第18届“五羊杯”初二数学竞赛试题(含答案)范文
- 格式:doc
- 大小:267.00 KB
- 文档页数:5
初二数学竞赛试题7套整理版(含答案)初二数学竞赛试题7套整理版(含答案)第一套试题1. 某数与它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.2. 有一个矩形,长是宽的3倍,如果长再加上宽再加上1的和等于50,求矩形的长和宽各是多少?解:设矩形的宽为x,则长为3x,根据题意可得方程 3x + x + 1 = 50,化简得 4x + 1 = 50,解得 x = 12,所以长为3 * 12 = 36,宽为12.3. 某个数的三次方减去它自身等于608,求这个数是多少?解:设这个数为x,根据题意可得方程 x^3 - x = 608,化简得 x^3 - x - 608 = 0,因此需求解该方程的解x.4. 甲数和乙数之和是300,甲数比乙数大30,求甲数和乙数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 x + y = 300,x - y = 30,联立这两个方程可以解得甲数x和乙数y.5. 家长购买某品牌的饮料,每瓶售价为5元,如果购买10瓶,优惠50%,那么需要支付的价格是多少?解:购买10瓶优惠50%,相当于购买5瓶的价格,所以需要支付 5 * 10 * (1 - 50%) = 25元.第二套试题1. 学校图书馆购买300本新书,若图书馆中已有书籍500本,现将这些书按每排放10本的方式摆放,共需要多少排?解:新书300本加上原有书籍500本,共计800本书,每排放10本,所以需要 800 / 10 = 80排.2. 小明每天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,求他一天中运动的总时长是多少分钟?解:小明一天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,总时长为 30 + 25 + 40 = 95分钟.3. 甲、乙两人开始一起钓鱼,甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,如果他们一起钓了45分钟,那么他们一共钓到了多少条鱼?解:甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,他们一起钓了45分钟,所以甲和乙一共钓到了 2 * 45 + 1 * 45 = 135 条鱼.4. 某商品原价100元,现在打8折,过了一段时间后再降价,降到原价的85%,现在这个商品的售价是多少?解:原价100元,打8折后为 100 * (1 - 80%) = 80元,再降到原价的85%为 80 * 85% = 68元.5. 某人的年收入为12000元,每月生活费占月收入的1/5,那么这个人每月的生活费用是多少元?解:年收入12000元,月收入为 12000 / 12 = 1000元,生活费占收入的1/5,所以生活费用为 1000 * 1/5 = 200元.第三套试题1. 甲、乙两个人合作修一个房子,甲一个人修需要8天,乙一个人修需要12天,问他们一起修需要多少天?解:甲一个人修需要8天,乙一个人修需要12天,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8天.2. 甲购买一本书花费了原价的3/4,折后价格为60元,问这本书的原价是多少?解:折后价格为60元,花费原价的3/4,所以原价为 60 / (3/4) = 80元.3. 甲、乙两人比赛,甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,问谁的平均速度更快?解:甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒,平均速度为 (60 + 50 + 40) / 3 = 50 秒/轮;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,平均速度为 (55 + 45 + 35) / 3 = 45 秒/轮;所以甲的平均速度更快.4. 一只小狗每小时能跑5公里,一只小猫每小时能跑8公里,如果它们从同一地点同时出发并分别向东和西跑,4小时后它们相距了多少公里?解:小狗每小时能跑5公里,4小时后跑了5 * 4 = 20公里,小猫每小时能跑8公里,4小时后跑了8 * 4 = 32公里,所以它们相距了 32 -20 = 12 公里.5. 三个连续的偶数相加的和是60,求这三个数分别是多少?解:设第一个偶数为x,那么第二个偶数为x + 2,第三个偶数为x+ 4,根据题意可得方程 x + (x + 2) + (x + 4) = 60,求解该方程可得x及其对应的三个连续偶数.第四套试题1. 一个数的2倍加上5等于13,求这个数是多少?解:设这个数为x,根据题意可得方程 2x + 5 = 13,解得 x = 4.2. 甲乙两数相差22,乙数的2倍与甲数的3倍之和等于70,求甲、乙两数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 y - x = 22,2y + 3x= 70,联立这两个方程可以解得甲数x和乙数y.3. 一辆汽车以每小时80千米的速度行驶,行驶了1小时20分钟后停下来休息,求这段时间内汽车行驶的路程?解:汽车以每小时80千米的速度行驶,1小时20分钟共1.33 小时,所以汽车行驶的路程为 80 * 1.33 = 106.4 千米.4. 甲、乙两个人一起做一件工作,甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成需要的时间为 1/(1/4 + 1/6) = 2.4小时.5. 一个数加上它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.第五套试题1. 一条宽10米的路,两边分别种植了向阳向每排7棵树或9棵树,每棵树之间距离相等,而且与路两边相邻树之间距离也相等,问道路中间最宽的地方有多宽?解:分别种植7棵树和9棵树,每棵树之间距离相等,所以道路中间最宽的地方为两排树之间的距离.2. 一个数与4的乘积减去2等于18,求这个数是多少?解:设这个数为x,根据题意可得方程 4x - 2 = 18,解得 x = 5.3. 甲、乙、丙三人合作种田,甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,问他们三个人一起种地需要多少天?解:甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,他们一起种地需要的时间为 1/(1/10 + 1/12 + 1/15) =4.8天.4. 某人共有100元,买了一本书花掉了原价的3/5,剩下的钱还能买另一本原价为80元的书吗?解:100元买了一本书花掉了原价的3/5,剩下的钱为 100 * (1 - 3/5) = 40元,剩下的钱不足以购买另一本80元的书.5. 一团面粉重800克,其中水分为15%,求这团面粉中水分的重量是多少克?解:面粉重800克,其中水分为15%,所以水分的重量为800 * 15% = 120克.第六套试题1. 一个数与它的五分之一之和的和是40,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/5)x + x = 40,化简得7/5x = 40,解得 x = 28.57.2. 甲、乙两个人分别完成一项工作需要的时间比为2:5,如果他们一起完成这项工作需要3小时,求乙单独完成这项工作需要多少时间?解:甲、乙两个人分别完成一项工作需要的时间比为2:5,设甲单独完成需要的时间为x,乙单独完成需要的时间为y,根据题意可得方程 2x + 5x = 3,解得 y = 7.5.3. 有两个相交的圆,圆心之间的距离为8,两圆的半径分别为5和3,求两圆相交的弦的长度是多少?解:两个圆的半径分别为5和3,圆心之间的距离为8,利用勾股定理可以求得两圆相交的弦的长度.4. 甲乙两个人一起做一件工作,甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成需要的时间为 1/(1/10 + 1/15) = 6小时.5. 甲给乙20元,乙给丙30元,丙给甲10元,这三个人一共交易了多少元?解:甲给乙20元,乙给丙30元,丙给甲10元,所以一共交易了20 + 30 + 10 = 60元.第七套试题1. 某数比它的2/3小12,求这个数是多少?解:设这个数为x,根据题意可得方程 x - (2/3)x = 12,化简得 1/3x = 12,解得 x = 36.2. 甲、乙两个人一起修一条路,甲单独修需要8小时,乙单独修需要12小时,也有可能甲的速度是乙的倍数,问他们一起修需要多少小时?解:甲单独修需要8小时,乙单独修需要12小时,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8小时.3. 某品牌的衣服原价为200元,现在打折8折,过了一段时间后再降价,降到原价的85%,现在这件衣服的售价是多少?解:原价200元,打8折后为 200 * (1 - 80%) = 160元,再降到原价的85%为 160 * 85% = 136元.4. 甲、乙两个人一起做工,甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,问他们一起做一份工作需要多少时间?解:甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,他们一起做一份工作需要的时间为 1/(1/3 + 1/4) = 12/7小时.5. 某人的年收入为12000元,每月花销占收入的1/4,那么这个人每月的花销是多少元?解:年收入12000元,。
