水热法制备粉体
- 格式:ppt
- 大小:34.35 MB
- 文档页数:4
Hefei University题目:水热法制备纳米陶瓷粉体技术专业:11级粉体材料科学与工程(1)班姓名:施学富学号:1103011002二O一三年六月摘要:文章较为系统地概述了水热法制备纳米陶瓷粉体的技术方法、特点和研究进展。
认为水热法是一种极有应用前景的纳米陶瓷粉体的制备方法关键词:水热法,纳米,陶瓷粉体1 引言现代陶瓷材料的性能在一定程度上,是由其显微结构决定的,而显微结构的优劣却取决于制备工艺过程。
陶瓷的制备工艺过程主要由粉体制备、成型和烧结等三个主要环节组成。
其中,粉体制备是基础,若基础的粉体质量不高,不但烧结条件难以控制,也绝不可能制得显微结构均匀、致密度高、内部无缺陷、外部平整的瓷坯。
显微结构,尤其是陶瓷材料在烧结过程中形成的显微结构,在很大程度上由原料粉体的特性决定。
因此粉体性能的优劣,直接影响到成型和烧结的质量。
粉体的尺寸大小决定了作用于粉体上的单位体积的表面积,进而又决定了粉体的最终行为。
粉体达到纳米级时,可以生产出优于普通材料的纳米特异功能。
目前,制备纳米粉体的方法可分为三大类:物理方法、化学方法和物理化学综合法。
化学方法主要包括水解法、水热法、溶融法和溶胶一凝胶法等。
其中,用水热法制备纳米粉体技术越来越引起人们的关注⋯。
本文拟对近年来水热法制备纳米陶瓷粉体作一概要介绍。
2 水热法制备纳米陶瓷粉体的原理及特点2.1水热法概述水热法(hydrothermal preparation)是指密闭体系如高压釜中,以水为溶剂,在一定的温度和水的自生压力下,原始混合物进行反应的的一种合成方法。
由于在高温,高压水热条件下,能提供一个在常压条件下无法得到的特殊的物理化学环境,使前驱物在反应系统中得到充分的溶解,并达到一定的过饱和度,从而形成原子或分子生长基元,进行成核结晶生成粉体或纳米晶。
根据化学反应类型的不同,水热法制备粉体有如下几种方法:(1)水热氧化(Hydrothermal Oxidation)利用高温高压,水、水溶液等溶剂与金属或合金可直接反应生成新的化合物。
水热法制备batio3纳米粉体原理
水热法制备BaTiO3纳米粉体的原理是通过在高温高压的水热条件下,利用水分子和溶剂分子的高度活跃性,使得反应物中的离子在水热反应的过程中重新排列和结合,最终形成目标产物。
具体原理如下:
1. 水热环境:水热反应一般在高温高压下进行,典型的反应条件是温度在100-200摄氏度之间,压力在1-3 MPa左右。
这样的环境使得反应物能够在水分子的催化下更快地进行反应。
2. 溶解反应物:将所需的反应物,如钛酸铅和钡盐溶解在适当的溶剂中,形成反应物溶液。
溶剂通常选择对反应物具有较好的溶解性,如酸、碱或氢氧化钠等。
3. 反应:将制备好的反应物溶液加入到高压釜中,加热至设定的温度并保持一定的时间。
在高温高压的条件下,溶液中的离子发生迁移和重排,形成新的晶体。
4. 沉淀:经过一定时间的反应后,将高压釜冷却至室温,产物会经历一个从溶液中析出的过程。
这是因为溶解度随温度的下降而降低,导致产物退火结晶生成固态的BaTiO3纳米粉体。
通过水热法制备的BaTiO3纳米粉体具有高度纯净性、均匀性好、粒径小等优点,适用于丰富光电、催化及传感等领域的应用。
BiFeO3粉体的水热法制备与表征BiFeO3是一种具有多功能性质的多铁性材料,其具有优良的铁磁、电场控制的铁电以及强铁电耦合效应等特性,被广泛应用于磁电存储、传感器、激光、超声波等领域。
水热法是一种简便易行的合成方法,通过调控反应条件可以得到不同形貌和性能的BiFeO3粉体。
本文将介绍BiFeO3粉体的水热法制备与表征的相关研究进展。
