测定yn、yn+1、xn;分别取第n块塔板上下汽相样及第n块板降液管内的液样;同时还应已知相平衡关系。
5.筛板精馏塔实验中,查取进料液的汽化潜热时定性温度取何值?答:应取进料液的泡点温度作为定性温度。
6.过滤的基本原理是什么?影响过滤速度的主要因素有那些?答:过滤是以某种多孔物质为介质来处理悬浮液以达到固、液分离的一种操作过程,即在外力的作用下,悬浮液中的液体通过固体颗粒层(即滤渣层)及多孔介质的孔道而固体颗粒被截留下来形成滤渣层,从而实现固、液分离。
影响过滤速度的主要因素有压力差△p,滤饼厚度L,滤饼和悬浮液的性质、组成、特性,悬浮液温度,过滤介质的阻力等。
化工原理实验思考题答案化工原理实验思考题答案(一)流体流动阻力测定1. 是否要关闭流程尾部的流量调节不能关闭流体阻力的测定主要是根据压头来确定的;尾部的流量调解阀;起的作用是调解出流量;由于测试管道管径恒定;根据出流量可以确定管道内流体流速;而流速不同所测得的阻力值是不同的;这个在水力计算速查表中也有反映出的。
你在实际测试的时候是要打开流量调解阀的;肯定在尾部会有一个流量计;当出溜一段时间后;管内流体流态稳定后;即可测试。
在测试前;校核设备和仪表时;流量调解阀是关闭的;当测试时肯定是打开的2. 怎样排除管路系统中的空气?如何检验系统内的空气已经被排除干净?答:启动离心泵用大流量水循环把残留在系统内的空气带走。
关闭出口阀后,打开U形管顶部的阀门,利用空气压强使U形管两支管水往下降,当两支管液柱水平,证明系统中空气已被排除干净。
3. 本实验用水为工作介质做出的λ-Re曲线,对其它流体能否使用?为什么?答:能用,因为雷诺准数是一个无因次数群,它允许d、u、、变化。
4.在不同设备上( 包括不同管径) ,不同水温下测定的λ~Re 数据能否关联同一条曲答:一次改变一个变量,是可以关联出曲线的,一次改变多个变量时不可以的。
5. 如果测压口,孔边缘有毛刺或安装不垂直,对静压的测量有何影响?没有影响.静压是流体内部分子运动造成的.表现的形式是流体的位能.是上液面和下液面的垂直高度差.只要静压一定.高度差就一定.如果用弹簧压力表测量压力是一样的.所以没有影响.(二)离心泵特性曲线的测定1. 为什么离心泵启动时要关闭出口阀门?答:防止电机过载。
因为电动机的输出功率等于泵的轴功率N。
根据离心泵特性曲线,当Q=0时N最小,电动机输出功率也最小,不易被烧坏。
2. 为什么启动离心泵前要向泵内注水?如果注水排气后泵仍启动不起来,你认为可能是什么原因?答:为了防止打不上水、即气缚现象发生。
如果注水排完空气后还启动不起来。
①可能是泵入口处的止逆阀坏了,水从管子又漏回水箱。
化工原理实验之对流传热实验————————————————————————————————作者:————————————————————————————————日期:ﻩ化工原理实验报告之传热实验学院学生姓名专业学号年级二Ο一五 年 十一月一、实验目的1.测定冷空气—热蒸汽在套管换热器中的总传热系数K; 2.测定空气或水在圆直管内强制对流给热系数;3.测定冷空气在不同的流量时,Nu 与Re 之间的关系曲线,拟合准数方程。
二、实验原理(1)冷空气-热蒸汽系统的传热速率方程为m t KA Q ∆=)ln(2121t t t t t m ∆∆∆-∆=∆,11t T t -=∆,22t T t -=∆ )(21t t C V Q p -=ρ式中,Q —单位时间内的传热量,W ;A —热蒸汽与冷空气之间的传热面积,2m ,dl A π=; m t ∆—热蒸汽与冷空气之间的平均温差,℃或K K —总传热系数,)℃/(2⋅m W ;d —换热器内管的内直径,d =20m m l —换热器长度,l =1.3m ;V —冷空气流量,s m /3;pC 、ρ—冷空气密度,3/m kg 空气比热,kg J /;21t t 、—冷空气进出换热器的温度,℃; T —热蒸汽的温度,℃。