第18届“五羊杯”初二数学竞赛试题(考试时间:90分钟 满分:100分)一、选择题(4选1型,每小题选对得5分,否则得0分,本大题满分50分)1.化简繁分数:111123233(2)---+--+-----=( ).A 、25B .25- C .一2 D 、22.设23x y x y-=+,其中x ,y ≠0,则3333(23)(32)(42)(7)x y x y x y x y ---+--=( ) A .一l B .1 C .14134075 D .14134075-3.已知三个方程构成的方程组2,1,122yz xyz xyzy z yz zx xy yz zx xy===+-+++恰有一组解,,x a y b z c ===,则333a b c ++=( ) A .一1 B .1 C .0 D .174.设324(23)2(321)3a b c d a b c d +-+-+--=-++,则()()()()b c d c d a d a b a b c +-+-+-+-=( )A .16B .一24C .30D .05、杨城同学训练上楼梯赛跑,他每步可上2阶或3阶(但不上1阶,也不上4阶以上).现共有16阶台阶,规定不许踏上第7阶,也不许踏上第13阶.那么杨城有( )种不同的上楼梯方法.(注:两种上楼梯方法,只要有某l 阶楼梯的上法不相同,就算作不同的方法.) A .12 B .14 C .15 D .166.求值:20063—10063一l0003—3000×2006×1006=( ).A .2036216432B .2000000000C .12108216000D .07.已知323x y -=,则23796x y xyxy y x--+-=( ) A .14 B .14- C 、13- D 、138.计算33332461004246100624610082462006+++++++++++++++++++ A .31003 B .31004 C .1334 D .110009.至少有两个数字相同的3位数共有( )个 A .280 B .180 C .252 D .39610.五羊中学从初一到高三级学生中挑选“访贫问苦”志愿者,至少要选出( )名同学,才能做到,不管怎样挑选,以下六个条件至少能满足一个条件: 条件l :初一级至少选3人; 条件2:初二级至少选4人; 条件3:初三级至少选5人; 条件4:高一级至少选8人; 条件5:高二级至少选20人; 条件6:高三级至少选6人.A .47B .46C .41D .40二、填空题(每小题答对得5分,否则得0分.本大题满分50分)11.若P 是两位的正整数,则以下等式中有可能成立的式子的个数是 . A .22006(34)(59)x Px x x ++=-- B 、22006(17)(118)x Px x x ++=-- C 、22006(34)(59)x Px x x --=+- D 、22006(17)(118)x Px x x --=+- E 、22006(1)(2006)x Px x x +-=-+12.分解因式2226773x xy y x y --+++=13.已知2323573(2)2(2)(2)x x A B Cx x x x ++=++----其中A ,B ,C 为常数,则2A+B+C=14.方程组4239x y x x y x ⎧++=⎪⎨++=⎪⎩的解共有 组15.假设一家旅馆共有30个房间,分别编以号码l ~30,现在要在每个房间的钥匙标上数字,为保密起见,要求数字用密码法,使服务员容易识别,而使局外人不易猜到.现在要求密码用两位数,左边的一个数字是原房号除以5所得的余数,右边的一个数字是原房号除以7所得的余数.那么标有36的钥匙所对应的原房号是 号.16、设251098109810(21)x x a x a x a x a x a --=+++++ , 则97531a a a a a ++++=17、若2005200520042004200420042003200311,,2006200620052005200520052004200420052006P Q R =-=-=-则P ,Q ,R 的大小关系是 .(注:写出P ,Q ,R 两两的大小关系)18、有一个正在向上匀速移动的自动扶梯,旅客A 从其顶端往下匀速行至其底端,共走了60级,B 从其底端往上匀速行至其顶端,共走了30级(扶梯行驶,两人也在梯上行走,且每次只跨l 级),且A 的速度(即单位时间所走的级数)是B 的速度的3倍,那么自动扶梯露在外面的级数是19.分数12121212,,,,12380中共有 个分数可以化成混循环小数20.请你自己画图:画一个等边三角形,三个顶点标上A ,B ,C .在三边BC ,CA ,AB 上取三等分点,BC 的三等分点(从B 到C 方向)是P ,Q ;CA 的三等分点(从C 到A 方向)是M ,N 、;AB 的三等分点(从A 到B 方向)是S ,T .连结线段QM ,NS ,TP .在六条 线段PQ ,QM ,MN ,NS ,ST ,TP 上再取三等分点,依次是P 1,P 2(从P 到Q 方向);Q 1,Q 2(从Q 到M 方向);M 1,M 2(从M 到N 方向);N 1,N 2((从N 到S 方向);S 1,S 2(从S 到T 方向);T 1,T 2(从T 到P 方向).连结线段12211221,,,,S M S M TM T Q T Q ;1221122112211221,,,,;,,,,PS P S QS Q N Q N M P M P NP N T N T .所得到的图形中,可以数得出来的三角形,共有 个.。
八年级数学竞赛题试卷一、选择题(每题5分,共30分)1. 若公式,公式,则公式的值为()A. 5B. 6C. 7D. 8解析:根据完全平方公式公式,已知公式,公式,则公式,所以答案是A。
2. 已知公式,则分式公式的值为()A. 公式B. 9C. 1D. 公式解析:由公式可得公式,即公式,公式。
将公式变形为公式,把公式代入可得:公式,所以答案是A。
3. 若关于公式的方程公式有增根,则公式的值为()A. -4或6B. -4或1C. 6或1D. -4或6或1解析:先将方程化为整式方程,方程两边同乘公式得:公式,公式,公式。
因为方程有增根,所以公式或公式。
当公式时,公式,公式,公式;当公式时,公式,公式,公式。
所以答案是A。
二、填空题(每题5分,共30分)1. 分解因式公式______。
解析:先提取公因式公式,再利用平方差公式,公式。
2. 若公式,则公式______。
解析:根据完全平方公式公式,已知公式,则公式,所以公式。
3. 已知公式是方程公式的一个根,则公式______。
解析:因为公式是方程公式的根,所以公式,即公式。
则公式。
三、解答题(每题20分,共40分)1. 先化简,再求值:公式,其中公式。
解析:化简原式:\[\begin{align}&(\frac{(x 1)^{2}}{(x + 1)(x 1)}+\frac{1}{x})\div\frac{1}{x + 1}\\ =&(\frac{x 1}{x + 1}+\frac{1}{x})\div\frac{1}{x + 1}\\=&(\frac{x(x 1)+(x + 1)}{x(x + 1)})\div\frac{1}{x + 1}\\=&\frac{x^{2}-x+x + 1}{x(x + 1)}\times(x + 1)\\=&\frac{x^{2}+1}{x}\end{align}\]当公式时,公式。
八年级数学竞赛题(本检测题满分:120分,时间:120分钟) 班级: 姓名: 得分: 一、选择题(每小题3分,共30分)1.下列四个实数中,绝对值最小的数是( )A .-5B .-2C .1D .42.下列各式中计算正确的是( )A .9)9(2-=-B .525±=C .3311()-=- D .2)2(2-=- 3.若901k k <<+ (k 是整数),则k =( )A . 6B . 7C .8D . 94.下列计算正确的是( )A.ab ·ab =2ab 错误!未找到引用源。
C.3错误!未找到引用源。
-错误!未找到引用源。
=3(a ≥0) D.错误!未找到引用源。
·错误!未找到引用源。
=错误!未找到引用源。
(a ≥0,b ≥0)5.满足下列条件的三角形中,不是直角三角形的是( )A.三内角之比为1∶2∶3B.三边长的平方之比为1∶2∶3C.三边长之比为3∶4∶5D.三内角之比为3∶4∶56.已知直角三角形两边的长分别为3和4,则此三角形的周长为( )A .12B .7+7C .12或7+7D .以上都不对7.将一根24 cm 的筷子置于底面直径为15 cm ,高为8 cm 的圆柱形水杯中,设筷子露在杯子外面的长度为h cm ,则h 的取值范围是( )A .h ≤17B .h ≥8C .15≤h ≤16D .7≤h ≤168.在直角坐标系中,将点(-2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是( )A .(4, -3)B .(-4, 3)C .(0, -3)D .(0, 3)9.在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (4,5),B (1,2),C (4,2), 将△ABC 向左平移5个单位长度后,A 的对应点A 1的坐标是( )A .(0,5)B .(-1,5)C .(9,5)D .(-1,0)10.平面直角坐标系中,过点(-2,3)的直线l 经过第一、二、三象限,若点(0,a ),(-1,b ),(c ,-1)都在直线l 上,则下列判断正确的是( ) A . b a < B . 3<a C . 3<b D . 2-<c 二、填空题(每小题3分,共24分)11.函数y =错误!未找到引用源。
第20讲 一次不定方程知识方法扫描在一个一次方程或方程组中,如果未知数的个数多于方程的个数,那么,一般来说,它的解往往是不确定的。
例如方程x -2y=3,方程组10025100x y z x y z ++=⎧⎨++=⎩等。
像这类方程或方程组就称为一次不定方程或一次不定方程组.它们通常都有无限多组解。
然而,在一定的条件下,例如在求其正整数解时,其解也可能是有限的;有时我们还需找出无限多组解中最优的解来;求不定方程的整数解的方法很多,我们可以根据题目的条件和要求选择最简单的解法。
我们常将一个未知数用另外一个未知数表示出来,然后利用约数与倍数的关系来分析或穷举,有时也可利用不等关系先缩小范围,从而求出其符合题意的解来。
对于一般的一次不定方程ax+by=c ,可采用“特解-通解”法,即先通过观察或用辗转相除法,找出它的一组“特解”00.,x x y y =⎧⎨=⎩ 那么这个不定方程的通解就是00.,x x bt y y at =+⎧⎨=-⎩。
经典例题解析例1 (第八届“五羊杯”初中数学竞赛题)李林在银行兑换一张面额为100元以内的人民币支票, 兑换员不小心将支票上的元与角、分数字看倒位置了(例如把12.34元看成34.12)并按看错的数字支付, 李林将其款化去3.50元之后, 发现其余款项恰为支票面额的二倍, 于是急忙到银行将多领的款额退回. 那么, 李林应退回的款额是 元.解.设支票上的元数与角、分数分别为x 和y, 由题意, 得:(100x +y)-350=2 (100x +y), 其中, x, y 为整数且0≤x, y <100.化简方程得:98x =199x +350 ①∴y =98350199+x , 即: y =2x +3+98563+x ② 由②知y >2x, 由①知x 为偶数, 其可能取值为2, 4, …, 48. 取x =2, 4,…, 48计算y 值. 只有当x =14时, y =32是整数, 所以李林支票面额为14.32元, 兑换时误看成32.14元, 李林应退款额为32.14-14.32=17.82元.例2(1995年云南昆明市初中数学竞赛)用5元钱共买西瓜、梨子、山楂共100个, 西瓜一个5角, 梨子一个1角, 山楂十个1角, 可每样各买多少个?设西瓜、梨子、山楂分别买了x, y, z 个, 根据题意, 得⎪⎩⎪⎨⎧=++=++.5100110121,100z y x z y x 消去z, 得 49x +9y =400.可知x 不能为大于2的自然数,当x =1时, y =39, z =60; 当x =2时, y 无整数解.可买西瓜1个, 梨子39个, 山楂60个.例3 (2003年四川省初中数学竞赛试题)一支科学考察队前往某条河流的上游去考察一个生态区。