水热法是一种利用水的高温高压和溶剂的溶解能力来合成材料的方法。
其基本原理是在高温高压的条件下,通过控制反应物的浓度、pH值、反应温度和时间等参数,利用水的溶解能力来促使反应发生。
水热法制备BiFeO3粉体可以通过下面几种方法:1. 水热晶种法:首先制备一定量的BiFeO3晶种,然后将晶种和适量的反应物加入到水中,在特定条件下进行水热反应,最终得到BiFeO3粉体。
2. 水热氢氧化法:将铁盐和铋盐溶解在水中,加入一定量的氢氧化钠作为沉淀剂,经过水热反应生成氢氧化物沉淀,最后在高温条件下煅烧得到BiFeO3粉体。
3. 水热碳酸盐法:将碳酸铋和碳酸铁溶解在水中,调节pH值,然后进行水热反应,最后通过煅烧处理得到BiFeO3粉体。
二、水热法对BiFeO3粉体的形貌和性能影响的研究近年来,研究人员通过水热法合成BiFeO3粉体,并对其形貌和性能进行了详细研究。
研究结果表明,反应条件对BiFeO3粉体的形貌和性能具有显著的影响。
1. 反应温度:一般情况下,较高的反应温度有利于提高BiFeO3晶粒的尺寸和形貌的均匀性。
研究者发现,在较高的温度下,BiFeO3晶粒逐渐增大,且形貌更加均匀。
3. 反应物浓度:调节反应物浓度可以控制BiFeO3晶粒的尺寸和相对含量。
研究者发现,增加反应物浓度可以提高BiFeO3晶粒的尺寸,并且相对含量也会增加。
合成得到的BiFeO3粉体需要进行一系列的表征工作,以了解其结构、形貌和性能。
1. X射线衍射(XRD):XRD是最常用的表征方法之一,可以通过分析离子晶体的衍射图谱来确定BiFeO3晶体的相组成、晶体结构和晶格参数。
BiFeO3粉体的水热法制备与表征BiFeO3是一种具有多种优异性能的多铁材料,广泛应用于磁存储、传感器、光电器件等领域。
水热法是一种简单有效的制备方法。
本文将介绍BiFeO3粉体的水热法制备与表征过程。
制备BiFeO3粉体的原料包括Bi(NO3)3·5H2O和Fe(NO3)2·9H2O。
将两种盐按照化学计量比例混合,并加入适量的去离子水进行溶解。
将溶液转移到密封容器中。
然后,将密封容器放入高温高压水热实验装置中。
在一定的温度和压力条件下进行水热反应。
一般来说,反应温度为180-220℃,反应时间为12-48小时。
水热反应完成后,将制得的沉淀物离心分离,并用去离子水洗涤。
然后,将洗涤后的样品在空气中干燥。
将干燥的样品进行煅烧处理,一般温度为600-800℃,时间为2-5小时。
煅烧处理的目的是提高BiFeO3的结晶度和纯度。
接下来,对制备得到的BiFeO3粉体进行表征。
常用的表征方法包括X射线衍射分析(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)。
利用XRD对样品的结晶性进行分析。
XRD分析可以确定样品的晶相结构和晶格常数。
通过与标准晶体卡片进行比对,可以确定BiFeO3的相纯度。
然后,使用SEM观察样品的形貌。
SEM图像可以获得样品的表面形貌和粒径分布情况。
正常情况下,BiFeO3颗粒呈现出均匀致密的结构。
利用TEM对样品的微观结构进行观察。
TEM图像可以获得样品的晶体结构和颗粒的形状。
通过高分辨率TEM,还可以观察到样品的晶格缺陷等信息。
通过以上的水热法制备与表征方法,可以得到高质量的BiFeO3粉体样品。
这些样品可以用于进一步的物性测试和应用研究。
汤黎辉,张群飞,马金明,肖长江,栗正新(河南工业大学材料科学与工程学院,郑州450001)BaTiO 3纳米粉体的合成方式及合成粉末的样本表征,采取水热法合成方法,合成得到钛酸钡。
通过X 射线衍射、扫描电子显微镜表征手段以及JADE 、Origin 等软件的分析,得出其物相、晶体结构、颗粒大小以及外观形貌。
