意的n个实数 x1,x2, ,xn,均有 P X 1 x 1 , X 2 x 2 , , X n x n P X 1 x 1 P X 2 x 2 P X n x n
则称n个随机变量是相互独立的。
随机变量的独立性
设 X1,X2, ,Xn 的分布函数分别为 F 1 (x )F ,2 (x ) ,,F n (x ), 它们的联合分布函数为 F(x1,x2, ,xn),则上式等 价于
F ( x 1 , x 2 , , x n ) F 1 ( x ) F 2 ( x ) F n ( x )矩函数一个来自机变量矩函数原点距
中心距
n
mk E X K xik PX xi 离散型 i1
x
k
fX
x dx
k E X EX k
连续型
n
xi EX k PX xi i1
设离散型随机变量X,一切可能值为x1,x2, ,xn,记
PnP(Xxn)
称 P1,P2, ,Pn 为X的分布列,也称为X的概率函数。
连续型随机变量
定义:对于随机变量X,若存在非负函数 f( x ),
且 f(x)dx ,使X取值于任意区间的概率 b Pa Xbf(x)dx a
称X为连续型随机变量。
随机向量及其分布
定义:
设 是一样本空间, X 1 ()X ,2 () ,,X n ()
是定义在这个样本空间上的n个随机变量,称
X () X 1 () ,X 2 () , ,X n () 为 上的一个n维
随机向量。
随机向量的联合分布函数
设 X (X 1 ,X 2 , ,X n)是样本空间 上的n维随机 向量。称n元函数
描述概率分布的离散程度。
矩函数
⑤ 相关函数 ⑥ 协方差