2018年第一学期八年级数学竞赛试题(满分120分 时间120分钟) 一、选择题(每小题5分,共40分) 1.若m 为实数,则代数式m +m 的值一定是( ) A.正数 B.0 C.负数 D.非负数 2.已知:三角形的三边a 、b 、c 的长都是整数,且a ≤b <c,如果b=5,那么这样的三角形个数为( ) A .6个 B .10个 C .15个 D .21个 3. 关于x 的方程1x ax =+的解不可能出现的情况为( ) A .正数 B .零 C .负数 D .无解 4.2008年10月,我校进行第9届田径运动会,八年(1)班的甲、乙、丙、丁四名运动员参加4×100米接力赛,甲必须为第一接力棒或第四接力棒的运动员,那么这四名运动员在比赛过程中的接棒顺序有( ) A .3种 B .4种 C .6种 D .12种 5. 如图,是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是1,直角三角形的两条直角边长分别为a 、b ,则()2a b +的值是( ) A.13 B.19 C.25 D.169 6. 有一堆形状大小都相同的珠子,其中只有一粒比其它都轻些,其余一样重。
若利用天平(不用砝码)最多两次就找出了这粒较轻的珠子,则这堆珠子最多有( ) A .8粒 B .9粒 C .10粒 D .11粒 7. 如图,等腰直角三角形ABC 中,∠ACB=90°,在斜边AB 上取两点M 、N , 使∠MCN=45°.设MN=x ,BN=n ,AM=m ,则以x 、m 、n 为边的三角形的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .随x 、m 、n 的值而定 8.某人将2008看成了一个填数游戏式:2□□8.于是,他在每个框中各写了一个两位数ab 与 学 校____________________ 班 级______________ 姓 名__________________…………………………………………………………………………………………………………………………………………………………………………cd ,结果发现,所得到的六位数28abcd 恰是一个完全立方数,则ab +cd 的值为( ) A.40 B.50 C.60 D.70二、填空题(40分)9. 如图,已知AB ∥CD ,MF ⊥FG ,∠AEM=50°,∠NHC=55°.则∠FGH 的度数为 .第9题 第11题 第12题10.已知实数a 、b 满足a 2+b 2+a 2b 2= 4ab-1,则a+b 的值为 .11.如图,在△ABC 中,AB=AC ,∠BAD=20︒,且AE=AD ,则∠CDE = 度.12.如图,D 是Rt ⊿ABC 斜边AB 边上一点,DE ⊥AC,DF ⊥BC,且DE=DF,若AD=3,BD=4, 则⊿ADE 与⊿BDF 的面积之和....是 . 13. 三个同学对问题“若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩ 的解。
第18届“五羊杯”初中数学竞赛试题(初三试题 考试时间90分钟,满分100分)一、选择题(4选I 型,每小题选对得5分,否则得0分,本大题满分50分)1、关于x= )A 、B 、C D2、已知2310a a -+=,那么2294921a a a --++=( )A 、3B 、5C 、D 、3、求和:10098S =++=( )A 、15 B C D 4、广州地铁实行分段计价(每相邻两站之间为1个区间,每3个区间为1个段),起价2元,每进入下一段加收1元.地铁一号线沿线站点依次为:广州东站(起点站),体育中心,体育西路,杨箕,东山口,烈士陵园,农讲所,公园前,西门口,陈家祠,长寿路,黄沙,芳村,花地湾,坑口,西朗(终点站).小松、小梅、小柏、小枫四个好朋友分别住在体育中心、烈士陵园、长寿路、花地湾.他们相约搭乘地铁见面,应将见面地点选在哪一站可使四人所花费用最少。
答( )A 、杨箕B 、烈士陵园C 、长寿路D 、烈士陵园和长寿路之间任一站5、设ABC ∆中,边BC 上一点D 满足BC :CD=4,边CA 上一点E 满足CA :AE=5,边AB 上一点F 满足AB :BF=6,那么DEF ∆的面积:ABC ∆的面积=( )A 、37:60B 、61:120C 、59:120D 、23:606、关于x 的含有绝对值的方程212x x --=的不同实数解共有( )个A 、1B 、2C 、3D 、47、设[]x 表示不小于x 的最小整数,如[][][][]3.44,44,3.84, 3.83===-=-.则下列7个结论中,不成立的结论( )①[]x x ≤ ②[]1x x <+ ③[]x x =只有x 为整数才成立 ④[][]22x x +=+⑤[][]22x x -=- ⑥[][]22x x = ⑦[]22x x ⎡⎤=⎢⎥⎣⎦A 、不超过3个B 、恰为4个C 、刚好为5个D 、至少有6个8、下列各式的结果中最小的是( )A 1B 、2CD 、0.89、设n=180180180…18099(前面共有100个180,最后两位是99),那么,n 能够被3,7,9,11和13这5个数中的( )个整除A 、2B 、3C 、4D 、510、定义新运算∆:(1)(2)(1)a b a a a a b ∆=+++++++-,其中b 为正整数.如果 (3)(2)13x x ∆∆=,则x=( )A 、1或138B 、1或0C 、138D 、1二、填空题(每小题答对得5分,否则得0分,本大题满分50分)11、计算,结果表示为循环小数:7(22.07)1445-÷=12、在实数范围内因式分解:432344x x x x +---=13、已知a =,则4325654a a a a -+-+=14、设1234128,10298,1002998,100029998,,a a a a =⨯=⨯=⨯=⨯ 又设123420S a a a a a =+++++,那么S 的各位数字和为15、设,,,a b c d 都是正整数,而且2341a b c d >>>>,则a 的最小值=16、令111111425364797100S +++++=⨯⨯⨯⨯⨯,则1398S +=17、正方形ABCD 的对角线交于点O ,把A 、B 、C 、D 这4点中的每一点都涂上红色、黄色、蓝色或绿色,点O 则涂上红色或黄色,每一点都涂一种颜色,而且线段OA ,OB ,OC ,OD ,AB ,BC ,CD ,DA 中每一条的两个端点的颜色不能相同,那么,一共有 种不同的涂色方法。
2018学年第二学期学科竞赛学习检测八年级数学参考答案满分:120分考试时间:90分一、选择题(本大题有10个小题,每小题3分,共30分)二、填空题(本大题有6个小题,每小题4分,共24分)11.12 12. 813. 12014.④15.0y 1<<- 5x 0-≤或>x 16.三、解答题:(本大题有7个小题,共66分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分6分)(1(21(2分...1.................... 24分.......2.......... 223=+=分..1 (6)33分........2. (3)3213+=-+=18.(本小题满分8分)(1)13-2=x x (2)()()()232-13x x x -=+ 2133±=x 1,1221=-=x x (过程2分,结果2分) (过程2分,结果2分)19.(本小题满分8分) (1)略 .............2分 (2)a = 9b = 9c = 8d = 10 (每空1分)(3)言之有理即可.............2分 20.(本小题满分10分)(1)证明过程正确即可.............5分 (2)过程.............3分,结论31.............2分21.(本小题满分10分) (1)21=s ............2分 (2)214=-t s ............2分舍去)(21935,2193521-=+=t t ............2分 秒运动了21935+∴ (3)634=-t s ............2分舍去)(9,1421-==t t ..............2分秒运动了14∴22.(本小题满分12分) (1)xy 8-=............2分 2--=x y ............2分(2)2,421=-=x x ............2分 (3)6=S ............3分(4)0x 4<<-4>或x ............3分23.(本小题满分12分(1)证出DCF BCE ∆≅∆............2分CF CE =............1分(2) 证明:延长AD 至点F ,使得DF =BEDCF BCE ∆≅∆有(1)可证得DCF BCE CF CE ∠=∠=∴,............1分可证出GCF GCE ∆≅∆............2分GF GE =............1分BE GD DF GD GF GE +=+==............1分(3)过程 BC =12 .............3分,结论90=S .............1分。
模拟“五羊杯”初中数学竞赛初二试题(考试时间:90分钟;满分100分)一. 选择题(4选1型,每小题选对得5分,否则得0分.本大题满分50分).1. 【原创】化简:25)4(95.025.11)25.0(5.035.26---+--+-=( ). A. -1; B. 0; C. 1; D. 1325. 2. 【原创】已知实数z y x ,,满足022********=+---++z y x z y x ,则=-x z y ( ).A. 23;B. 32; C. 1; D. -1. 3. 【原创】满足不等式组⎪⎪⎩⎪⎪⎨⎧+≥+-+<-+97172373416x x x x x 的所有整数x 的个数为( ). A. 4; B. 6; C. 9; D. 11.4. 1已知:032=-+n n ,那么代数式2019423-+n n 的值是( ).A. -2009;B. 2009;C. -2010;D. 2010.5. 2如下图,多边形ABCDEFGHIJ 的相邻两边互相垂直,要求出它的周长,至少需要知道( )条边的边长。