实验通过测量热蒸汽的流量V,热蒸汽进、出换热器的温度T 1和T 2 (由于热蒸汽温度恒定,故可直接使用热蒸汽在中间段的温度作为T),冷空气进出换热器的温度t 1和t2,即可测定K 。
(2)热蒸汽与冷空气的传热过程由热蒸汽对壁面的对流传热、间壁的固体热传导和壁面对冷空气的对流传热三种传热组成,其总热阻为:2211111d h d d bd h K m ++=λ 其中,21h h 、—热空气,冷空气的给热系数,)℃/(⋅m W ;21d d d m 、、—内管的内径、内外径的对数平均值、外径,m ; λ—内管材质的导热系数,)℃/(⋅m W 。
在大流量情况下,冷空气在夹套换热器壳程中处于强制湍流状态,h2较大,221d h d 值较小;λ较大,md dλ1值较小,可忽略,即 1h K ≈(3)流体在圆形直管中作强制对流时对管壁的给热系数关联式为n m C Nu Pr Re '=。
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==化工原理实验实验报告篇一:化工原理实验报告吸收实验姓名专业月实验内容吸收实验指导教师一、实验名称:吸收实验二、实验目的:1.学习填料塔的操作;2. 测定填料塔体积吸收系数KYa.三、实验原理:对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。
但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。
(一)、空塔气速与填料层压降关系气体通过填料层压降△P与填料特性及气、液流量大小等有关,常通过实验测定。
若以空塔气速uo[m/s]为横坐标,单位填料层压降?P[mmH20/m]为纵坐标,在Z?P~uo关系Z双对数坐标纸上标绘如图2-2-7-1所示。
当液体喷淋量L0=0时,可知为一直线,其斜率约1.0—2,当喷淋量为L1时,?P~uo为一折线,若喷淋量越大,Z?P值较小时为恒持Z折线位置越向左移动,图中L2>L1。
每条折线分为三个区段,液区,?P?P?P~uo关系曲线斜率与干塔的相同。
值为中间时叫截液区,~uo曲ZZZ?P值较大时叫液泛区,Z线斜率大于2,持液区与截液区之间的转折点叫截点A。
姓名专业月实验内容指导教师?P~uo曲线斜率大于10,截液区与液泛区之间的转折点叫泛点B。
在液泛区塔已Z无法操作。
塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。
图2-2-7-1 填料塔层的?P~uo关系图 Z图2-2-7-2 吸收塔物料衡算(二)、吸收系数与吸收效率本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。
若气相中氨的浓度较小,则氨溶于水后的气液平衡关系可认为符合亨利定律,吸收姓名专业月实验内容指导教师平均推动力可用对数平均浓度差法进行计算。
其吸收速率方程可用下式表示: NA?KYa???H??Ym(1)式中:NA——被吸收的氨量[kmolNH3/h];?——塔的截面积[m2]H——填料层高度[m]?Ym——气相对数平均推动力KYa——气相体积吸收系数[kmolNH3/m3·h]被吸收氨量的计算,对全塔进行物料衡算(见图2-2-7-2):NA?V(Y1?Y2)?L(X1?X2) (2)式中:V——空气的流量[kmol空气/h]L——吸收剂(水)的流量[kmolH20/h]Y1——塔底气相浓度[kmolNH3/kmol空气]Y2——塔顶气相浓度[kmolNH3/kmol空气]X1,X2——分别为塔底、塔顶液相浓度[kmolNH3/kmolH20] 由式(1)和式(2)联解得:KYa?V(Y1?Y2)(3) ??H??Ym为求得KYa必须先求出Y1、Y2和?Ym之值。