经过实验,使用水热法合成方式,能够制备出高品质的钛酸钡纳米粉末。
结果表明:用水热法得到了纯的钛酸钡粉体,粉体的晶粒大小较均匀,晶粒尺寸约为39.51nm,粉体的晶体结构为四方结构,形貌为类球形。
;纳米粉体;水热法;晶体结构;晶粒尺寸由于具有出色的介电性能,钛酸钡(BaTiO 3)已经成功地发展出了各种电子器件,如多层陶瓷电容器、正温度系数热敏电阻、动态随机存储器、声呐传感器、压电换能器以及各种光电子元件,从而在电子领域发挥着重要的作用,并且已经成为电子陶瓷领域的主要原材料[1,2]。
目前制备钛酸钡粉体最常用的方法主要有固相法、共沉淀法、微乳液合成方法、水解溶胶-凝胶法等。
固相法作为一种传统的合成工艺,具有制备产率高,操作简单等优点,但是,这种合成方法在制备过程中存在合成温度高、合成的粉体颗粒粗大、较高的杂质含量以及组分均匀度不高等缺点,一般作为低端产品合成时的首选工艺。
共沉淀法制备钛酸钡粉体难以形成均匀的沉淀物,而且颗粒容易团聚,粒径分布宽,产品质量不稳定[3]。
微乳液合成方法制备产物需要大量助剂、改性剂和有机剂,导致成本较高,而且还易引入杂质且产能有限,所以该合成方法目前还没有被广泛的使用,仅仅处于实验室研究中[4]。
凝胶法虽然可行,但由于技术复杂、时间较久,使得它的水解效果不易掌握。
相比之下,水热法更加经济实惠,可以在较短的时间内完成钛酸钡的生产,同时也能够保证产品的质量,能够满足更严格的质量标准[5]。
水热法合成粉体,能够在低温水溶液中得到分散性好的BaTiO 3超细粉体,合成的粉体晶粒发育比较完整,并且在水热法实验过程中,不需要经历高温的煅烧以及后期的球磨过程,进而可以避免了杂质的引入和球磨对粉体结构的破坏,从而有效地消除了杂质及其他形态问题,故文章实验采用水热法制备BaTiO 3纳米粉体,并对其进行深入研究。
BiFeO3粉体的水热法制备与表征引言BiFeO3是一种具有优良性能和应用前景的多功能铁电材料,其在光催化、铁电存储器、传感器、电致变色器件等领域具有广泛的应用前景。
由于其制备方法简单、成本低廉且易于控制粒子形貌和尺寸,水热法成为制备BiFeO3粉体的热门方法之一。
本文旨在综述BiFeO3粉体的水热法制备及表征方法,以期为相关研究提供参考。
一、水热法制备BiFeO3粉体的方法水热法是将金属盐溶液在高温高压的条件下与氢氧化物或羟基化物反应生成固体产物的一种常用的合成方法。
水热法制备BiFeO3粉体一般采用Bi(NO3)3和Fe(NO3)3·9H2O作为原料,NaOH或NH3·H2O作为沉淀剂,通过控制温度、压力和反应时间,实现BiFeO3的合成。
通常的实验步骤如下:1. 按一定的摩尔比称取Bi(NO3)3和Fe(NO3)3·9H2O,并将其溶解于适量蒸馏水中,形成混合溶液。
2. 在搅拌的缓慢滴加NaOH或NH3·H2O溶液至混合溶液中,产生沉淀。
3. 转移混合物至高压釜中,加热至一定温度,在一定压力下反应一定时间。
4. 得到沉淀后,用蒸馏水洗涤并离心,最后将沉淀干燥得到BiFeO3粉体。
二、水热法制备BiFeO3粉体的影响因素水热法制备BiFeO3粉体的过程受到多种参数的影响,包括反应温度、压力、溶液浓度、沉淀剂用量等因素。
这些因素对BiFeO3粉体的形貌、尺寸和结晶度等性质具有重要影响。
一般来说,较高的温度和压力、较高的溶液浓度和适量的沉淀剂用量有利于得到较纯净、较均匀的BiFeO3粉体。
1. 反应温度在水热法制备BiFeO3粉体的过程中,反应温度是一个非常重要的参数。
适当的反应温度有利于沉淀颗粒的形貌和尺寸的控制,同时也会影响沉淀物的结晶度。
较高的温度可以加快反应速率,但如果反应温度过高,可能会导致颗粒过大或团聚,降低产物的分散性和比表面积。
2. 反应压力反应压力是水热法的另一个重要参数。