A. 3;B. 4;C. 5;D. 6.6. 320102010被11除的余数是( ).A. 1;B. 2;C. 4;D. 6. 1模仿97年度“希望杯”全国数学邀请赛初二试题中的第6题自编而成 2 模仿第十九届“五羊杯”初中数学竞赛初一试题中的第6题自编而成 3 模仿97年度太原市初中数学竞赛第一试第4题自编而成7. 4设1233+--=Θb a ab b a ,b a ,是任意实数,则=ΘΘΘΘΘΘΘ)11451041937833()10003100310313(( ). A. 3101510+⨯; B. 101015⨯; C. 310159+⨯; D. 91015⨯.8. 5如果c b a <<,z y x <<,且0,,≠z y x ,那么在四个代数式:①zc y b x a ++; ②y c z b x a ++;③z c x b y a ++;④y c x b z a ++中,哪一个的值最小?( ) A. ①; B. ②; C. ③; D. ④.9. 6打字员小张连续打字20分钟,打了3609个字符,已测得他在第一分钟打了120个字符,在最后一分钟打了98个字符. 如果测算他每一分钟所打字符的个数,则以下结论不成立的是( ).A. 必有连续2分钟打了至少377个字符;B. 必有连续3分钟打了至少566个字符;C. 必有连续6分钟打了至少1131个字符;D. 必有连续9分钟打了至少1697个字符.10. 7空间中八个点(任意三点不共线)两两连线,用红绿两色染这些线段,其中点A 连出的线段都是红色的. 那么,以这八个点为顶点的三角形中,三边同色的三角形的个数至少为( ).A. 13;B. 14;C. 15;D. 16.二. 填空题(每小题填对得5分,否则得0分.本大题满分50分).1. 8已知p 是质数,并且37+p 也是质数,则=-3811p _______. 2. 【原创】设9位自然数m=______________2201091xy ,m 是88的倍数,则m=_______. 3. 9某校初二三个班同学举行羽毛球混合双打表演,要求每班都派出一名男生和一名女生,规定同班的男女生不能配对.如果派出的男生分别是甲、乙、丙、丁,派出的女生分别是A 、B 、C 、D.第一场:甲和A 对丙和C ;第二场:丙和B 对甲和C ;第三场:丁和A 对乙和丙的同班女生.那么,甲、乙、丙、丁的同班女生分别是__________. 4模仿第十九届“五羊杯”初中数学竞赛初二试题中的第8题自编而成 5 改编自《数学竞赛培训教程(初中册)第38页例2 6 改编自第十二届“五羊杯”初中数学竞赛初二试题第10题 7 改编自《中学数学》2010年5月数学奥林匹克初中训练题129第6题 8 改编自96年度北京市初中数学竞赛初二试题第1题 9 模仿98年度北京市初一年级“迎春杯”数学竞赛试题填空题第1题自编而成4.10某个两位数___ab ,它的平方数的末两位数也是___ab ,那么___ab 为__________. 5. 11某校初中二年级同学中,有45人参加了数学竞赛,有40人参加了英语竞赛,有38人参加了语文竞赛,其中参加数学和英语两科的共有15人,参加英语和语文两科的共有20人,参加数学和语文两科的共有19人.已知参加竞赛的同学中有114的同学得了奖,则得奖的共有______人. 6. 12用一个正方形去盖住边长为3,4,5的直角三角形,那么正方形的边长不得少于_______.7. 13计算9997959319753175311⨯⨯⨯+⋯⋯+⨯⨯⨯+⨯⨯⨯=_________. 8. 14万人瞩目的世博会在上海开幕了。
2018年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题:(本题满分42分,每小题7分) 1.已知2012,b =,2c =,那么,,a b c 的大小关系是 ( )A. a b c <<B. a c b <<C. b a c <<D.b c a << 【答】C.因为11a =,1b=110a b<<,故b a <.又2)1)c a -=-=1),而221)30-=->1,故c a >.因此b a c <<.2.方程222334x xy y ++=的整数解(,)x y 的组数为 ( ) A .3. B .4. C .5. D .6. 【答】B.方程即22()234x y y ++=,显然x y +必须是偶数,所以可设2x y t +=,则原方程变为22217t y +=,它的整数解为2,3,t y =±⎧⎨=±⎩从而可求得原方程的整数解为(,)x y =(7,3)-,(1,3),(7,3)-,(1,3)--,共4组.3.已知正方形ABCD 的边长为1,E 为BC 边的延长线上一点,CE =1,连接AE ,与CD 交于点F ,连接BF 并延长与线段DE 交于点G ,则BG 的长为 ( )ABCD【答】D.过点C 作CP//BG ,交DE 于点P.因为BC =CE =1,所以CP 是△BEG 的中位线,所以P 为EG 的中点.又因为AD =CE =1,AD//CE ,所以△ADF ≌△ECF ,所以CF =DF ,又CP//FG ,所以FG 是△DCP 的中位线,所以G 为DP 的中点.因此DG =GP =PE =13DE. 连接BD ,易知∠BDC =∠EDC =45°,所以∠BDE =90°. 又BDBG==. 4.已知实数,a b 满足221a b +=,则44a ab b ++的最小值为 ( )EC AA .18-. B .0. C .1. D .98. 【答】B.442222222219()2122()48a ab b a b a b ab a b ab ab ++=+-+=-+=--+.因为222||1ab a b ≤+=,所以1122ab -≤≤,从而311444ab -≤-≤,故2190()416ab ≤-≤,因此219902()488ab ≤--+≤,即44908a ab b ≤++≤.因此44a ab b ++的最小值为0,当a b ==a b ==时取得. 5.若方程22320x px p +--=的两个不相等的实数根12,x x 满足232311224()x x x x +=-+,则实数p的所有可能的值之和为 ( )A .0.B .34-.C .1-.D .54-. 【答】 B.由一元二次方程的根与系数的关系可得122x x p +=-,1232x x p ⋅=--,所以2222121212()2464x x x x x x p p +=+-⋅=++,332212121212()[()3]2(496)x x x x x x x x p p p +=++-⋅=-++.又由232311224()x x x x +=-+得223312124()x x x x +=-+,所以2246442(496)p p p p p ++=+++,所以(43)(1)0p p p ++=,所以12330,,14p p p ==-=-. 代入检验可知:1230,4p p ==-均满足题意,31p =-不满足题意. 因此,实数p 的所有可能的值之和为12330()44p p +=+-=-.6.由1,2,3,4这四个数字组成四位数abcd (数字可重复使用),要求满足a c b d +=+.这样的四位数共有 ( )A .36个.B .40个.C .44个.D .48个. 【答】C.根据使用的不同数字的个数分类考虑:(1)只用1个数字,组成的四位数可以是1111,2222,3333,4444,共有4个.(2)使用2个不同的数字,使用的数字有6种可能(1、2,1、3,1、4,2、3,2、4,3、4).如果使用的数字是1、2,组成的四位数可以是1122,1221,2112,2211,共有4个;同样地,如果使用的数字是另外5种情况,组成的四位数也各有4个.因此,这样的四位数共有6×4=24个.(3)使用3个不同的数字,只能是1、2、2、3或2、3、3、4,组成的四位数可以是1232,2123,2321,3212,2343,3234,3432,4323,共有8个.(4)使用4个不同的数字1,2,3,4,组成的四位数可以是1243,1342,2134,2431,3124,3421,4213,4312,共有8个.因此,满足要求的四位数共有4+24+8+8=44个. 二、填空题:(本题满分28分,每小题7分) 1.已知互不相等的实数,,a b c 满足111a b c t b c a+=+=+=,则t =_________. 【答】 1±.由1a t b +=得1b t a =-,代入1b t c +=得11t t a c +=-,整理得2(1)()0ct ac t a c -++-= ① 又由1c t a+=可得1ac at +=,代入①式得22()0ct at a c -+-=,即2()(1)0c a t --=,又c a ≠,所以210t -=,所以1t =±.验证可知:11,1a b c a a -==-时1t =;11,1a b c a a+=-=-+时1t =-.因此,1t =±. 2.使得521m⨯+是完全平方数的整数m 的个数为 . 【答】 1.设2521mn ⨯+=(其中n 为正整数),则2521(1)(1)m n n n ⨯=-=+-,显然n 为奇数,设21n k =-(其中k 是正整数),则524(1)m k k ⨯=-,即252(1)m k k -⨯=-.显然1k >,此时k 和1k -互质,所以252,11,m k k -⎧=⨯⎨-=⎩或25,12,m k k -=⎧⎨-=⎩或22,15,m k k -⎧=⎨-=⎩解得5,4k m ==. 因此,满足要求的整数m 只有1个.3.在△ABC 中,已知AB =AC ,∠A =40°,P 为AB 上一点,∠ACP =20°,则BCAP= . 【答】设D 为BC 的中点,在△ABC 外作∠CAE =20°,则∠BAE =60°. 作CE ⊥AE ,PF ⊥AE ,则易证△ACE ≌△ACD ,所以CE =CD =12BC. 又PF =PA sin ∠BAE =PA sin 60,PF =CE=12BC ,因此BCAP4.已知实数,,a b c 满足1abc =-,4a b c ++=,22243131319a b c a a b b c c ++=------,则222a b c ++= .【答】332. 因为22313(3)(1)(1)(1)a a a a abc a bc a a bc b c a b c --=-+=+-=--+=--,所以EB2131(1)(1)a a abc =----. 同理可得2131(1)(1)b b b a c =----,2131(1)(1)c c c a b =----. 结合22243131319a b c a a b b c c ++=------可得1114(1)(1)(1)(1)(1)(1)9b c a c a b ++=------,所以4(1)(1)(1)(1)(1)(1)9a b c a b c ---=-+-+-. 结合1abc =-,4a b c ++=,可得14ab bc ac ++=-. 因此,222233()2()2a b c a b c ab bc ac ++=++-++=.实际上,满足条件的,,a b c 可以分别为11,,422-.第二试 (A )一、(本题满分20分)已知直角三角形的边长均为整数,周长为30,求它的外接圆的面积. 解 设直角三角形的三边长分别为,,a b c (a b c ≤<),则30a b c ++=.显然,三角形的外接圆的直径即为斜边长c ,下面先求c 的值. 由a b c ≤<及30a b c ++=得303a b c c =++<,所以10c >. 由a b c +>及30a b c ++=得302a b c c =++>,所以15c <.又因为c 为整数,所以1114c ≤≤. ……………………5分 根据勾股定理可得222a b c +=,把30c a b =--代入,化简得30()4500ab a b -++=,所以22(30)(30)450235a b --==⨯⨯, ……………………10分因为,a b 均为整数且a b ≤,所以只可能是22305,3023,a b ⎧-=⎪⎨-=⨯⎪⎩解得5,12.a b =⎧⎨=⎩……………………15分 所以,直角三角形的斜边长13c =,三角形的外接圆的面积为1694π. ……………………20分 二.(本题满分25分)如图,PA 为⊙O 的切线,PBC 为⊙O 的割线,A D ⊥OP 于点D .证明:2AD BD CD =⋅.证明:连接OA ,OB ,OC.∵OA ⊥AP ,A D ⊥OP ,∴由射影定理可得2PA PD PO =⋅,2AD PD OD =⋅. ……………………5分 又由切割线定理可得2PA PB PC =⋅,∴P B PC PD PO ⋅=⋅,∴D 、B 、C 、O 四点共圆,……………………10分∴∠PDB =∠PCO =∠OBC =∠ODC ,∠PBD =∠COD ,∴△PB D ∽△COD , ……………………20分∴PD BD CD OD=,∴2AD PD OD BD CD =⋅=⋅. ……………………25分 三.