化⼯原理实验讲义(应化)实验⼀雷诺实验⼀、⽬的与要求1、通过实验了解圆管内流体流动情况,建⽴流型概念。
2、通过流量的测定、雷诺数的计算和圆管内流线的特征,判断流体的流动型态,并测定临界雷诺数。
3、测定流体在圆形直管中层流、湍流的速度分布图。
⼆、实验原理流体作稳态流动时,其流动型态基本分为滞流(层流)、湍流两种,这两种流型的过渡状态称为过渡流。
流体流动的型态与流体的密度、粘度及流道的直径有关。
这可⽤雷诺准数来判断,⼀般为:Re≤2000为滞流Re≥4000为湍流2000三、实验主要仪器及主要技术数据实验主要仪器:雷诺仪、秒表、量筒实验主要数据:实验管道有效长度L=600mm外径d =30mm内径d i=26mm四、实验⽅法1、准备⼯作(1)向墨⽔储瓶中加⼊适量的⽤⽔稀释过的墨⽔。
(2)调整墨⽔细管出⼝的位置,使它位于实验管道的中⼼线上。
(3)轻轻打开墨⽔流量调节夹,使墨⽔从墨⽔咀流出,排出墨⽔管内空⽓,关闭调节夹。
2、雷诺实验过程(1)关闭流量出⼝调节阀,打开储⽔槽进⽔阀,使⾃来⽔充满⽔槽,并使槽内溢流堰具有⼀定的溢流量。
(2)轻轻打开管道出⽔阀门,使流体缓慢流过实验管道,排出管内⽓体。
(3)调节储⽔槽下部的出⽔阀开度,调节储⽔槽液位,使其保持恒定。
(4)缓慢地适当打开墨⽔流量调节夹,墨⽔⾃墨⽔咀流出,待墨线稳定后,即可看出当前⽔流量下实验管道中墨⽔的流线。
根据流线判断流型,并⽤秒表、量筒测定流体流量。
(5)适当的增⼤管道出⽔阀开度,通过调节储⽔槽下部的出⽔阀和进⽔阀控制储⽔槽液位,并维持⼀定的⽔槽溢流板溢流量。
适当调整墨⽔流量,使墨线清晰,稳定后,测定较⼤流量下实验管内的流动状况。
如此反复,可测得⼀系列不同流量下的流型,并判断临界流型。
3、速度分布图的测定与上述雷诺数测定相似,通过流量调节及墨线线形的判断,分别判定流型为层流、湍流时对应的管道出⽔阀的开度范围。
⾸先使储⽔槽液位恒定(此时,可通过调节储⽔槽的进⼝阀和出⼝阀使液位稳定),瞬时开关墨⽔流量调节夹,在墨⽔咀出⼝处形成⼀个墨团,观察墨团端⾯特征,打开管道出⽔阀(使出⽔阀开度在所测定流型的开度范围),观察墨团端⾯随流体流动时的变化,记下管道末端墨团端⾯的形态后,通过调节储⽔槽的进⼝阀和出⼝阀调节储槽液位,使其恒定。
四川大学
化工原理实验报告
学院:化学工程学院专业:化学工程与工艺班号:153080302姓名:胡垒学号:2015141494038 实验日期:2017年6月5日指导老师:吴潘
四.实验装置图及主要设备(包括名称、型号、规格)
(1)实验装置示意图。
冷空气通过风机进入套管换热器管程,蒸汽发生器内通过电加热使水汽化产生蒸汽,蒸汽进入换热器内的壳程加热管程内的冷空气、蒸汽和冷空气通过套管换热器内管壁进行热量交换。
对流传热装置示意图如图所示。
(2)仪器及仪表。
设备:风机、蒸汽发生器、普通套管换热器、螺旋套管换热器、消音器。
仪表:气体涡旋流量计、压差变送器、温度变送器、温度控制器、无纸记录仪、液位计。
普通套管换热器
螺旋套管换热器
十.实验思考题
1.与流体的物流性质有关,比如流速、密度、粘度、管径、导热系数等。
(1). 流体流动的状态:层流、湍流等。
(2). 流体流动的原因:自然对流、强制对流等。
(3). 流体的物理性质:密度、比热容、粘度、导热率等。
(4). 传热面的形状、位置和大小:如管、板、管束、管长、管径、管子排列。