(本题满分25分)已知抛物线216y x bx c =-++的顶点为P ,与x 轴的正半轴交于A 1(,0)x 、B 2(,0)x (12x x <)两点,与y 轴交于点C ,PA 是△ABC 的外接圆的切线.设M 3(0,)2-,若AM//BC ,求抛物线的解析式.解 易求得点P 23(3,)2b bc +,点C (0,)c .设△ABC 的外接圆的圆心为D ,则点P 和点D 都在线段AB 的垂直平分线上,设点D 的坐标为(3,)b m . 显然,12,x x 是一元二次方程2106x bx c -++=的两根,所以13x b =,23x b =+AB 的中点E 的坐标为(3,0)b ,所以AE……………………5分因为PA 为⊙D 的切线,所以PA ⊥AD ,又A E ⊥PD ,所以由射影定理可得2AE PE DE =⋅,即223)()||2b c m =+⋅,又易知0m <,所以可得6m =-. ……………………10分 又由DA =DC 得22DA DC =,即2222(30)()m b m c +=-+-,把6m =-代入后可解得6c =-(另一解0c =舍去). ……………………15分又因为AM//BC ,所以OA OMOB OC =3||2|6|-=-. ……………………20分 把6c =-代入解得52b =(另一解52b =-舍去). 因此,抛物线的解析式为215662y x x =-+-. ……………………25分第二试 (B )一.(本题满分20分)已知直角三角形的边长均为整数,周长为60,求它的外接圆的面积. 解 设直角三角形的三边长分别为,,a b c (a b c ≤<),则60a b c ++=. 显然,三角形的外接圆的直径即为斜边长c ,下面先求c 的值.由a b c ≤<及60a b c ++=得603a b c c =++<,所以20c >.由a b c +>及60a b c ++=得602a b c c =++>,所以30c <.又因为c 为整数,所以2129c ≤≤. ……………………5分 根据勾股定理可得222a b c +=,把60c a b =--代入,化简得60()18000ab a b -++=,所以322(60)(60)1800235a b --==⨯⨯, ……………………10分因为,a b 均为整数且a b ≤,所以只可能是326025,6035,a b ⎧-=⨯⎪⎨-=⨯⎪⎩或2226025,6023,a b ⎧-=⨯⎪⎨-=⨯⎪⎩ 解得20,15,a b =⎧⎨=⎩或10,24.a b =⎧⎨=⎩……………………15分当20,15a b ==时,25c =,三角形的外接圆的面积为6254π; 当10,24a b ==时,26c =,三角形的外接圆的面积为169π. ……………………20分 二.(本题满分25分)如图,PA 为⊙O 的切线,PBC 为⊙O 的割线,A D ⊥OP 于点D ,△ADC 的外接圆与BC 的另一个交点为E.证明:∠BAE =∠ACB.证明:连接OA ,OB ,OC ,BD.∵OA ⊥AP ,A D ⊥OP ,∴由射影定理可得2PA PD PO =⋅,2AD PD OD =⋅. ……………………5分 又由切割线定理可得2PA PB PC =⋅,∴P B PC PD PO ⋅=⋅,∴D 、B 、C 、O 四点共圆,……………………10分∴∠PDB =∠PCO =∠OBC =∠ODC ,∠PBD =∠COD ,∴△PB D ∽△COD , ∴PD BDCD OD=, ……………………15分∴2BD CD PD OD AD ⋅=⋅=,∴BD ADAD CD=. 又∠BDA =∠BDP +90°=∠ODC +90°=∠ADC ,∴△BDA ∽△ADC , ……………………20分 ∴∠BAD =∠ACD ,∴AB 是△ADC 的外接圆的切线,∴∠BAE =∠ACB. ……………………25分三.(本题满分25分)题目和解答与(A )卷第三题相同.第二试 (C )一.(本题满分20分)题目和解答与(B )卷第一题相同. 二.(本题满分25分)题目和解答与(B )卷第二题相同. 三.(本题满分25分)已知抛物线216y x bx c =-++的顶点为P ,与x 轴的正半轴交于A 1(,0)x 、B 2(,0)x (12x x <)两点,与y 轴交于点C ,PA 是△ABC 的外接圆的切线.将抛物线向左平移1)个单位,得到的新抛物线与原抛物线交于点Q ,且∠QBO =∠OBC.求抛物线的解析式.解 抛物线的方程即2213(3)62b y x bc =--++,所以点P 23(3,)2b b c +,点C (0,)c . 设△ABC 的外接圆的圆心为D ,则点P 和点D 都在线段AB 的垂直平分线上,设点D 的坐标为(3,)b m . 显然,12,x x 是一元二次方程2106x bx c -++=的两根,所以13x b =,23x b =+AB 的中点E 的坐标为(3,0)b ,所以AE因为PA 为⊙D 的切线,所以PA ⊥AD ,又A E ⊥PD ,所以由射影定理可得2AE PE DE =⋅,即223)()||2b c m =+⋅,又易知0m <,所以可得6m =-. ……………………5分 又由DA =DC 得22DA DC =,即2222(30)()m b m c +=-+-,把6m =-代入后可解得6c =-(另一解0c =舍去). ……………………10分将抛物线2213(3)662b y x b =--+-向左平移1)个单位后,得到的新抛物线为2213(324)662b y x b =--++-.易求得两抛物线的交点为Q 23(312102)2b b +-+. ……………………15分 由∠QBO =∠OBC 可得tan ∠QBO =tan ∠OBC.作QN ⊥AB ,垂足为N ,则N (312b +-,又233(x b b =+=,所以tan ∠QBO =QN BN2310212b +=12=111)]22==⋅. ……………………20分又tan ∠OBC =OCOB 1(2b ==⋅,所以111)](22b ⋅=⋅-. 解得4b =(另一解45)03b =<,舍去).因此,抛物线的解析式为21466y x x =-+-. ……………………25分。
第十八届“希望杯”全国数学邀请赛初二 第二试年4月15日 上午8:30至10:30一、 选择题(本大题共10小题,每小题4分,菜40分。
)以下每题的四个选项中,仅有一个是正确的,请将正确答案的英文字母写在每题后面的圆括号内。
1、红丝带是关注艾滋病防治问题的国际性标志,人胶将红丝带剪成小段,并用别针将折叠好的红丝带加紧在胸前,如图1所示,红丝带重叠部分形成的图形是( )(A )正方形 (B )矩形 C )菱形 (D )梯形2、设a 、b 、C 是不为零的实数,那么||||||a b c x a b c =+-的值有( ) (A )3种 (B )4种 (C )5种 (D )6种3、ABC ∆的边长分别是21a m =-,21b m =+,()20c m m =>,则ABC ∆是( ) (A )等边三角形 (B )钝角三角形 (C )直角三角形(D )锐角三角形4、古人用天干和地支记序,其中天干有10个;甲乙丙丁戊己庚辛壬癸,地支有12个;子丑寅卯辰巳午未申酉戌亥,将天干的10个汉字和地支的12个汉字对应排列成如下两行; 甲乙丙丁戊己庚辛壬癸甲乙丙丁戊己庚辛壬癸甲乙丙丁……子丑寅卯辰巳午未申酉戌亥子丑寅卯辰巳午未申酉戌亥……从左向右数,第1列是甲子,第2列是乙丑,第3列是丙寅……,我国的农历纪年就是按这个顺序得来的,如公历年是农历丁亥年,那么从今年往后,农历纪年为甲亥年的那一年在公历中( )(A )是, (B )是2031年, (C )是2043年,(D )没有对应的年号5、实数 a 、b 、m 、n 满足a<b, -1<n<m, 若1a mb M m +=+,1a nb N n+=+, 则M 与N 的大小关系是( )(A )M>N (B)M=N (C)M<N (D)无法确定的。
6、若干个正方形和等腰直角三角形拼接成如图2所示的图形,若最大的正方形的边长是7cm ,则正方形A 、B 、C 、D 的面积和是( )(A )214cm (B )242cm (C )249cm (D )264cm7cmDC B A7、已知关于x 的不等式组230320a x a x +>⎧⎨-≥⎩恰有3个整数解,则a 的取值范围是( ) (A )23≤a ≤32 (B)43≤a ≤32 (C)43<a ≤32 (D)43≤a <328 、The number of intersection point of the graphs of function||k y x= and function (0)y kx k =≠ is( ) (A)0 (B)1 (C)2 (D)0 or 2.9、某医药研究所开发一种新药,成年人按规定的剂量限用,服药后每毫升血液中的含药量y (毫克)与时间t (小时)之间的函数关系近似满足如图3所示曲线,当每毫升血液中的含药量不少于0.25毫克时治疗有效,则服药一次治疗疾病有效的时间为( )(A )16小时 (B )7158小时 (C )151516小时 (D )17小时 图3y=m/ty=ktO t (小时)y(毫克)4321110、某公司组织员工一公园划船,报名人数不足50人,在安排乘船时发现,每只船坐6人,就剩下18人无船可乘;每只船坐10人,那么其余的船坐满后内参有一只船不空也不满,参加划船的员工共有( )(A )48人 (B )45人 (C )44人 (D )42人二、填空题(本大题共10小题,每小题4分,共40分)11、已知a b c ⋅⋅o 为ABC ∆三边的长,则化简|a b c -+|+2()a b c -+的结果是___12、自从扫描隧道显微镜发明后,世界上便诞生了一间新科学,这就是“纳米技术”,已知1毫米微米,1微米纳米,那么纳米的长度用科学记数法表示为__米。