化⼯原理实验(思考题答案)实验1 流体流动阻⼒测定1. 启动离⼼泵前,为什么必须关闭泵的出⼝阀门?答:由离⼼泵特性曲线知,流量为零时,轴功率最⼩,电动机负荷最⼩,不会过载烧毁线圈。
2. 作离⼼泵特性曲线测定时,先要把泵体灌满⽔以防⽌⽓缚现象发⽣,⽽阻⼒实验对泵灌⽔却⽆要求,为什么?答:阻⼒实验⽔箱中的⽔位远⾼于离⼼泵,由于静压强较⼤使⽔泵泵体始终充满⽔,所以不需要灌⽔。
3. 流量为零时,U 形管两⽀管液位⽔平吗?为什么?答:⽔平,当u=0时柏努利⽅程就变成流体静⼒学基本⽅程:21212211,,Z Z p p g p Z g P Z ==+=+时当ρρ4. 怎样排除管路系统中的空⽓?如何检验系统内的空⽓已经被排除⼲净?答:启动离⼼泵⽤⼤流量⽔循环把残留在系统内的空⽓带⾛。
关闭出⼝阀后,打开U 形管顶部的阀门,利⽤空⽓压强使U 形管两⽀管⽔往下降,当两⽀管液柱⽔平,证明系统中空⽓已被排除⼲净。
5. 为什么本实验数据须在双对数坐标纸上标绘?答:因为对数可以把乘、除变成加、减,⽤对数坐标既可以把⼤数变成⼩数,⼜可以把⼩数扩⼤取值范围,使坐标点更为集中清晰,作出来的图⼀⽬了然。
6. 你在本实验中掌握了哪些测试流量、压强的⽅法?它们各有什么特点?答:测流量⽤转⼦流量计、测压强⽤U 形管压差计,差压变送器。
转⼦流量计,随流量的⼤⼩,转⼦可以上、下浮动。
U 形管压差计结构简单,使⽤⽅便、经济。
差压变送器,将压差转换成直流电流,直流电流由毫安表读得,再由已知的压差~电流回归式算出相应的压差,可测⼤流量下的压强差。
7. 读转⼦流量计时应注意什么?为什么?答:读时,眼睛平视转⼦最⼤端⾯处的流量刻度。
如果仰视或俯视,则刻度不准,流量就全有误差。
8. 假设将本实验中的⼯作介质⽔换为理想流体,各测压点的压强有何变化?为什么?答:压强相等,理想流体u=0,磨擦阻⼒F=0,没有能量消耗,当然不存在压强差。
,2222222111g u g p Z g u g P Z ++=++ρρ∵d 1=d 2 ∴u 1=u 2 ⼜∵z 1=z 2(⽔平管)∴P 1=P 29. 本实验⽤⽔为⼯作介质做出的λ-Re 曲线,对其它流体能否使⽤?为什么?答:能⽤,因为雷诺准数是⼀个⽆因次数群,它允许d 、u 、ρ、变化。
化工原理思考题解答V32篇一:化工原理实验思考题答案实验一流体流动阻力测定1.在对装置做排气工作时,是否一定要关闭流程尾部的出口阀?为什么?答:是的。
理由是:由离心泵特性曲线可知,流量为零时,轴功率最小,电机负荷最小,起到保护电机的作用。
2.如何检测管路中的空气已经被排除干净?答:启动离心泵用大流量水循环把残留在系统内的空气带走。
关闭出口阀后,打开U形管顶部的阀门,利用空气压强使U形管两支管水往下降,当两支管液柱水平,证明系统中空气已被排除干净。
3.以水做介质所测得的?-Re关系能否适用于其它流体?如何应用?答:(1)适用其他种类的牛顿型流体。
理由:从???(Re,?/d)可以看出,阻力系数与流体具体流动形态无关,只与管径、粗糙度等有关。
(2)那是一组接近平行的曲线,鉴于Re本身并不十分准确,建议选取中间段曲线,不宜用两边端数据。
Re与流速、黏度和管径一次相关,黏度可查表。
4.在不同设备上(包括不同管径),不同水温下测定的?-Re数据能否关联在同一条曲线上?答:只要?/d相同,?-Re的数据点就能关联在一条直线上。
5.如果测压口、孔边缘有毛刺或安装不垂直,对静压的测量有何影响?答:没有影响.静压是流体内部分子运动造成的.表现的形式是流体的位能.是上液面和下液面的垂直高度差.只要静压一定.高度差就一定.如果用弹簧压力表测量压力是一样的.所以没有影响。
实验二离心泵特性曲线测定1.试从所测实验数据分析,离心泵在启动时为什么要关闭出口阀门?答:由离心泵特性曲线可知,流量为零时,轴功率最小,电机负荷最小,起到保护电机的作用。