2018年初中数学联赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准•第一试,选择题和填空题只设7分和0分两档;第二试各题, 请按照本评分标准规定的评分档次给分•如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数第一试(A)一、选择题:(本题满分42分,每小题7分)21.设二次函数y x 2ax 22a的图象的顶点为A,与x轴的交点为B, C •当△ ABC为等边三角形时,其边长为A. 6 .%【答】C.由题设知A( a, 弩).设B(x ,0) , C(x ,0),二次函数的图象的对称轴与2 1 2x轴的交点为D,则BC | x1 x21X)224x x1 2又AD _3 BC,则|2所以,△ ABC的边长BC 2a22a2.a2a2(舍去)ABCD2.如图,在矩形中, BAD BD的平分线交于点,AB CAE 15 BE,则CJ ,J2 1. D. 1.3【答】D.延长AE交BC于点F,过点由已知得EBH ACB BAF30 .FADE作BC的垂线,垂足为H .AFB HEF 45 , BF ABE-、—AC设BE x,则2 HF HE x , BH W3x .2因为BF BH HF ,所以3x122x,解得x 3 1.所以BE2 3.设p,q均为大于3的素数,则使p25pq 4q为完全平方数的素数对(p, q)的个数为(A.1 . 【答】B. B.2.C.3.D.4.2 2 2设p 5 pq 4q m ( m 为自然数) (m p 2q)(m p 2q) pq .【答】C.0的整数组(x, y, z)的个数为由对称性,同样可得由于p, q 为素数,且 m p 2q p, m p 2q q ,所以 m p 2q 1 , m p 2q pq ,从而 pq 2 p 4q 1 0,即(p 4)(q 2) 9,所以(p, q)(5,11)或(7, 5).所以,满足条件的素数对 (p, q)的个数为 2.4.若实数 a, b 满足a2,2(1 a)2b(1 b)2 4a A.46 .B.64.C.82.D.128.(y @ z) @ x xy z xy yz zx xyz , (z @ x) @ yz xyyz zx xyz .所以,由已知可得x y z xy yz zx xyz0,即(x 1)( y1)(z 1)1.所以,x, y, z 为整数时,只能有以下几种情况:1, x 11, x 11, 1, 或 y11, 或 y11,或1, 1,z 1所以, 1, z 11, z 11, (x, y, z) (2,2,0)或(2,0,2)或(0,2,2)或(0,0,0),故共有4个符合要求的整数组.1,2 ,则(p 2q)2 pq m 2 , 即(1由条件—ba)2(1b)22 22a 2 2b 2 4aba 3b 3 0,2即(a b) 2[(a b)2 4ab] (a2 b)[(a b)23ab]又 a b 2,所以 22[4 4ab] 2[43ab] 0 ,解得 ab1.所以 a 2 b 2 (ab)22ab 6 ,a 3b 3 ( a b)[( a b)23ab] 14, a 5 b 5 (a 22 3 32 2 b 2 )(a3 b 3)a 2b 2(a b) 82.5.对任意的整数x, y ,定义x@ y xxy , 则使得 (x@y) @z(y@z) @x (z@x) @yA.1 . 【答】D.B.2 .C.3 .D.4.(x @ y) @ z (x y xy) @ z (x y xy) (x yxy)z z xyyz zx xyz ,1_£ 2018 2019 B.61 •_£2020C.62•因为 M 2018133,所以 M 1~~201833 61 335.__ 1 ___ 1 __ 1 1345 ■^050 ) -2030 13^050 20 83230 ,1 83230 1185 1 所以M 1345 61 1345,故M 的整数部分为61.、填空题:(本题满分 28分,每小题7 分)1.如图,在平行四边形 ABCD 中,BC 2AB ,CE AB 于E ,F 为AD 的中点,若 AEF48, 则 B ___ •【答】84 .设BC 的中点为G ,连结FG 交CE 于H ,由题设条件知 FGCD 为菱形•由AB // FG // DC 及F 为AD 的中点,知H 为CE 的中点• 又CE AB ,所以CE FG ,所以FH 垂直平分CE ,故 DFC GFC EFG AEF 48 . 所以 B FGC 180 2 48 84 •3 115 k 3孙三k 3 4k15 26•设M A.60 • 【答】B.-,则」的整数部分是 2050 MD.63 •又 M (丽^1^^12030才(203T120324(x y ) 15,则x y 的最大值为2由X 3y 3(x42(X y )( x xy令X y k ,注又因为x 2xy15可得(x y )( X 2152 .14(x y)2xy(X3Xyy 2) 11 X y) 1「即2y )2 43y 214 0,故由①式可得k 3 _3xyk _14 k152,所以xy A FG2.若实数 X, y 满足【答】3.117)x 2于是,x, y可看作关于t的一元二次方程t 2 ktk3 1k 坐(k ) 2 4 ——4 ---------- 2 0 ,3k3 2化简得k 3 k 30 0,即(k 3)(k 2 3k 10) 0,所以0 k 3.故x y的最大值为3.3. __________________________________________________ 没有重复数字且不为5的倍数的五位数的个数为__________________________________________________________ .【答】21504.显然首位数字不能为0,末位不能为0和5.当首位数字不为5时,则首位只能选0,5之外的8个数•相应地个位数只能选除0,5及万位数之外的7 个数,千位上只能选万位和个位之外的8个数,百位上只能选剩下的7个数,十位上只能选剩下的6个数•所以,此时满足条件的五位数的个数为8 7 8 7 6 18816个•当首位数字为5时,则个位有8个数可选,依次千位有8个数可选,百位有7个数可选,十位有6个数可选•所以,此时满足条件的五位数的个数为8 8 7 6 2688个•所以,满足条件的五位数的个数为18816 2688 21504 (个).5.55222 a b c4. 已知实数a,b, c满足a b c 0 ,a be 1 ,则-abc【答】5 .21 2222 13 3 3由已知条件可得ab bc ca 2 [(a b c)2 (a2 b2 c2)] 2,a b3 c 3abc,所以a5 b55,2.2 2、/ 3 .3c (a b c )(a b c3) [a2 (b3c3) .2/3 3、b (ac )2 3 3c (a b )]3abc [a2b2 ( a b) a2 c2 ( a c ) b 2 c2 (b c)] 2 23abc (abc2 2 2 2 a c bb c a)3abc 1 abc(ab bc ca) 3abc 2abc-5c K2 abc5a b c 5所以—abc 2第一试(B)一、选择题:(本题满分42分,每小题7分)2 x21.满足(x x 1) 1的整数x的个数为A.1 .B.2C.3.【答】C.当x 220 且x2.x 1 0 时,x 2.当x2x 1 1时,x 2 或x 1.当x2x 1 1且x 2为偶数时,x 0.所以,满足条件的整数x有3个.2.已知x1,x2,x3( X1X2 x3 )为关于x的方程x 34x1 X12 x22 X32A.5 .B.6C.7 .( ) D.4 .3 X2 ( a 2) x a 0的三个实数根,则( ) D.8 .【答】A.2 方程即(x 1)(x 2x a ) 0,它的一个实数根为 1,另外两个实数根之和为 2,其中必有一根小 于1,另一根大于1,于是x 2 1, x l x 3 2,故 (x 3x )( x 3x ) 2( x x 1 ) 2( x x ) 1 5 . 3 13.已知点E , F 分别在正方ABCD 的边 CD , AD 上, CD 4CE , EFB tan ABF A. 1 . B. 3 . C. & . D. ■ 3 .2 5 2 2【答】B.FBC ,贝U 不妨设CD 4,则CE 1, DE 3.设DF x 」U AF 4 x , EF J x 29 .作BH EF 于H .因为 EFB FB C AFB :, BAF △ BAF ^△BHF ,所以 BH BA 4.由SSS SS 得四边形ABF BEF DE F BCEABCD2 1 42 - 4 2 4 (4 x) 1 2 4 x 2 9 1 2 31x 2 41,解得x 8512AF 3所以AF 4 x 5 ,tan ABF AB 5 .4.方程3 x 3 x 的实数根的个数为 ( )A.0 .B.1 .C.2.D.3.【答】B. 90 BHF , BF 公共,所以FB令y 9 x ,则y 0 ,且x y 2 9,原方程变为它3 y 』y 2 9,解得y6,从而可得x 8或x 27 . 检验可知: x 8是增根,舍去;x 27是原方程的实数根. 所以,原方程只有1个实数根 5.设a, b, c 为三个实数,它们中任何一个数加上其余两数之积的 2017倍都等于2018,则这样的三元数组(a, b, c )的个数为A.4 .B.5.【答】B. C.6 . D.7.由已知得,a 2017bc 2018, b2017ac 2018, c 2017ab2018,两两作差,可得(a b)(12017c) 0 , (b c)(12017a) 0 , (c a)(12017b) 0 .1由(a b)(1 2017c) 0,可得a b 或c~2017 .(1 )当a b c 时,有2017a2 a 2018 0,解得 a 1 或a 20182017(2 )当a b c 时,解得a b ___ L , c 2018 12017 2017(3)当a b时,c 1,此时有:a 1 , b 2018 1,或a 2018 1 , b 12017 2017 2017 2017 2017 故这样的三元数组(a, b, c)共有5个.3 6.已知实数a, b满足a2 33a2 5a 1, b33b25b5,则a b ()A.2 .B.3 .C.4 .D.5【答】A.有已知条件可得(a 1)32(a 1) 2 , (b 1)32(b1)2,两式相加得(a 1) 32( a 1) (b 1) 32(b 1)因式分解得(a b 2)[( a 1) 2 ( a 1)b 1) (b 1) 22] 0 . 因为2(a 1)2 (a 1)(b 1)2(b 1)2 2 [(a 1)1 2(b 1)]23 (b 1)2 2 0 ,2 4所以a b 2 0,因此 a b 2.二、填空题:(本题满分28分,每小题7分)1.已知p, q, r为素数,且pqr 整除pq qr rp 1,则p q r .【答】10 .设k p qr rp 1 1 1 1 1 由题意知k是正整数,又p, q, r 2,所以k 3,从pqr p q r pqr 2而k 1 ,即有pq qr rp 1pqr,于F是可知p, q, r互不相等.当2 p q r 时,pqr pq qr rp 1 3qr,所以q 3,故q 2 .于是2qr qr 2q 2r 1,故(q 2)(r 2) 3,所以q 2 1, r 2 3,即q 3, r 5 ,所以,(p, q, r) (2,3,5).再由p, q, r的对称性知,所有可能的数组(3,5,2),(p, q, r)共有6组,即(2,3,5) , (2,5,3) , (3,2,5), (5,2,3) , (5,3,2).于是p q r 10.2.已知两个正整数的和比它们的积小 1000,若其中较大的数是完全平方数,则较小的数为 _____________ .【答】&2 2 Q Q设这两个数为 m , n (m n),贝U m n mn 1000,即(m 21)( n 1) 1001.又 10011001 1 143 7 91 1177 13,所以(m 21, n 1) = (1001,1)或(143, 7)或(91,11)2 2或(77,13),验证可知只有(m 2 1, n 1) (143,7)满足条件,此时 m 2 144, n 8 .3 .已知D 是厶ABC 内一点,E 是AC 的中点,AB 6 , BC 10 , BAD BCD ,EDC ABD ,贝U DE ________ .【答】4.延长CD 至F ,使DF DC ,贝U DE // AF 且DE 丄AF ,2所以 AFD EDC ABD ,故A, F, B, D 四点共圆,于是整数对(m, n)的个数为【答】16.