2.启动离心泵之前为什么要引水灌泵?如果灌泵后依然启动不起来,你认为可能的原因是什么?答:(1)离心泵不灌水很难排掉泵内的空气,导致泵空转却不排水;(2)泵不启动可能是电路问题或泵本身已经损坏,即使电机的三相电接反,仍可启动。
3.为什么用泵的出口阀门调节流量?这种方法有什么优缺点?是否还有其他方法调节流量?答:(1)调节出口阀门开度,实际上是改变管路特性曲线,改变泵的工作点,从而起到调节流量的作用;(2)这种方法的优点时方便、快捷,流量可以连续变化;缺点是当阀门关小时,会增大流动阻力,多消耗能量,不经济;(3)还可以改变泵的转速、减小叶轮直径或用双泵并联操作。
化工原理实验(四)空气-蒸汽对流给热系数测定一、实验目的1、 了解间壁式传热元件,掌握给热系数测定的实验方法。
2、 掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。
3、 学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途径。
二、基本原理在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交换,称为间壁式换热。
如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热所组成。
达到传热稳定时,有()()()()mm W M W p p t KA t t A T T A t t c m T T c m Q ∆=-=-=-=-=221112222111αα (4-1)Tt图4-1间壁式传热过程示意图式中:Q - 传热量,J / s ;m 1 - 热流体的质量流率,kg / s ; c p 1 - 热流体的比热,J / (kg ∙℃); T 1 - 热流体的进口温度,℃; T 2 - 热流体的出口温度,℃; m 2 - 冷流体的质量流率,kg / s ; c p 2 - 冷流体的比热,J / (kg ∙℃); t 1 - 冷流体的进口温度,℃; t 2 - 冷流体的出口温度,℃;α1 - 热流体与固体壁面的对流传热系数,W / (m 2 ∙℃);A 1 - 热流体侧的对流传热面积,m 2;()m W T T -- 热流体与固体壁面的对数平均温差,℃;α2 - 冷流体与固体壁面的对流传热系数,W / (m 2 ∙℃);A 2 - 冷流体侧的对流传热面积,m 2;()m W t t - - 固体壁面与冷流体的对数平均温差,℃;K - 以传热面积A 为基准的总给热系数,W / (m 2 ∙℃); m t ∆- 冷热流体的对数平均温差,℃;热流体与固体壁面的对数平均温差可由式(4—2)计算,()()()22112211ln W W W W m W T T T T T T T T T T -----=- (4-2)式中:T W 1 - 热流体进口处热流体侧的壁面温度,℃;T W 2 - 热流体出口处热流体侧的壁面温度,℃。
固体壁面与冷流体的对数平均温差可由式(4—3)计算,()()()22112211ln t t t t t t t t t t W W W W m W-----=- (4-3)式中:t W 1 - 冷流体进口处冷流体侧的壁面温度,℃;t W 2 - 冷流体出口处冷流体侧的壁面温度,℃。
热、冷流体间的对数平均温差可由式(4—4)计算,()()12211221m t T t T ln t T t T t -----=∆ (4-4)当在套管式间壁换热器中,环隙通以水蒸气,内管管内通以冷空气或水进行对流传热系数测定实验时,则由式(4-1)得内管内壁面与冷空气或水的对流传热系数,()()MW p t t A t t c m --=212222α (4-5)实验中测定紫铜管的壁温t w1、t w2;冷空气或水的进出口温度t 1、t 2;实验用紫铜管的长度l 、内径d 2,l d A 22π=;和冷流体的质量流量,即可计算α2。
然而,直接测量固体壁面的温度,尤其管内壁的温度,实验技术难度大,而且所测得的数据准确性差,带来较大的实验误差。
因此,通过测量相对较易测定的冷热流体温度来间接推算流体与固体壁面间的对流给热系数就成为人们广泛采用的一种实验研究手段。
由式(4-1)得,()mp t A t t c m K ∆-=1222 (4-6)实验测定2m 、2121T T t t 、、、、并查取()2121t t t +=平均下冷流体对应的2p c 、换热面积A ,即可由上式计算得总给热系数K 。
下面通过两种方法来求对流给热系数。
1. 近似法求算对流给热系数2α以管内壁面积为基准的总给热系数与对流给热系数间的关系为,11212122211d d d d R d bd R K S m S αλα++++= (4-7)式中:d 1 - 换热管外径,m ;d 2 - 换热管内径,m ;d m - 换热管的对数平均直径,m ; b - 换热管的壁厚,m ;λ - 换热管材料的导热系数,W / (m ∙ ℃);1S R - 换热管外侧的污垢热阻,W K m ⋅2; 2S R - 换热管内侧的污垢热阻,W K m ⋅2。
用本装置进行实验时,管内冷流体与管壁间的对流给热系数约为几十到几百K m W .2;而管外为蒸汽冷凝,冷凝给热系数1α可达~K m W .1024左右,因此冷凝传热热阻112d d α可忽略,同时蒸汽冷凝较为清洁,因此换热管外侧的污垢热阻121d d R S 也可忽略。
实验中的传热元件材料采用紫铜,导热系数为383.8K m W ⋅,壁厚为2.5mm ,因此换热管壁的导热热阻md bd λ2可忽略。
若换热管内侧的污垢热阻2S R 也忽略不计,则由式(4-7)得, K ≈2α (4-8)由此可见,被忽略的传热热阻与冷流体侧对流传热热阻相比越小,此法所得的准确性就越高。
2. 传热准数式求算对流给热系数2α对于流体在圆形直管内作强制湍流对流传热时,若符合如下范围内:Re=1.0×104~1.2×105,Pr =0.7~120,管长与管内径之比l/d ≥60,则传热准数经验式为,n 8.0Pr Re 023.0Nu = (4-9) 式中:Nu -努塞尔数,λα=dNu ,无因次;Re -雷诺数,μρ=du Re ,无因次; Pr -普兰特数,λμ=p c Pr ,无因次;当流体被加热时n =0.4,流体被冷却时n =0.3;α - 流体与固体壁面的对流传热系数,W / (m 2 ∙℃);d - 换热管内径,m ;λ - 流体的导热系数,W / (m ∙ ℃); u - 流体在管内流动的平均速度,m / s ; ρ - 流体的密度,kg / m 3; μ - 流体的粘度,Pa ∙ s ; c p - 流体的比热,J / (kg ∙℃)。
对于水或空气在管内强制对流被加热时,可将式(4-9)改写为,8.0224.0228.128.02Pr 14023.011⎪⎪⎭⎫ ⎝⎛⨯⨯⨯⎪⎭⎫⎝⎛⨯=m d μλπα (4-10)令, 81280402301..d .m ⨯⎪⎭⎫⎝⎛⨯=π (4-11)802240221..m Pr X ⎪⎪⎭⎫ ⎝⎛⨯=μλ (4-12)KY 1= (4-13)11212122d dd d R d bd R C S m S αλ+++= (4-14)则式(4-7)可写为,C mX Y += (4-15)当测定管内不同流量下的对流给热系数时,由式(4-14)计算所得的C 值为一常数。
管内径d 2一定时,m 也为常数。