综合可知:符合条件的正整数对 (m, n)有 8+ 4 + 2+1 + 1 = 16 个.2 2 21)]2 4(m 2 4n 250) 0 ,整理得因为二次函数的图象在 x 轴的上方,所以 514n 49,即(m 1)(2n 1)2 .因为 m, n 为正整数,所以(m 1)(2n 1)25 .2n 1 彳5?,故 n 5. [2(m 2n4mn 2m 1 2,所以 1时, _53, 故亍223,符合条件的正整数对 (m, n)有8 个;2时, 5,故m4,符合条件的正整数对(m, n)有4个;3时, 257 ,m — 187,符合条件的正整数对(m, n)有2 个; 4时, 25 m —179,符合条件的正整数对(m, n)有1 个;5时,1125,故m 1411 ,符合条件的正整数对 (m, n)有1个.BFDBAD BCD ,所以 BF BC 10,且 BD FC ,故 FABFDB 90 .又AB 6,故 AF . 102628,所以DE 丄 AF 4 .24.已知二次函数yx 22(m 2n 1)x(m 2 4n 250)的图象在x 轴的上方,则满足条件的正第二试 (A )、(本题满分 2 20分)设a, b, c, d 为四个不同的实数,若 a, b 为方程x 10cx 11d 0的根,c, d c d 的值. a b 2 为方程x 10ax 11b 0的根,求 解由韦达定理得 10c , 10a ,两式相加得 abed 10(a c). 2 因为a 是方程x 2 10cx 11d0的根, 2 所以a 2 10ac 11d 0 ,又 d 10a c ,所以 2a 2110a 11c10ac10分 2类似可得c 2110c 11a 10ac 0.15分①一②得(a ©(a c 121) 0 .因为a c ,所以ac 121,所以a10(a c) 1210 .20分二、(本题满分25分)如图,在扇形 OAB 中, AOB 4,点D 为OB 的中点,点E 为弧AB 上的动点,OE 与CD 的交点为F . (1 )当四边形 (2)求 CE 90,OA 12,点 C 在 OA 上, AC分别过 由ODODEC 的面积S 最大时,求EF ; 2DE 的最小值. O, E 作CD 的垂线,垂足为 M , N .6, OC 8,得 CD 10.所以OCD S ECD-' CD (OM EN )^2 CD OE _12 10 12 60, 当OEDC 时,S 取得最大值60.此时,EF OE OF12 -(2)延长 OB 至点G,使BG因为ODOE 」, DOE OEOG2所以CE 2DECE EG故CE 2DE 的最小值为& 10.OB 6 8 10 CG36 512,连结 GC,GE .E\ M F :” h” NJ !*____G10分EOG ,所以△ ODE OEG ,所以 DE 1,故 EG 2DE . EG 220分242 82 8 10,当C, E, G 三点共线时等号成立.25分2018年初中数学联赛试题参考答案及评分标准第11页(共10页)三、(本题满分25分)求所有的正整数 m, n ,使得33 2 2m n m n(m n)22 2 2 S (m n)[(m n)3mr] m n (m n)2第二试 (B )、 (本题满分20分)若实数a, b, c 满足(a b (a bc)(1」〕)的值.a bc解 记a bc x , ab bc ca y ,abc111(ab c)(ab 5c b c 5a c a 5b )x[3x 212(a b c)x36(ab bc ca )]c)(11 1 ) -9,求a b 5c b c 5a c a 5b 5z ,则11 1x( x 6ax 6b x 6c ) x (9 x 236》m 3 rh m 2 n 2因为 m, n 为正整数,故可令mnm np, q 为正整数,且 (p, q) 1. S (m n)凹 P 厘(mP 2n)3 pq q 2 2P因为 S 为非负整数,所以2P I q ,又(P, q)1,故 P 1,(m n) | mn .①10分所以mn n是整数,所以(m n) | n 2,故n 22 ,即 n mn .又由m 3 n 3 m 2n 2n 3m 2n 2m 3 所以 由对称性,同理可得mm 2 (n 2 故m m) m 2n , n . 所以20分n 代入①,得2 | m , n 代入②,得2m 34m 4 0,即 m2.所以, 满足条件的正整数m, n 为m25分3 2 x 6(a b c)x 36(ab be ca)x 216abc 5 x 336xy 216Z , ........................... 10分---------------- 是非负整数.(m n)竺£ ( mn )2 .m nm n2018年初中数学联赛试题参考答案及评分标准第10页(共10页)2结合已知条件可得 一x( 9X _361) 9,整理得xy ^Zz .所以 36xy 216z 5 2 5 x 3(a b c)(l a 1) xy z 27 2 20分 二、(本题满分 角形,AB AC , 25分) 如图, DE DC . 点E 在四边形 ABCD 的边AB 上,△ ABC 和厶CDE 都是等腰直角三 ACE 30,求 DP . (1 )由题意知ACB DCE 45 , BC .:2AC , EC 2DC, DCAECAC DC ,所以△ ADC BEC ,故 DAC BC EC45,所以 DAC ACB ,所以 AD // BC .10分 2 )设 AE x , 因为 ACE 30,可得 AC 3x , CE2x , DE 设AC 与DE 交于点P ,如果 (1)证明:AD // BC ;( 2) EBC 解 所以 PE DC 因为 EAP CDP 90 , EPA CPD ,所以△ APE DPC ,故可得 S APE — 12 S DPC •15分EPC S APES ACE —fx 2 , S EPC S DPC S CDE x 2,于是可得S DPCDPCA2S EPC (3 1)x .(2S 20分 25分PESEPC-个四位数,x 的各位数字之和为 m , x 1的各位数字之和为2的素数.求x .n ,并解 设xabcd , 由题设知 m 与n 若d9,则nm 1 ,所以(m, 若c9 ,则n m 1 9 m 8若b 9, 显然a 9, 所以n m13 , m n 26 39 36 ,矛盾. 若b 9 , 则n m 1 9 9 m于是可得x 8899 或 9799.故(m, n) n 的最大公约数 n) 1,矛盾, 1 9 9 三、(本题满分25分)设x 是 且m 与n 的最大公约数是一个大于(m, n)为大于2的素数.(m,8),它不可能是大于 2的素数,矛盾,故 c 9 .9 m 26,17,故 ( m, n) ( m,17) 10分故(m, n) ( m, 26) 13,但此时可得17 ,只可能 n 17, m 34 .15分20分 25分。
CD八年级数学竞赛试题一、选择题:1.方程组12,6x y x y ⎧+=⎪⎨+=⎪⎩的解的个数为( ).2.口袋中有20个球,其中白球9个,红球5个,黑球6个.现从中任取10个球,使得白球不少于2个但不多于8个,红球不少于2个,黑球不多于3个,那么上述取法的种数是( ). (A ) 14 (B ) 16 (C )18 (D )20 3.已知三个关于x 的一元二次方程02=++c bx ax ,02=++a cx bx ,02=++b ax cx恰有一个公共实数根,则222a b c bc ca ab++的值为( ). (A ) 0 (B )1 (C )2 (D )3 4.若3210x x x +++=,则2627--+x x+ … +x x ++-11+ … +2726x x +的值是( )(A )1 (B )0 (C )-1 (D )25.若a b c t b c c a a b===+++,则一次函数2y tx t =+的图象必定经过的象限是( ) (A )第一、二象限 (B )第一、二、三象限 (C )第二、三、四象限 (D )第三、四象限6.满足两条直角边长均为整数,且周长恰好等于面积的整数倍的直角三角形的个数有( )(A)1个 (B) 2个 (C) 3个 (D)无穷多个8.如图在四边形ABCD 中,∠DAB=∠BCD=90°,AB=AD ,若这个四边形的面积是10,则BC+CD 等于( ) A .54 B .102 C .64D .289.线段a x y +-=21(1≤x ≤3,),当a 的值由-1增加到2时,该线段运动所经过的平面区域的面积为 ( )A .6B .8C .9D .1010.四条直线两两相交,且任意三条不交于同一点,则这四条直线共可构成的同位角有( ) (A )24组 (B )48组 (C )12组 (D )16组 11、如图,P 是△ABC 内一点,BP ,CP ,AP 的延长线分别与 AC ,AB ,BC 交于点E ,F ,D 。
八年级数学竞赛试卷考试时间:100分钟 总分:150分姓名: 班级: 得分:一、选择题(每题5分,共50分)1、下列各式成立的是( )A .a-b+c=a-(b+c )B .a+b-c=a-(b-c )C .a-b-c=a-(b+c )D .a-b+c-d=(a+c )-(b-d )2、已知一次函数y=kx+b 的图象(如图6),当y <0时,x 的取值范围是((A )x >0(B )x <0 (C )x <1 (D )x >1 3、在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100100°角对应相等的角是 ( )A.∠AB.∠BC.∠CD.∠B 或∠C4、某校八(2)班的全体同学喜欢的球类运动用图7所示的扇形统计图来表示,下面说法正确的是( )A 、从图中可以直接看出喜欢各种球类的具体人数;B 、从图中可以直接看出全班的总人数;C 、从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况;D 、从图中可以直接看出全班同学现在喜欢各种球类的人数的大小关系5、已知一次函数y=mx+│m+1│的图像与y 轴交于点(0,3),且y 随x 的增大而减小,则m 的值为( ).A .2B .-4C .-2或-4D .2或-46、设y=ax 15+bx 13+cx 11-5(a 、b 、c 为常数),已知当x=7时,y=7,则x= -7时,y 的值等于( )A 、-7B 、-17C 、17D 、不确定7、已知b>a>0,a 2+b 2=4ab ,则ba b a -+等于( ). A .-21B . 3C .2D .-38、将一个正方形分割成n 个小正方形(n>1),则n 不可能取( ).A .4B .5C .8D .99、若x 取整数,则使分式1-2x 36x +的值为整数的x 值有( ). (A)3个 (B)4个 (C)6个 (D)8个10、已知1x ,2x ,3x 的平均数为5,1y ,2y ,3y 的平均数为7,则1123x y +,2223x y +,3323x y +的平均数为( )(A)31 (B)313 (C)935 (D)17二、填空题(每题8分,共40分)11、点O 为线段 A B 上一点, ∠AOC = 10︒ , ∠COD = 50︒ ,则 ∠BOD = 或A O B12、已知 m >0 ,且对任意整数 k ,2018123k m+均为整数,则 m 的最大值为 . 13、已知某三角形的三条高线长 a ,b ,c 为互不相等的整数,则 a + b + c 的最小值 为 .14、如果用四则运算的加、减、除法定义一种新的运算,对于任意实数x 、y 有则=15、如图5所示,圆的周长为4个单位长度,在圆的4等分点处标上0,1,2,3.先让圆周上数字0所对应的数与数轴上的数-1所对应的点重合,再让数轴按逆时针方向绕在该圆上,那么数轴上的数-2007将与圆周上的数字_________重合.二、简答题(每题20分,共60分) 16、现有两种理财方式供王老师选择.方案一:购买一款分红产品,前三年每年 年初交 10 万元,第 6 年年初返 6 万元,以后每年处返1.5 万元;方案二:购 买一款年利率 5%,满一年计息的储蓄产品,第一年初存款10 万元,接下来 两年每年年初追加本金 10 万元,并将之前的本息全部续存.请问哪个选择更划算?请说明理由.(参考数据:1.054 + 1.053 + 1.052 =3.47563125 )y x yx y x -+=*()()31*191211**017、一筐苹果,若分给全班同学每人3个,则还剩下25 个;若全班同学一起吃,其中5个同学每人每天吃1个,其他同学每人每天吃2个,则恰好用若干天吃完.问筐里最多共有多少个苹果?18、如图所示,有一张长为3、宽为1的长方形纸片,现要在这张纸片上画两个小长方形,使小长方形的每条边都与大长方形的一边平行,并且每个小长方形的长与宽之比也都为3:1,然后把它们剪下,这时,所剪得的两张小长方形纸片的周长之和有最大值.求这个最大值.八年级答案:一、C CADB BDBBA二、11、120度或者140度12、2/3 13、9 14、163/113 15、2 三、1617、18、。