因此,实验时测定不同流量所对应的2121T T t t 、、、,由式(4-4)、(4-6)、(4-12)、(4-13)求取一系列X 、Y 值,再在X ~Y 图上作图或将所得的X 、Y 值回归成一直线,该直线的斜率即为m 。
任一冷流体流量下的给热系数α2可用下式求得,8.0224.0222Pr ⎪⎪⎭⎫ ⎝⎛⨯=μλαm m(4-16)3. 冷流体质量流量的测定(1)若用转子流量计测定冷空气的流量,还须用下式换算得到实际的流量,()()ρρρρρρ-''-='f f VV (4-17)式中: V ' — 实际被测流体的体积流量,m 3 / s ;ρ' — 实际被测流体的密度,kg / m 3;均可取()2121t t t +=平均下对应水或空气的密度,见冷流体物性与温度的关系式;V — 标定用流体的体积流量,m 3 / s ;ρ — 标定用流体的密度,kg / m 3;对水ρ = 1000 kg / m 3;对空气ρ = 1.205 kg/ m 3;ρf — 转子材料密度,kg / m 3。
于是 ρ''=V m 2 (4-18)(2)若用孔板流量计测冷流体的流量,则,2m V ρ= (4-19)式中,V 为冷流体进口处流量计读数,ρ为冷流体进口温度下对应的密度。
4. 冷流体物性与温度的关系式在0~100℃之间,冷流体的物性与温度的关系有如下拟合公式。
(1)空气的密度与温度的关系式:52310 4.510 1.2916t t ρ--=-⨯+ (2)空气的比热与温度的关系式:60℃以下p C =1005 J / (kg ∙℃),70℃以上p C =1009 J / (kg ∙℃)。
(3)空气的导热系数与温度的关系式: 8252108100.0244t t λ--=-⨯+⨯+(4)空气的黏度与温度的关系式:6235(210510 1.716910t t μ---=-⨯+⨯+⨯)三、实验装置与流程1.实验装置1—风机; 2—冷流体管路; 3-冷流体进口调节阀; 4—转子流量计; 5—冷流体进口温度;6—不凝性气体排空阀; 7—蒸汽温度; 8—视镜; 9—冷流体出口温度; 10—压力表; 11—水汽排空阀;12—蒸汽进口阀;13—冷凝水排空阀;14—蒸汽进口管路;15—冷流体出口管路;图4-1 空气-水蒸气换热流程图来自蒸汽发生器的水蒸汽进入不锈钢套管换热器环隙,与来自风机的空气在套管换热器内进行热交换,冷凝水经阀门排入地沟。
冷空气经孔板流量计或转子流量计进入套管换热器内管(紫铜管),热交换后排出装置外。
2.设备与仪表规格(1)紫铜管规格:直径φ21×2.5mm,长度L=1000mm(2)外套不锈钢管规格:直径φ100×5mm,长度L=1000mm(4)铂热电阻及无纸记录仪温度显示(5)全自动蒸汽发生器及蒸汽压力表四、实验步骤与注意事项1.实验步骤(1)打开控制面板上的总电源开关,打开仪表电源开关,使仪表通电预热,观察仪表显示是否正常。
(2)在蒸汽发生器中灌装清水,开启发生器电源,水泵会自动将水送入锅炉,灌满后会转入加热状态。
到达符合条件的蒸汽压力后,系统会自动处于保温状态。
(3)打开控制面板上的风机电源开关,让风机工作,同时打开冷流体进口阀,让套管换热器里充有一定量的空气。
(4)打开冷凝水出口阀,排出上次实验余留的冷凝水,在整个实验过程中也保持一定开度。
注意开度适中,开度太大会使换热器中的蒸汽跑掉,开度太小会使换热不锈钢管里的蒸汽压力过大而导致不锈钢管炸裂。
(5)在通水蒸汽前,也应将蒸汽发生器到实验装置之间管道中的冷凝水排除,否则夹带冷凝水的蒸汽会损坏压力表及压力变送器。
具体排除冷凝水的方法是:关闭蒸汽进口阀门,打开装置下面的排冷凝水阀门,让蒸汽压力把管道中的冷凝水带走,当听到蒸汽响时关闭冷凝水排除阀,方可进行下一步实验。