八年级数学竞赛试题及答案1.将1、2、3、4、5这五个数字排成一排,使得最后一个数是奇数且其中任意连续三个数之和都能被这三个数中的第一个数整除。
求满足要求的排法数量。
答案:3种2.XXX沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车。
假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车。
求发车间隔的时间。
答案:18分钟3.如图,在三角形ABC中,AB=7,AC=11,点M是BC 的中点,AD是∠BAC的平分线,MF∥AD。
求FC的长度。
答案:FC=54.已知0<a<1,且满足$\left\lfloor\frac{a+1}{2}\right\rfloor+\left\lfloor\frac{a+2}{3}\right\rfloor+\cdots+\left\lfloor\frac{a+29}{30}\right\rfloor=18$,求$\left\lfloor10a\right\rfloor$的值。
答案:25.XXX家电话号码原为六位数。
第一次升位是在首位号码和第二位号码之间加上数字8,成为一个七位数的电话号码;第二次升位是在首位号码前加上数字2,成为一个八位数的电话号码。
XXX发现,他家两次升位后的电话号码的八位数,恰是原来电话号码的六位数的81倍。
求XXX家原来的电话号码。
答案:6.在平面上有7个点,其中任意3个点都不在同一条直线上。
如果连接这7个点中的每两个点,那么最多可以得到21条线段;以这些线段为边,最多能构成35个三角形。
7.设a、b、c均是不为0的实数,且满足$a^2-b^2=bc$及$b^2-c^2=ca$。
证明:$a^2-c^2=ab$。
8.如图,在凹四边形ABCD中,它的三个内角∠A、∠B、∠C均为45度。
E、F、G、H分别是边AB、BC、CD、DA的中点。
证明:四边形EFGH是正方形。
9.已知长方形ABCO,O为坐标原点,点B的坐标为(8,6),A、C分别在坐标轴上,P是线段BC上动点,设PC=m,已知点D在第一象限且是直线y=2x+6上的一点,若△APD是等腰直角三角形。
2018年全国初中数学联赛试题参考答案和评分标准精品2018年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准。
第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分。
如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数。
第一试一、选择题:(本题满分42分,每小题7分)1.已知$a=1+\frac{1}{2+1}$,$b=3-2$,$c=6-2$,那么$a,b,c$的大小关系是()A。
$a<b<c$B。
$a<c<b$XXX<a<c$D。
$b<c<a$答】C.因为 $\frac{1}{2+1}=\frac{1}{3}$,所以$a=1+\frac{1}{3}=\frac{4}{3}$,$b=1$,$c=4$。
因为 $\frac{1}{3}<1$,所以$a<\frac{4}{3}+1=\frac{7}{3}<c$,所以 $b<a<c$。
2.方程$x^2+2xy+3y^2=34$的整数解$(x,y)$的组数为()A。
3B。
4C。
5D。
6答】B.方程即$(x+y)^2+2y^2=34$,显然$x+y$必须是偶数,所以可设$x+y=2t$,则原方程变为$2t^2+y^2=17$。
因为$2t^2\leq 16$,所以$t=\pm 2$,从而可求得原方程的整数解为$(x,y)=(-7,3),(1,3),(7,-3),(-1,-3)$,共4组。
3.已知正方形ABCD的边长为1,E为BC边的延长线上一点,$CE=1$,连接AE,与CD交于点F,连接BF并延长与线段DE交于点G,则BG的长为()A。
$\frac{65}{26}$B。
$\frac{3}{3}$C。
$\frac{2}{5}$D。
$\frac{9}{4}$答】D.过点C作$CP\parallel BG$,交DE于点P。
第18届“五羊杯”初二数学竞赛试题
(考试时间:90分钟 满分:100分)
一、选择题(4选1型,每小题选对得5分,否则得0分,本大题满分50分)
1.化简繁分数:111123233(2)
3(2)
---+-
-+-------=( ). A 、25 B .25
- C .一2 D 、2
2.设23x y x y -=+,其中x ,y ≠0,则33
33(23)(32)(42)(7)
x y x y x y x y ---+--=( ) A .一l B .1 C .
14134075 D .14134075-
3.已知三个方程构成的方程组2,1,122yz xyz xyz y z yz zx xy yz zx xy
===+-+++ 恰有一组解,,x a y b z c ===,则333a b c ++=( )
A .一1
B .1
C .0
D .17
4.设3
24(23)2(321)3a b c d a b c d +-+-+--=-++,则 ()()()()b c d c d a d a b a b c +-+-+-+-=( )
A .16
B .一24
C .30
D .0
5、杨城同学训练上楼梯赛跑,他每步可上2阶或3阶(但不上1阶,也不上4阶以上).现共有16阶台阶,规定不许踏上第7阶,也不许踏上第13阶.那么杨城有( )种不同的上楼梯方法.(注:两种上楼梯方法,只要有某l 阶楼梯的上法不相同,就算作不同的方法.)
A .12
B .14
C .15
D .16
6.求值:20063—10063一l0003—3000×2006×1006=( ).
A .
B .
C .
D .0
7.已知323x y -=,则23796x y xy xy y x
--+-=( ) A .
14 B .14- C 、13- D 、13
8.计算
33332461004246100624610082462006
+++++++++++++++++++A .31003 B .31004 C .1334 D .11000
9.至少有两个数字相同的3位数共有( )个
A .280
B .180
C .252
D .396
10.五羊中学从初一到高三级学生中挑选“访贫问苦”志愿者,至少要选出( )名同学,才能做到,不管怎样挑选,以下六个条件至少能满足一个条件:
条件l :初一级至少选3人;
条件2:初二级至少选4人;
条件3:初三级至少选5人;
条件4:高一级至少选8人;
条件5:高二级至少选20人;
条件6:高三级至少选6人.
A .47
B .46
C .41
D .40
二、填空题(每小题答对得5分,否则得0分.本大题满分50分)
11.若P 是两位的正整数,则以下等式中有可能成立的式子的个数是 .
A .22006(34)(59)x Px x x ++=--
B 、22006(17)(118)x Px x x ++=--
C 、22006(34)(59)x Px x x --=+-
D 、22006(17)(118)x Px x x --=+-
E 、22006(1)(2006)x Px x x +-=-+
12.分解因式22
26773x xy y x y --+++=
13.已知2323573(2)2(2)(2)
x x A B C x x x x ++=++----
其中A ,B ,C 为常数,则2A+B+C=
14.方程组4239
x y x x y x ⎧++=⎪⎨++=⎪⎩的解共有 组
15.假设一家旅馆共有30个房间,分别编以号码l ~30,现在要在每个房间的钥匙标上数字,为保密起见,要求数字用密码法,使服务员容易识别,而使局外人不易猜到.现在要求密码用两位数,左边的一个数字是原房号除以5所得的余数,右边的一个数字是原房号除以7所得的余数.那么标有36的钥匙所对应的原房号是 号.
16、设251098109810(21)x x a x a x a x a x a --=+++
++, 则97531a a a a a ++++=
17、若2005200520042004200420042003200311,,2006200620052005200520052004200420052006P Q R =-=-=- 则P ,Q ,R 的大小关系是 .(注:写出P ,Q ,R 两两的大小关系)
18、有一个正在向上匀速移动的自动扶梯,旅客A 从其顶端往下匀速行至其底端,共走了60级,B 从其底端往上匀速行至其顶端,共走了30级(扶梯行驶,两人也在梯上行走,且每次只跨l 级),且A 的速度(即单位时间所走的级数)是B 的速度的3倍,那么自动扶梯露在外面的级数是
19.分数12121212,,,,12380
中共有 个分数可以化成混循环小数
20.请你自己画图:画一个等边三角形,三个顶点标上A ,B ,C .在三边BC ,CA ,AB 上取三等分点,BC 的三等分点(从B 到C 方向)是P ,Q ;CA 的三等分点(从C 到A 方向)是M ,N 、;AB 的三等分点(从A 到B 方向)是S ,T .连结线段QM ,NS ,TP .在六条 线段PQ ,QM ,MN ,NS ,ST ,TP 上再取三等分点,依次是P 1,P 2(从P 到Q 方向);Q 1,Q 2(从Q 到M 方向);M 1,M 2(从M 到N 方向);N 1,N 2((从N 到S 方向);S 1,S 2(从S 到T 方向);T 1,T 2(从T 到P 方向).连结线段12211221,,,,S M S M TM TQ T Q ;
1221122112211221,,,,;,,,,PS P S QS Q N Q N M P M P NP N T N T .
所得到的图形中,可以数得出来的三角形,共有 个.。